I

I

e 4%

F

7

——

1) -

e i ‘_. w
N =
= ==
a- | —
1 | 3] —

~

INRAX

MVI-ADM

'C' Programmable

Application Development Module

Developer's Guide

December 12, 2006

\/

ProSoft

TECHNOLOGY

Please Read This Notice

Successful application of this module requires a reasonable working knowledge of the Rockwell
Automation hardware, the MVI-ADM Module and the application in which the combination is to be
used. For this reason, it is important that those responsible for implementation satisfy themselves
that the combination will meet the needs of the application without exposing personnel or
equipment to unsafe or inappropriate working conditions.

This manual is provided to assist the user. Every attempt has been made to assure that the
information provided is accurate and a true reflection of the product's installation requirements. In
order to assure a complete understanding of the operation of the product, the user should read all
applicable Rockwell Automation documentation on the operation of the Rockwell Automation
hardware.

Under no conditions will ProSoft Technology, Inc. be responsible or liable for indirect or
consequential damages resulting from the use or application of the product.

Reproduction of the contents of this manual, in whole or in part, without written permission from
ProSoft Technology, Inc. is prohibited.

Information in this manual is subject to change without notice and does not represent a
commitment on the part of ProSoft Technology, Inc. Improvements and/or changes in this manual
or the product may be made at any time. These changes will be made periodically to correct
technical inaccuracies or typographical errors.

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have
suggestions, comments, compliments or complaints about the product, documentation or support,
please write or call us.

ProSoft Technology, Inc.

1675 Chester Avenue, Fourth Floor
Bakersfield, CA 93301

+1 (661) 716-5100

+1 (661) 716-5101 (Fax)
http://www.prosoft-technology.com

Copyright © ProSoft Technology, Inc. 2000 - 2006. All Rights Reserved.

MVI-ADM Developer's Guide
December 12, 2006

http://www.prosoft-technology.com/

Contents

MVI-ADM e 'C' Programmable
Application Development Module

Contents
PLEASE READ THIS NOTICE......oiiii ittt ettt et a e st a st e e e s nntae e e e ntbe e e s snnte e e e annnaeeeeees 2
YOUT FEEADACK PIEASE ...coeiiiiiee ettt e e e ettt e e e e e e e s ababe e e e e e e nnnes 2
1 INTRODUGCTION L.eetiiiiiiiiiie ittt ettt e sttt e e st e e e st e e s sssbeeesasbeeaeasbaeeesansaeaeaassbeeesansbeeeeanstaeennsees 9
1.1 (D] T 1T 0] o 1= TP PPPTTT 9
1.2 OPEratiNng SYSTEM ... e e e e e e e s s st e e e e e e e e s s e aarreeaaaaeeas 10
2 PREPARING THE MVI-ADM MODULE ...ttt siaeea s 11
2.1 oo = T Lol 0]] =] £ PSERR 11
2.2 Jumper Locations and SettiNgSuuueirieeeiiiiiiiiiiiie e s e e s er e e e e 11
221 SEUUP JUMPET ...ttt et e e et e e e et e e e e nb e e e e nneeeeeennes 11
222 Port1and POrt 2 JUMPEISooiiiiiie ittt s 11
2.3 10F=1 o] L= @] o =To3 1T Y 1= U 11
2.3.1 RS-232 Configuration/Debug POrtcueiiiiiiie e 12
A T S O T USRS 14
2.3.3 RS422 .. e e e e e e et r e e e atae e e e nnres 16
234 RSGA85 ... e e e e et e e e et r e e e nnnaeeeeanres 16
3 UNDERSTANDING THE MVI-ADM APl ..ooiiiiiiie sttt ettt a e nnaaa e nnnaeee s 17
3.1 F N o B I o T = L 1= PP 17
311 Calling CONVENLION ...t e e e e e e e e e e e e e e e e e e snrneeees 18
R Tt N o Vo [1 S 18
3.1.3 SAMPIE COUE ...t e e e 18
3.1.4 Multithreading CoNSIAErationsoocueeiiiiiiiieie e 18
3.2 DeVvelOpPmMENT TOOIS ..ot 18
3.3 THEOory OFf OPEIAtiONcoii ittt et e e sabeeee e 19
B30T ADIM AP e e e e e e e e b e e e e raeaeeanaeeeeanees 19
3.4 ADM FUNCLIONAl BIOCKS ...ttt 19
3.41 D= L= | o = T T PP PRRT 19
3.4.2 Backplane CommuNICAtiONScc.uuiiiiiiiii e 19
3.4.3 Serial CoOmMMUNICALIONScoiiiiiiiiiiii et e e e e e e 41
B S |V =11 - o] o T o2 PR 41
B T B 11 o 10 o o) X o2 PRSP 41
R S I |V A VA T3 o X oSSR 42
R I A O o1 4o | Y2 o S 43
3.4.8 Using Compact FIash Disks.........c.eoiiiiiiiiii e 45
3.5 ADM API ATChITECIUIE .ot e e s e e e e e e s e ennaaeeees 45
3.6 EXAMPIe COUE FIlES ... 46
3.7 F Y Y N o I PSP 47
3.7.1 ADM INterface SIHUCIUIEcoiiiiiiii ettt e 48
3.8 BaCKPIanN@ API FIIES ..ot 51
3.8.1 Backplane APl Archite€CIUreooiiii oo 51
3.9 ST T LA o I T R PPPRPPUPRR 53
3.9.1 Serial API ArChitECIUIE ... e e 53
3.10 Side-CoNNECT APIFIlES ...ouiiiiiieiii e 54
3.10.1 Side-Connect API ArChiteCtUreoeeiiiiiei e 54
T L0 B - = T I =T 13 (Y RS 54
4 SETTING UP YOUR DEVELOPMENT ENVIRONMENTccciiiiiiiiiiiie e citeee e seveee e e 55
4.1 Setting UP YOUTr COMPITET ..ciiiiiiiiiiiie ettt e e 55

ProSoft Technology, Inc. Page 3 of 318

December 12, 2006

http://www.prosoft-technology.com/

MVI-ADM ¢ 'C' Programmable Contents
Application Development Module
411 Configuring Digital Mars C++ 8.49ocoiiiiiiiiiee e 55
4.1.2 Configuring Borland CH++5.02........cooiiiiiiiiieiee e a e 65
4.2 Setting UP WINIMAGE ...ttt e e e 72
4.3 Installing and Configuring the Module ... 72
4.3.1 Using Side-Connect (Requires Side-Connect Adapter) (MVI71)ccccoeiviieiiiiinnnne 73
PROGRAMMING THE MODULEoooiiiiiiiii ittt 77
5.1 ROM Disk CONfIQUIAtION ...cciiieiiiiiiiiiece e e e ee e e e e s e e e e e e s snnreeee e 77
511 CONFIG.SYS FilE...uueiiiiiciiiie ettt ste e e st e e e et e e e e st e e e s sstaeeesansaeeesanraeeeeanes 78
51.2 Command INterpreter ... e 80
5.1.3 Sample ROM DisSK IMage.........cooiiiiiiiiiiiie et 80
5.2 Creating @ ROM DiSK IMaQEccoiiiiiiiiiiiiee ettt 81
521 WINIMAGE: Windows Disk Image BUIlder.............cccueiiiiiiiiei e 81
5.3 Downloading @ ROM DiSK IMAgecciiiiiiiiiiiiii et 83
5.3.1 MVI FIash Update........coociiiiieeiie et e e e e e e e e 83
5.4 MV SYSEEM BIOS SELUP ..vvviiiiiiiiie ittt ettt e st e e st e e e snnaeeesnnneeee s 85
5.5 (DT o LU To Lo 1T g Lo B A =1 4= To L= PP 86
CREATING LADDER LOGIC ...ttt ittt ettt ettt sttt et e e sntae e e s snbaee e s snbaeeeenne 87
6.1 AV P LG =T Vo L= o Yo oS 87
6.1.1 =T T o 10 1 TS 87
6.2 MVIS6 LAAAEr LOGIC ..vveiieiiiiiie ettt ettt e s snnee s 87
6.2.1 =TT T o 10 1 TS 87
6.2.2 ReAd ROULINE.......ei et e e e e e e e e e e e e e e e nnes 87
6.3 LAYy I =T o 1Y G oY o PP 88
6.3.1 MaiN ROULINE ...t e e e e e e e e e e e e e e nneneeeas 88
6.3.2 REAA ROULINE.....ciiiiiiii ettt e e e st e e e sbte e e e enneeeeeeans 88
6.3.3 WIItE ROULINEeoiiiiiiii et e et e e e s e e e s nnaeeeeeans 89
6.4 AV I R =T o =T o Yo o PSSP 90
6.4.1 Sample Ladder LOGICcoii ittt e e 90
6.5 AV T 7 =T o L= o Yo o PSS 96
6.5.1 =TT T o 10 1 1= U 96
T A\ Y PSP R 96
APPLICATION DEVELOPMENT FUNCTION LIBRARY: ADM APlccovviiiiiieeicieee e 99
7.1 ADM API FUNCHIONS ...ttt ettt e e e e e st e e e e e e s snnnaeeeeaeeens 99
ADM API Initialization FUNCLIONS ...ttt e e e e e e 102
P\ B 1Y O] o= o [P U R OSURPR 102
ADIM _ClOSE ...ttt e e e et e e e e e e e e — e e e e e e e e ee b — e e e e e e e e aaaraaaaaaaas 103
ADM API Debug POrt FUNCLIONS ...t e e e st e e e e e e s n e e e e e e e s e nanes 104
ADM_ProCeSSDEDUG ... e e e e e e 104
ADM_DAWIESENACTveiieiiiiiie ettt e et e e e e e e e e snree e e e enreas 105
ADM_DAWIERECVCH ...ttt e e et e e e et e e 106
ADM_DAWIESENADALAccoiiiiieeiie e e 107
ADM_DAWTIIERECYDALAceiiiiieeiei ettt e e e e e e eas 108
N1V o o o | S 109
ADM_ChECKDBPOITciiiiiiiie ittt st e s e e s et e e e et ee e e ennsae e e e annteeeeenreeeeennes 110
ADM API Database FUNCHIONS......coiiiiiiiiiii ettt e e e e e e e e e e e e e aanes 111
F N L 5= o T o SRR 111
ADM _DBCIOSE ...ceieiutiiiee it eeite et e ettt e e st e e sttt e e s e eae e e e anstee e e e s tee e e e nbeeeeaannaeeeaanteeeeanreeaeenees 112
ADM _DBZEIO ...ttt ettt ettt e e e e e e e ——aaa e e e e e e ————raaaeeeaaaaaraaaeaaaaaans 113
ADM_DBGEBIL......eeeieeiiiie e e e e e e ba e e e aneeeas 114
ADM_DBSEIBIL......eeiieeiieee e e e e e e e e e e e aneeeas 115
ADM _DBCIEAIBIL.vveeeiiiiiee ettt e et e nabaeaeenareaeenres 116
Page 4 of 318 ProSoft Technology, Inc.

December 12, 2006

Contents

MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBGetBytecocvviiiiiiiiiiee e
ADM_DBSetBYteceoeviiieiiiiiiieeec e
ADM_DBGetWord..........ccccovviieeeeeiieciiiieeen,
ADM_DBSetWord..........cccovveveeeeiiiiiiiieeeeeen
ADM_DBGetLongcccocveeieiiiiiieiiieeeeeieen
ADM_DBSetLong......cccoocueeieiiiiiieiiiiee e
ADM_DBGetFloatccceoieeeiiieiiieiereene
ADM_DBSetFloat.........ccceeioeieiiieiieeeiiereieeene
ADM_DBGetDFloat..........ccoveieeiiieiieeeeene
ADM_DBSetDFloat........c.cooeeiiiiiiieiereee
ADM_DBGetBUf.......ccceiiiiiiiiie e
ADM_DBSetBUffccoeiiiiiiiiiiee e
ADM_DBGEetREgScceiviieeeiiiiee e
ADM _DBSetRegsccoovcvvvriiiieeeeiieieeeee,
ADM_DBGetString........cccccvveeeeeeiiiiiiieeeeeeen
ADM_DBSetStringcccovvveieeeiiiiiiieeeeeee
ADM_DBSwapWordcccoecveeiiiiiieeeiiieeeenn

ADM_DBSwapDWord

ADM_GetDBCPLr ...eeeeeeeeeiiiieeeee e
ADM_GetDBIPIr ...
ADM_GetDBIntc.coeiiiiieee e
ADM_DBChangedcccccevevivieeeiiiieee e
ADM_DBBitChangedcccceveviiiiieeiiieennn
ADM_DBOR_BYteccveviiiiieiiiieiiee e
ADM_DBNOR_BVte......cccvviiiiiiienieieniieeeen
ADM_DBAND_BYtecccoviiiieiieiieee e
ADM_DBNAND_BVYte.......ccevviieiieiieienreee
ADM_DBXOR _Byte.....cccooeeiiieieeeieeee

ADM_DBXNOR_Byte

ADM API Clock Functions
ADM_StartTimerccccooeiiiiieee e
ADM_CheckTimer.......ccoviiiiiiiiieie e

ADM API Backplane Functions
ADM_BtOpeN......cccvvveeeieeiieieeee e
ADM _BHtCIOSEovvveeieeeeiiciiieeeeeeee e
ADM _BtNextovvvviiiiiiiiiiiiiiniiiniieevieaians
ADM_ReadBtCfgccccevvviiiiiiieeee e,
ADM _BtFUNC....ccoveiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeee
ADM_SetStatuscoeviiiiiiiiiien
ADM_SetBtStatusccveeeiiiiiiiiiiieien

ADM LED FUNCLIONScoiiiiiiiiiiieee e,
ADM_SetLed.......cccvvieeiiiieeeciee e

ADM API Flash Functions
ADM_FileGetStringccccveviiieeeiiiiieieniieeee
ADM _FileGetIntoooviiiiiiiiiiiieie
ADM_FileGetChar...........cccooeiiiiieeieiieecinee.
ADM_GetVal......cccvvveeeiiiiiiiiiieeeee e
ADM_GetCharccceeevviiiiiiieeeeee e
ADM_GetStr......ovveeeeieeiieceeeeee e
ADM_SKipTONEXtccoveiiiiiiieeeeeeeiieeee,
ADM_GEtC ..

ADM API Miscellaneous Functions
ADM_GetVersionInfo........cccocceeeeiniiiiiiniieenn.

ADM_SetConsolePort

ProSoft Technology, Inc.
December 12, 2006

Page 5 of 318

MVI-ADM ¢ 'C' Programmable

Contents

Application Development Module

ADM_SetCONSOIESPEEAooieiiiteteeeee e e e et e e e e e e e e e e e e e e e arnaees 166
ADM Side-CONNECTE FUNCLIONSuiiiiiiiiiie ettt e et e e e s snbae e e s snbaeeesstaeeeeanes 167
ADM _SCOPEN ...ttt ettt e e e e e e e e e ———eaa e e e e e e —————aaaeeeaaanaraaraaaaeaans 167
ADM _SCCIOSEt e ettt ettt e e e e e et e e e e e e e e e e —eeaae e e e e a————raeaeeeaaaanraareaaaeaans 168
ADM _REAASCFIIEuveeie ettt e e e e e e et e e e e b e e e e reaeeres 169

F B =T To ST 0 o PSP 170
ADM _SCSCAN ...t e e e e e e e e be e e e e nee e e enees 171
ADM API RAM FUNCHIONS ittt e e e e s ettt e e e e e e s st e e e e e e s s s annssnaneeaeaeaeanns 172
ADM_EEPROM_ReadConfiguration..............cooiiiiioiiee e 172
ADM_RAM_FiNd_SECHON ...coeiiiiiiee ettt e e et e e e e e e e e e nre e e e enees 173
ADM_RAM_GEESHING ... iteieee ittt et ete e e e st e e e sttt e e e s nte e e e e nnteeeeennbeeeeennres 174
ADM_RAM _GEEINT. ...ttt e e e s et e e e et e e e et e e e e nntee e e e nnneeeeeennes 175
ADM_RAM _GEILONG. ..citiitiiieeitiiie ettt sttt se et e e st e e et e e e s et e e e aannteeeeanbeeeeeanbeeeeeanseeeeeannes 176
ADM_RAM_GELFIO@L. ... e eiieiieiee ettt e e e e e e e e e e e nres 177
ADM_RAM_GEIDOUDIEooiiiiiiiieiiie ettt e ettt et e e e nree e e e nnes 178
ADM_RAM _GEECNAN ... teiie ettt ettt e et e e e sttt a e s ane et e e s nnn e e e e annaeeeeanneeas 179

8 BACKPLANE API FUNCTIONSottt ettt ettt ettt et e et e e s s bae e e e s snneeea e e 181
Backplane API Initialization FUNCHIONSuuiiiiiiii e ee e e ee e e e 183
Y A o o T o1 o SRR 183

Y A o o T T 1 SRR 184
Backplane APl Configuration FUNCLIONScoiiiiiiiiiiiiiie e 185
Y VAT o) o T CT=1 {10 o] o1 T SRR 185

Y VAT o] o TS 1T 1 (@107 oo SRR 187
Backplane APl Synchronization FUNCHIONS ...t 189
MVIbp_ WaitFOrINPUESCANcooiiiiiieie e e e e e e e e e e eaaes 189
MVIbp_ WaitFOrOULPUISCANccoiiieeie e e e e e e e e e e enaes 191
Backplane API DIr€Ct /O ACCESS .oociiiiiiciiieiiee ettt e e e e e e et e e e e e e e e s annbaaeeaaee s 193
MVIbp_ReadOuUtPULIMAGE.coi it e e e enreee e 193
MVIbp_WHEINPULIMAGE.eeiii et et e e s e e e eaes 194
Backplane APl Messaging FUNCLIONSuuiiiiiiii i er e e e e e e 195
MVIDP_RECEIVEMESSAQEeeiiiiiiiiii ettt e e e e e e e e e e e e e e e e e annns 195

Y AV Lo o ST a e AV F= TS Vo TSR 197
Backplane APl Miscellaneous FUNCLIONScoiiiiiiiiiiiiiiee e 199
MVIDP_ GetVErSIONINTOuviiiiiii i e e e e e e e e e e e anrens 199

Y AV o I € T=1 11V, foTo [N] =1 [) (o TSP RE RO 200

Y AV o] o T =l g (o] £ (SO EUTRRPPR 201
MVIDP_SEIUSEILEDeeiiiiiiiee e e e e e e e e e e e s e et ae e e e e e e e e eannrees 202
MVIbp_SetMOAUIESTALUS.......eeiiiiiiiee e e e e e e e e e e e e e sennnes 203
MVIDP_GetCONSOIEMOUEcooiiiiiie ettt e e et e e e eneeeeeens 204
MVIDP_GetSEtUPMOTE...... ..ottt e e st e e e sbeeeeeanes 205
MVIDP_GetProCeSSOrStatUS.........eiiii i st ee e 206

Y A o] o TS 1= =Y o SR 207
1Y/ AVA o] o IS 11 (@] =0 =11V [o = 1SR 208
Platform SPecific FUNCHIONSoiiiiiiiieiiee e 209
MVIbp_ReadMOodUIEFIlE (MVIAB)..........oooiiiiiiieieiie ettt e et e e e sraeeaeenes 209
MVIbp_WriteModUIEFIIE (MVI4B)veiieeiiieee ettt e e et e e e stee e e e sraeeeeanes 210
MVIbp_SetModulelnterrupt (MVI46)cc.ueiiiiiiiiee et e e snaeea e 211

9 SERIAL PORT LIBRARY FUNCTIONSootiiiiiiiie ittt et ee e snteee e snraeeeennes 213
Serial Port APl Initialization FUNCLIONSuviiiiiiiiie et 215
Y AV I o T @] =1 o TP PRRTPRP 215
MVISP_OPENAIL ...ttt e e e ettt e e e e b e e e e eb b e e e e nbe e e e e nbee e e e anbeeeennees 217
YA] o T 1 01T SRR 219

Page 6 of 318 ProSoft Technology, Inc.

December 12, 2006

Contents

MVI-ADM e 'C' Programmable
Application Development Module

Serial Port API Configuration FUNCHIONS. ..o 220
Y AV T o T @7] T USSR 220
MVISp_SetHaNdShaKINgc..uviiiiiieei e e e e e e aeeeaeas 222

Serial POrt APl Status FUNCLIONS ...oiiiiiiiiie et e ettt et e e s stae e e e sraeeeeees 223
MVISP_SEIRTS ...t e e e e e et e e e st s e e e e aa e e e e aasaeeesensaeeeaenneeas 223
MVISP_ GEERTS ...ttt e e e e e e e e e et e e e s as e e e sasaeeesansseeesansaeeeeanneeas 224
MVISP_SEIDTR ...t e e e et e e e e st e e e et e e e eabeeeesasaeeeseasaeeeaanneeas 225
VLT o T = I o RSO RR 226
Y L] o T 1= (O S TSRS 227
MVISP_GEIDSR ...ttt ettt e e et e e e et e e e snsaae e e sssae e e s snaeeesansseeeeansneeeeaneens 228
Y] o T 1= 5 10 I I PR 229
MVISP GEILINESTATUS ...cceii i e e e e e e e e e aeeee s 230

Serial Port AP COMMUNICATIONS ...oiiiiiiiiiiiiee ettt ettt e e e et e e e e e e s e s ebbraeeeaaaeeeaans 231
Y AV I o T U o] o PO PR PR 231
Y AV EY o T 7= (o] o I PP 233
Y AV I o T UL TSR 234
MVISP_PUIDALA. ...ttt e et e et e e s nne e e e sneeeas 236
VA] o T 1= - PRSP 238
Y AV T o T 1= I - | - S 240
MVISP_GetCoUNTUNSENTt e e e e e e e e eneeeeeaaa e an 242
Y AV T o 1= (@7 0101 o1 {8] =Y- Lo S 243
MVISp_PurgeDatalUnSenteoiiiieiiie e e e e e e 244
MVISp_PurgeDatalUnread........... .ottt e e e e e e e 245

Serial Port APl Miscellaneous FUNCHIONS. ...t 246
MVISP GEEVEISIONINTO....ciii i e e e e e e e e e e e e raeeeaeas 246

10 CIP MESSAGING LIBRARY FUNCTIONS......ciiiiiiiiieiiiiti ettt siiiee et e e siaee e sssee e snnnaeee s 247

10.1 CIP MeSSaQiNg API FIlES ..ottt a e e 247

10.2 CIP AP ATCRITECTUIE oottt 247
10.2.1 Backplane DevViCe DIVoiii it 247

CIP API INitialization FUNCLIONS ...uiiiiiiiiiie ettt e et e e s snbeeeeennes 249
Y A T o T o= o S 249
A T o T o S 250

CIP ODjJECt REGISTIALION ..eeiiiiiiiiiitiiee ettt et e e s ib e e e e sabe e e e eenes 251
MVIcip_RegiSterASSEMDIYOD]oouiiiiiiiiee e 251
MVIcip_UnregisterASSEmMDBIYOD]oiiiiiiiiie e e 253

CIP Connected Data TranS elt a e e e e e e e e ennees 254
MVICID_ WItECONNECIEA e a e e e e aeeaaa s 254
Y AV Tt o I R =TT [@70 o =T o1 (=T RS 255

CIP CallDACK FUNCLIONS . ..ciiiiiiiie ittt ettt st e st e e s st e e s e nnbe e e e neees 257
(oTo] 0] 0 [=To7 i o] (o[RS PRP PP PP 257
T (o R o] oo 3 U SRT 261
(o F= 1 ¢ T o] o T2 263
1= 1= 7= LU] L o] (o T2 U 265
1 =TS 10T oo F= L (= o o Y oS 266
(oYY oY= 0TS A o] {0 T2 267

CIP Special Callback RegiSTIationuiiiiiiiiiiiiiieei ettt ee e e e e 268
MVicip_RegisterFatalFaultRIN...... ... e 268
MVIcip_RegisterReSetREGRINcoiiieee e 269
MVicip_RegisterFlashUpdateRINoviiiiiiiiiiie e 270

CIP MiSCellan@0US FUNCLIONSiiiiiii ettt eeiiete ettt ettt e e st e e e st e e e s ssbe e e e s snbaeeessnbaeeesanes 271
MVICIP_GEIAODJECT. ... et e e 271
MVICIP_GetVErsioNINTOooo e 272
MVICIP_SELUSEILED ...t e et e e e aneeeas 273

ProSoft Technology, Inc. Page 7 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Contents
Application Development Module

MVICID_ SetMOAUIESTATUSeeiiiiiiiiee et e e e e e e e e e e e e e e eeanees 274

Y ATt o I =ty o £ 64TV SRR 275
MVICID_GEtSEIUPMOMEeeeeiiie et e e e e e e e e s et eeeaaeeeaenannes 276
MVICIP_GEtCONSOIEMOUEoeeiieeiiiee et e e e e e e e e e e e e aeeeaaeeeeaanes 277

VA o o TS Y= o TSRS 278

11 SIDE-CONNECT API LIBRARY FUNCTIONScoiiiitieiiiite ettt 279
111 INTEAIIZALION oot e e st e e s e e snneee s 279
11.1.1 PLC Data Table ACCESSceeiiieeee e e e 279
11.1.2 SYNCHIONIZAtIONcoiiiiiiiei e 279
11.2 PLC MeSSage HanAliNgoeeiiiiiiiieiiiiiie ettt 280
11.2.1 BlOCK TFANSTEI ..o e e e a e 280
11.2.2 PLC Status and Control..........cccuuiiiiiiii e 280
11.2.3 MISCEIIANEOUS ... 280
Side-connect APl Initialization FUNCHIONSoociiiiiiiiie e 281
Y A Yo O o 1= o [PP EPTRPTP 281

Y A E Yo O o T PP EPPR PR 282
Side-connect APl PLC Data Table ACCeSS FUNCLIONSciiiiiiiiiiiiiie e 283
MVISC_GEtPLCFIIEINTO ... e e 283

YA E o AT 41 (=Y o SRR 285
MVISC_REAAPLC ...ttt et e e e ettt e e e e st e e e e st e e e eentaeaeesnsaeaeeanseeaeenes 287
MVISC_RIMWPLC ...ttt et e ettt e e e e st e e e e sate e e e e antaeeeeensaeeeeennseeesanreeeeenns 289
Side-connect API Synchronization FUNCHIONS ..ot 291

Y AV E o= T4 o o =o 1= SRR 291
Side-connect API PLC Message Handling FUNCLIONScoooiiiiiiiiiiiiiiiiece e 292
MVISC PLCMSQGREAMoiiiiiiii ittt ettt e e e e e e e e e e e e et e e e e e e e e aennneees 292
MVISC PLCMSGWIILEeeiieiiieie ettt ettt e e e e e st e e e e e e e e eennnseeeaaaeeeannnnes 294
MVISC PLCMSGWEAILottt e e e e e et e e e e e e e e nnnreeeaaaeeeannnnes 295
Side-connect API Block Transfer FUNCLIONSooiiiiiiiiie e 296
MVISC PLCBTREAQcoiiiiiiie ettt ettt ettt e e et e e e e st e e e s eata e e e s snbaeeessbseeeessaeeaeanes 296
MVISC PLCBTWIIEveiieiiiiie ettt ettt e e e et e e e e et e e e e enbe e e e e nbeeeeeans 297
Side-connect API PLC Status and Control FUNCLIONScooiiiiiiiiiiiie e 298
MVISC_GEIPLCSIAtUS ...ttt e et e e e e e e e e e ee e e e e e e e e aannnes 298
MVISC_GEIPLCCIOCK. .. .cieiiuiiieeeitiie ettt e ettt e e ettt e ettt e e s st e e e e st ae e e s anbaeeeesnsaeaeeenseeesesseeeeennes 300
MVISC_SYNCPLCCIOCK ...ttt ettt e e ettt e e s st e e s snte e e e s sntaeeeesnraeeaeanes 301
MVISC _ClEAFAUIL ...t e e e e e e e e e e aareees 302
MVISC _SEIPLCMOUEuutiiiiiiie ittt e e e e e e e e e e e et abeeeeaaeeeeannnes 303
Side-connect APl Miscellaneous FUNCHIONScooiiiiiiiiiiiiie e 304

Y AV Yo €11 VA=Y 7T] a1) (o T PP 304

YA S ol =l o]] 1| PSR 305
MVISC_GEtLAStPCCCEITONcoiiiiie e e e 306
MVISC_BCDZ2BIN ...ttt et e e et e e e e st e e e e eab e e e e eabeeaeesabaeeeeanbaeaeenes 307

YA T =121 = 0 I USRS 308

12 DOS 6 XL REFERENCE MANUALcciitiii ettt ettt et ste e tae et e e e nntee e s 309
SUPPORT, SERVICE & WARRANTY ..ottt ettt ettt e tee e e stae e e s sntaee e s staaeaesrnnaaeaans 311
Module SErvice and REPAITuuiiiiiiiii et e e e e e e ae e e e e e e an 311
General Warranty Policy — Terms and ConditioNSccoooiiiiiiiiiiieiae e 312
Limitation Of LIADTTY ...eeeii e e e e 313
Y AN o o Tod=To [0 =R TUPRPTSR 313
INDEX .. tttee e ittt ettt ettt e ettt e e s ettt e e ettt e e ekttt e e ek bt e e e e eR b e et e e eR bttt e e aa Rt e e e e e R e e et e e R bt eeeeannae e annaeeennnnrees 315

Page 8 of 318 ProSoft Technology, Inc.

December 12, 2006

Introduction MVI-ADM e 'C' Programmable

Application Development Module

11

Introduction

In This Chapter
P DEfiNItIONS oo 9

> Operating System ..o 10

This document provides information needed for development of application
programs for the MVI ADM Serial Communication Module. The MVI suite of
modules is designed to allow devices with a serial port to be accessed by a PLC.
The modules and their corresponding platforms are as follows:

» MVI46 - 1746 (SLC)

= MVI56 - 1756 (ControlLogix)

= MVIB9 - 1769 (CompactLogix)

= MVI71-1771 (PLC)

= MVI94 - 1794 (Flex)

The modules are programmable to accommodate devices with unique serial
protocols.

.~~~ A~

Included in this document is information about the available software API libraries
and tools, module configuration and programming information, and example code
for both the module and the PLC. This document assumes the reader is familiar
with software development in the 16-bit DOS environment using the C
programming language. This document also assumes that the reader is familiar
with Rockwell Automation programmable controllers and the PLC platform.

Definitions

Term Definition

API Application Programming Interface

Backplane Refers to the electrical interface, or bus, to which modules connect when
inserted into the rack. The MVI-ADM module communicates with the
control processor(s) through the processor backplane.

BIOS Basic Input Output System. The BIOS firmware initializes the module at
power up, performs self-diagnostics, and provides a DOS-compatible
interface to the console and Flashes the ROM disk.

Controller The PLC or other controlling processor that communicates with the MVI
module directly over the backplane or via a network or remote 1/O
adapter.

Input Image Refers to a contiguous block of data that is written by the module
application and read by the controller. The input image is read by the
controller once each scan. Also referred to as the input file.

Library Refers to the library file containing the API functions. The library must be
linked with the developer's application code to create the final executable
program.

ProSoft Technology, Inc. Page 9 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Introduction
Application Development Module

1.2

Term Definition
Long 32-bit value.
Word 16-bit value
Byte 8-bit value
MVI Suite The MVI suite consists of line products for the following Rockwell
Automation platforms:
= Flex1/O
= ControlLogix
= SLC
= PLC
= CompactlLogix
MV146 MVI46 is sold by ProSoft Technology under the MVI46-ADM product
name.
MVI156 MVI56 is sold by ProSoft Technology under the MVI56-ADM product
name.
MV169 MVI69 is sold by ProSoft Technology under the MVI69-ADM product
name.
MVI71 MVI71 is sold by ProSoft Technology under the MVI71-ADM product
name.
Side-connect Refers to the electronic interface or connector on the side of the PLC-5,

to which modules connect directly through the PLC using a connector
that provides a fast communication path between the MVI module and
the PLC-5.

MVI194 MVI94 and MVI94AV are the same modules. The MVI94AV is now sold
by ProSoft Technology under the MVI94-ADM product name

Operating System

The MVI module includes General Software Embedded DOS 6-XL. This
operating system provides DOS compatibility along with real-time multi-tasking
functionality. The operating system is stored in Flash ROM and is loaded by the
BIOS when the module boots.

DOS compatibility allows user applications to be developed using standard DOS
tools, such as Digital Mars C++ and Borland compilers. User programs may be
executed automatically by loading them from either the CONFIG.SYS file or an
AUTOEXEC.BAT file.

Note: DOS programs that try to access the video or keyboard hardware
directly will not function correctly on the MVI module. Only programs that use
the standard DOS and BIOS functions to perform console I/O are compatible.

Refer to the General Software Embedded DOS 6-XL Developer's Guide (page
309) on the MVI-ADM CD-ROM for more information.

Page 10 of 318 ProSoft Technology, Inc.

December 12, 2006

Preparing the MVI-ADM Module MVI-ADM e 'C' Programmable

Application Development Module

2 Preparing the MVI-ADM Module
In This Chapter
» Package Contents.......oooiiiiiiiiiie i 11
» Jumper Locations and Settings.........cccccovviiriiieeiiie e 11
» Cable CONNECHIONS......ccceeiiiiiiiiieee et 11
2.1 Package Contents
Your MVI-ADM package includes:
= MVI-ADM Module
= ProSoft Technology Solutions CD-ROM (includes all documentation, sample
code, and sample ladder logic).
* Null Modem Cable
= Config/Debug Port to DB-9 adapter
2.2 Jumper Locations and Settings
Each module has three jumpers:
= Setup
= Port1
= Port 2 (Not available on MV194)
2.2.1 Setup Jumper
The Setup jumper, located at the bottom of the module, should have the two pins
jumpered when programming the module. After programming is complete, the
jumper should be removed.
2.2.2 Port 1 and Port 2 Jumpers
These jumpers, located at the bottom of the module, configure the port settings
to RS-232, RS-422, or RS-485. By default, the jumpers for both ports are set to
RS-232. These jumpers must be set properly before using the module.
2.3 Cable Connections
The application ports on the MVI-ADM module support RS-232, RS-422, and RS-
485 interfaces. Please look at the module to ensure that the jumpers are set
correctly to correspond with the type of interface you are using.
ProSoft Technology, Inc. Page 11 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Preparing the MVI-ADM Module
Application Development Module

Note: When using RS-232 with radio modem applications, some radios or
modems require hardware handshaking (control and monitoring of modem
signal lines). Enable this in the configuration of the module by setting the
UseCTS parameter to 1.

2.3.1 RS-232 Configuration/Debug Port

This port is physically an RJ45 connection. An RJ45 to DB-9 adapter cable is
included with the module. This port permits a PC based terminal emulation
program to view configuration and status data in the module and to control the
module. The cable for communications on this port is shown in the following
diagram:

RS-232 Config/Debug Port Cable

DB-9 Male Config/Debug Port
RxD | 2 TxD
TxD 3 RxD
COM| 5 Ccom

Disabling the RSLinx Driver for the Com Port on the PC

The communication port driver in RSLinx can occasionally prevent other
applications from using the PC's COM port. If you are not able to connect to the
module's configuration/debug port using HyperTerminal or a similar terminal
emulator, follow these steps to disable the RSLinx Driver.

1 Open RSLinx and go to Communications>RSWho
2 Make sure that you are not actively browsing using the driver that you wish to
stop. The following shows an actively browsed network:

=10l x|

v Autobrowse esh I = ééé
E---Q_ “Workstation, PSFT-wAID-1 g

#-@5 Linx Gateways, Ethernet

@ AB_DF1-1, DH-485 T o
g 01, 5LC-5/05, UNTITLED DF1-COML UNTITLED
= 10, Workstation, DF1-COM1

Page 12 of 318 ProSoft Technology, Inc.
December 12, 2006

Preparing the MVI-ADM Module MVI-ADM e 'C' Programmable
Application Development Module

3 Notice how the DF1 driver is opened, and the driver is looking for node 1 (an
SLC processor). If the network is being browsed, then you will not be able to
stop this driver. To stop the driver your RSWho screen should look like this:

Mat Browsing

Lirx AB_DF1-1
Gatew, .. DH-485

Branches are displayed or hidden by clicking on the = or the =l icons.

IE----,E'E AB_DF1-1, DH-485 I

4 When you have verified that the driver is not being browsed, go to
Communications>Configure Drivers
You may see something like this:

Configure Drivers

— Awailable Driver Types:
I d AddiMev... |
— Configured Drivers:
Mame and Drescription | Status |
4B DFT-1 DH485 Sta: 10 COMT: RUNNIMG

If you see the status as running, you will not be able to use this com port for
anything other than communication to the processor. To stop the driver press
the "Stop" on the side of the window:

Configure...
Startup...
Start

Stop

Uil

Delete

5 After you have stopped the driver you will see the following:

Configure Drivers

Awailable Driver Types:
’7 | j Ldd Hev.. |
Configured Drivers:
Mame and Drescription | Status
AB_DF1-1 DH485 Sta: 10 COM1: STOPPED Stopped

6 Upon seeing this, you may now use that com port to connect to the debug
port of the module.

ProSoft Technology, Inc. Page 13 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable
Application Development Module

Preparing the MVI-ADM Module

Note: You may need to shut down and restart your PC before it will allow you
to stop the driver (usually only on Windows NT machines). If you have followed
all of the above steps, and it will not stop the driver, then make sure you do not
have RSLogix open. If RSLogix is not open, and you still cannot stop the
driver, then reboot your PC.

2.3.2 RS-232

When the RS-232 interface is selected, the use of hardware handshaking
(control and monitoring of modem signal lines) is user definable. If no hardware
handshaking will be used, the cable to connect to the port is as shown below:

RS-232 Application Port Cable

DB-9 Male

RxD

TxD

CoMm

2

{(No Handshaking)

RS-232 Device

TxD

RxD

COM

RS-232 -- Modem Connection

This type of connection is required between the module and a modem or other

communication device.

RS-232 Application Port Cable
(Modem Connection)

RS-232 Device
TxD

RxD

RTS

CTS

Signal

DB-9 Male
TxD 3
RxD 2
RTS 7
CTS 8
Signal 5
Commaon
DTR 4

Common

DTR

The "Use CTS Line" parameter for the port configuration should be set to "Y' for

most modem applications.

Page 14 of 318

ProSoft Technology, Inc.
December 12, 2006

Preparing the MVI-ADM Module MVI-ADM e 'C' Programmable
Application Development Module

RS-232 -- Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module
requires hardware handshaking (control and monitoring of modem signal lines).

RS-232 Application Port Cable
(Hardware Handshaking)

DB-9 Male RS-232 Device
TxD 3 RxD
RxD 2 TxD
RTS 7 CTS
CTS 8 RTS
Signal 5 Signal
Common Common
DTR 4 DSR

——DCD

RS-232 -- Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field
device communication port.

RS-232 Application Port Cable
(No Handshaking)

DB-2 Male RS-232 Device
TxD 3 RxD
RxD 2 TxD
RTS 7 RTS-CTS jumper must

be installed if CTS line
cTS 8 manitoring enabled.
Signal 5 Signal
Common Common
DTR 4

NOTE: If the port is configured with the "Use CTS Line" set to 'Y', then a
jumper is required between the RTS and the CTS line on the module
connection.

ProSoft Technology, Inc. Page 15 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Preparing the MVI-ADM Module
Application Development Module

2.3.3 RS-422

RS-422 Application Port Cable

DB-8 Male RS-422 Device
TxD+ 1 RxD+
TxD- 8 RxD-
Signal 5 Signal
Common Common
RxD+ 2 TxD+
RxD- 6 TxD-
2.34 RS-485

The RS-485 interface requires a single two or three wire cable. The Common
connection is optional and dependent on the RS-485 network. The cable required
for this interface is shown below:

R5-485 Application Port Cable

DB-9 Male RS-485 Device
TxD+HRxD+| 1 TxD+/RxD+
TxD-/RxD- | 8 TxD-/RxD-
Signal 5 Signal
Common Common

RS-485 and RS-422 Tip

If communication in the RS-422/RS-485 mode does not work at first, despite all
attempts, try switching termination polarities. Some manufacturers interpret +/-
and A/B polarities differently.

Page 16 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable

Application Development Module

3

3.1

Understanding the MVI-ADM API

In This Chapter

P APILIDrariesc.oooiioiiiiiiie e 17
> Development TOOIScoooiiiiiiiiiiie e 18
» Theory of Operationccoccuiiiiiiieieiii e 19
» ADM Functional BIOCKSccccuviiiiiiiiiiiiie e 19
> ADM API ArchiteCtureoccceveiiiiieiiie e 45
» Example Code FileS........ccooiiiiiiiiieiieiieeee e 46
3 ADM AP FIlES ..ottt 47
» Backplane APl FileS ...t 51
P Serial APLFlES....ccuiiiiiiiii et 53
> Side-Connect APl Filescocciiiiiiiiieiiiee e 54

The MVI ADM API Suite allows software developers to access the PLC
backplane and serial ports without needing detailed knowledge of the module's
hardware design. The MVI ADM API Suite consists of three distinct components:
the Serial Port API, the MVI Backplane/CIP API and the ADM API.

= The MVI Backplane API provides access to the processor

» The Serial Port API provides access to the serial ports

= The ADM API provides functions designed to ease development.

* |n addition to the MVI Backplane API, MVI71 also provides the MVI Side-
Connect API as an alternative interface.

Applications for the MVI ADM module may be developed using industry-standard
DOS programming tools and the appropriate API components.

This section provides general information pertaining to application development
for the MVI ADM module.

API Libraries

Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars C++ and Borland development
tools.

ProSoft Technology, Inc. Page 17 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Note: The following compiler versions are intended to be compatible with the
MVI module API:

Digital Mars C++ 8.49 (included on CD)
Borland C++ V5.02

More compilers will be added to the list as the API is tested for compatibility
with them.

3.1.1 Calling Convention

The APl library functions are specified using the C programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

3.1.2 Header File

A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard C format.

3.1.3 Sample Code

A sample application is provided to illustrate the usage of the API functions. Full
source for the sample application is provided. The sample application may be
compiled using Digital Mars C++ or Borland C++.

3.14 Multithreading Considerations

The DOS 6-XL operating system supports the development of multithreaded
applications. Multithreading is fully supported by the API. Critical sections of the
API are protected from simultaneous access; a thread attempting to access a
critical API function at the same time as another thread will be blocked until the
previous thread has completed the function.

Note: The MVI ADM DOS 6-XL operating system has a system tick of 5
milliseconds. Therefore, thread scheduling and timer servicing occur at 5ms
intervals. Refer to the DOS 6-XL Developer's Guide on the MVI-ADM CD-ROM
for more information.

3.2 Development Tools
An application that is developed for the MVI ADM module must be executed from
the module's Flash ROM disk. Tools are provided with the API to build the disk
image and download it to the module's Config/Debug port.
Page 18 of 318 ProSoft Technology, Inc.

December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable

Application Development Module

3.3

3.4

Theory of Operation

3.3.1 ADM API

The ADM API is one component of the MVI ADM API Suite. The ADM API
provides a simple module level interface that is portable between members of the
MVI Family. This is useful when developing an application that implements a
serial protocol for a particular device, such as a scale or bar code reader. After
an application has been developed, it can be be used on any of the MVI family
modules.

ADM Functional Blocks

3.4.1 Database

The database functions of the ADM API allow the creation of a database in
memory to store data to be accessed via the backplane interface and the
application ports. The database consists of word registers that can be accessed
as bits, bytes, words, longs, floats or doubles. Functions are provided for reading
and writing the data in the various data types. The database serves as a holding
area for exchanging data with the processor on the backplane, and with a foreign
device attached to the application port. Data transferred into the module from the
processor can be requested via the serial port. Conversely, data written into the
module database by the foreign device can be transferred to the processor over
the backplane.

3.4.2 Backplane Communications

MVI146 Backplane Data Transfer

The MVI146-ADM module communicates directly over the backplane. All data for
the module is contained in the module's M1 file. Data is moved between the
module and the SLC processor across the backplane using the module's M-files.
The SLC scan rate and the communication load on the module determine the
update frequency of the M-files. The COP instruction can be used to move data
between user data files and the module's M1 file.

ProSoft Technology, Inc. Page 19 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

The following illustration shows the data transfer method used to move data
between the SLC processor, the MVI46-ADM module and the foreign network.

SLC Processor V146 -AD M Module

SLC Processor
UserDsta Files

Sefus I-I(— Laddar Logis

2 2tz Transfers data Modula's
Fieaa Dt - from mogue's mternal
M1 Flls o dats Datsbess

areas In the
M1 Flls j

procassor

3pacizl Control [————23= = ool

5 pacizl Control Laoder Logie Stave

Blocks Procasss s Drlver

£ pecizl control Logie
sommand

Lagdar Logk:

L) transters

datz from

procassor
data areas
to M Flis

Forslgn
Mastr oEl
Driver |-=S——a=]

Drivars
Logie To foreign
Natwaork

Bang auejihaeg

Configuration
Data

LagdsrLoge

transfars MO Flla
——®=| confgurztion Spacial
from Processor Block

data areas Handling

to M Flla

As shown in the diagram above, all data transferred between the module and the
processor over the backplane is through the MO and M1 files. Ladder logic must
be written in the SLC processor to interface the M-file data with data defined in
the user-defined data files in the SLC.

All data used by the module is stored in its internal database. The following
illustration shows the layout of the database:

Module's Imtemnal Database Structure

User data area: 5000
st Regist=
= Ca
4535
Configurafion and status Stes | ™0
area: 2800 waord = nd
TTas
- TE00
Command contre Cmd | 790
srea:200 words Contr
7335
5000
200 i ta Extra
200D weor ats onhy
s wailable to communicat E'E_Lf
S Arzs
3595

User data contained in this database is continuously read from the M1 file. The
configuration data is only updated in the M1 file after each configuration request
by the module to the SLC. All data in the M1 file is available to devices on the
foreign networks. This permits data to be transferred from these devices to the

Page 20 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

SLC using the user data area. Additionally, remote devices can alter the
module's configuration, read the status data and issue control commands. Block
identification codes define specific functions to the module.

The block identification codes used by the module are listed below:

Block Range Descriptions

9000 Configuration request from module
9001 Configuration ready from controller
9997 Write configuration to controller
9998 Warm-boot control block

9999 Cold-boot control block

Each block has a defined structure depending on the data content and the
function of the data transfer as defined in the following topics.

Normal Data Transfer

This version of the module provides for direct access to the data in the module.
All data related to the module is stored in the module's M1 file. To read data from
the module, use the COP instruction to copy data from the module's M1 file to a
user data file. To write data to the module, use the COP instruction to copy data
from a user file to the module's M1 file. Registers 0 to 4999 should be used for
user data. All other registers are reserved for other module functions.

Configuration Data Transfer

When the module performs a restart operation, it will request configuration
information from the SLC processor. This data is transferred to the module in a
specially formatted write block in the MO file. The module will poll for this
information by placing the value 9000 in word 0 of the MO file. The ladder logic
must construct the requested block in order to configure the module. The format
of the block for configuration is given in the following section.

Module Configuration Data

This block sends configuration information from the processor to the module. The
data is transferred in a block with an identification code of 9001. The structure of
the block is displayed below:

MO Offset Description Length
0 9001 1
1to 6 Backplane Set Up 6
71015 Port 1 Configuration 9
16 to 24 Port 2 Configuration 9

If there are any errors in the configuration, the bit associated with the error will be
set in one of the two configuration error words. The error must be corrected
before the module starts operating.

Command Control Blocks

Command control blocks are special blocks used to control the module or
request special data from the module. The current version of the software

ProSoft Technology, Inc. Page 21 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

supports three command control blocks: write configuration, warm boot and cold
boot.

Write Configuration

This block is sent from the processor to the module to force the module to write
its current configuration back to the processor. This function is used when the
module's configuration has been altered remotely using database write
operations. The write block contains a value of 9997 in the first word. The module
will respond with a block containing the module configuration data. Ladder logic
must handle the receipt of the block. The block transferred from the module is as

follows:

MO Offset Description Length
0 9997 1

1t06 Backplane Set Up 6
7t015 Port 1 Configuration 9

16 to 24 Port 2 Configuration 9

Ladder logic must process this block of information and place the data received
in the correct data files in the . The processor requests this block of information
using the following write block:

M1 Offset Description Length
7800 9997 1
Warm Boot

This block is sent from the SLC processor to the module when the module is
required to perform a warm-boot (software reset) operation. This block is
commonly sent to the module any time configuration data modifications are made
in the configuration data area. This will force the module to read the new
configuration information and to restart. The structure of the control block is
shown in the following table:

M1 Offset Description Length
7800 9998 1
Cold Boot

This block is sent from the SLC processor to the module when the module is
required to perform the cold boot (hardware reset) operation. This block is sent to
the module when a hardware problem is detected by the ladder logic that
requires a hardware reset. The structure of the control block is shown in the
following table:

M1 Offset Description Length
7800 9999 1

MVI56 Backplane Data Transfer

The MVI56-ADM module communicates directly over the backplane. Data is
paged between the module and the ControlLogix processor across the backplane
using the module's input and output images. The update frequency of the images

Page 22 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

is determined by the scheduled scan rate defined by the user for the module, and
by the communication load on the module. Typical updates are in the range of 2
to 10 milliseconds.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module is set to 250 words. This large data area permits fast
throughput of data between the module and the processor.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module is set to 248 words. This
large data area permits fast throughput of data from the processor to the module.

The following illustration shows the data transfer method used to move data
between the ControlLogix processor, the MVI56-ADM module and the foreign

device.
ControlLogix Processor IVISG-ADR Module
ControlLogix Processor
Controller Tags Moduke's
Intemal
shius I"i—— Ladder Database
Fizad Data h——— Logic
= Trnsfers
Data from —
module’s input Input Ima ge 4_/
image to data E
areas in the =
processor =
i [=] Ma_ster - -
= Driver [
Vit Date Ladder = E =
: N Logic o Logic Forzign| | 15 Foreign
éF'”F' Control | Transfers E?E,‘m E Network
ook i MVErs
D=ta from Cutput image
Frocessor Slhave N
data areas Driver [
to cutputimag HE\;?,"; Logic

As shown in the diagram above, all data transferred between the module and the
processor over the backplane is through the input and output images. Ladder
logic must be written in the ControlLogix processor to interface the input and
output image data with data defined in the Controller Tags.

ProSoft Technology, Inc. Page 23 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

All data used by the module is stored in its internal database. The following
illustration shows the layout of the database:

Module’s Internal Database Structure

5000 registers for user data : 0
Register
Data
4999
2000 words of configuration Status | 9000
and status data and
Config
6999

Data contained in this database is paged through the input and output images by
coordination of the ControlLogix ladder logic and the MVI56-ADM module's
program. Up to 248 words of data can be transferred from the module to the
processor at a time. Up to 247 words of data can be transferred from the
processor to the module. Each image has a defined structure depending on the
data content and the function of the data transfer as defined in the following
topics.

Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module's
internal database in registers 0 to 4999 and the status data. These data are
transferred through read (input image) and write (output image) blocks. The
structure and function of each block is discussed in the following topics.

Read Block

These blocks of data transfer information from the module to the ControlLogix
processor. The structure of the input image used to transfer this data is shown in
the following table:

Offset Description Length
0 Reserved 1

1 Write Block ID 1

210 201 Read Data 200
202 Program Scan Counter 1

203 to 204 Product Code 2

205 to 206 Product Version 2

207 to 208 Operating System 2

209 to 210 Run Number 2

211 to 217 Port 1 Error Status 7

218 to 224 Port 2 Error Status 7

Page 24 of 318 ProSoft Technology, Inc.

December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

Offset Description Length
225 to 230 Data Transfer Status 6

231 Port 1 Current Error/Index 1

232 Port 1 Last Error/Index 1

233 Port 2 Current Error/Index 1

234 Port 2 Last Error/Index 1

235 to0 248 Spare 14

249 Read Block ID 1

The Read Block ID is an index value used to determine the location of where the
data will be placed in the ControlLogix processor controller tag array of module
read data. Each transfer can move up to 200 words (block offsets 2 to 201) of
data. In addition to moving user data, the block also contains status data for the
module. This last set of data is transferred with each new block of data and is
used for high-speed data movement.

The Write Block ID associated with the block requests data from the ControlLogix
processor. Under normal, program operation, the module sequentially sends
read blocks and requests write blocks. For example, if three read and two write
blocks are used with the application, the sequence will be as follows:

R1W1-->R2W2-->R3W1-->R1W2-->R2W1-->R3W2-->R1W1-->

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the network or operator
control through the module's Configuration/Debug port.

Write Block

These blocks of data transfer information from the processor to the module. The
structure of the output image used to transfer this data is shown in the following

table:

Offset Description Length
0 Write Block ID 1

1 to 200 Write Data 200
201 to 247 Spare 47

The Write Block ID is an index value used to determine the location in the
module's database where the data will be placed. Each transfer can move up to
200 words (block offsets 1 to 200) of data.

Configuration Data Transfer

When the module performs a restart operation, it will request configuration
information from the ControlLogix processor. This data is transferred to the
module in specially formatted write blocks (output image). The module will poll for
each block by setting the required write block number in a read block (input
image). The format of the blocks for configuration is given in the following topics.

ProSoft Technology, Inc. Page 25 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Module Configuration data

This block sends general configuration information from the processor to the
module. The data is transferred in a block with an identification code of 9000.
The structure of the block is shown in the following table:

Offset Description Length
0 9000 1

1-6 Backplane Set Up 6
7to15 Port 1 Configuration 9

16 to 24 Port 2 Configuration 9

25 to 247 Spare 223
The read block used to request the configuration has the following structure:
Offset Description Length
0 Reserved 1

1 9000 1

2 Module Configuration Errors 1

3 Port 1 Configuration Errors 1

4 Port 2 Configuration Errors 1

510 248 Spare 244
249 —2o0r-3 1

If there are any errors in the configuration, the bit associated with the error will be
set in one of the three configuration error words. The error must be corrected
before the module starts operating.

MVI169 Backplane Data Transfer

The MVI69-ADM module communicates directly over the backplane. Data is
paged between the module and the CompactLogix processor across the
backplane using the module's input and output images. The update frequency of
the images is determined by the scheduled scan rate defined by the user for the
module and the communication load on the module. Typical updates are in the
range of 2 to 10 milliseconds.

You can configure the size of the blocks using the Block Transfer Size parameter
in the configuration file. You can configure blocks of 60, 120, or 240 words of
data depending on the number of words allowed for your own application.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module may be set to 62, 122, or 242 words depending on
the block transfer size parameter set in the configuration file.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module may be set to 61, 121, or 241
words depending on the block transfer size parameter set in the configuration
file.

Page 26 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API

MVI-ADM e 'C' Programmable
Application Development Module

The following illustration shows the data transfer method used to move data
between the CompactLogix processor and the MVI69-ADM module.

Processor MVI69 Module
Processor
Controller
Tags
Status : Ladder Logic
—
— . . « Input Image [¢— Intenal
input |mage_to Database
data areas in
Read Data the processor Fareign
L i 4 De_.w ce
Drivers
Write Data | *| Ladder logic Master
transffreor:’ data Driver -
—» processor » Output Image Logic To
Special data areas to Nefwork
Control output image Slave
Blocks S » Driver -
L Logic

As shown in the diagram above, all data transferred between the module and the
processor over the backplane is through the input and output images. Ladder
logic must be written in the CompactLogix processor to interface the input and
output image data with data defined in the Controller Tags. All data used by the
module is stored in its internal database. The following illustration shows the

layout of the database:

Module’s Internal Database Structure

5000 registers for user data

3000 words of configuration
and status data

Data contained in this database is paged through the input and output images by
coordination of the CompactLogix ladder logic and the MVI69-ADM module's
program. Up to 242 words of data can be transferred from the module to the

Register
Data

Status
and
Config

0

4999
5000

7999

processor at a time. Up to 241 words of data can be transferred from the

processor to the module. The read and write block identification codes in each
data block determine the function to be performed or the content of the data

block. The block identification codes used by the module are listed below:

ProSoft Technology, Inc.
December 12, 2006

Page 27 of 318

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Block Range Descriptions

-1 Status Block

0 Status Block

1 to 999 Read or write data

9998 Warm-boot control block
9999 Cold-boot control block

Each image has a defined structure depending on the data content and the
function of the data transfer as defined in the following topics.

Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module's
internal database in registers 0 to 4999 and the status data. These data are
transferred through read (input image) and write (output image) blocks. The
structure and function of each block is discussed in the following topics:

Read Block

These blocks of data transfer information from the module to the CompactLogix
processor. The structure of the input image used to transfer this data is shown

below:

Offset Description Length
0 Read Block ID 1

1 Write Block ID 1

2to (n+1) Read Data n
where

n =60, 120, or 240 depending on the Block Transfer Size parameter (refer to the
configuration file).

The Read Block ID is an index value used to determine the location of where the
data will be placed in the CompactLogix processor controller tag array of module
read data. The number of data words per transfer depends on the configured
Block Transfer Size parameter in the configuration file (possible values are 60,
120, or 240).

The Write Block ID associated with the block requests data from the
CompactLogix processor. Under normal, program operation, the module
sequentially sends read blocks and requests write blocks. For example, if three
read and two write blocks are used with the application, the sequence will be as
follows:

R1W1-->R2W2-->R3W1-->R1W2-->R2W1-->R3W2-->R1W1-->

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the network or operator
control through the module's Configuration/Debug port.

The following example shows a typical backplane communication application.
If the backplane parameters are configured as follows:

Read Register Start: O

Page 28 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

Read Register Count: 480
Write Register Start: 480
Write Register Count: 480

The backplane communication would be configured as follows:

CompactLogix MVI169 Module
0
Read Data
-
480
Write Data
960

Database address 0 to 479 will be continuously transferred from the module to
the processor. Database address 480 to 959 will continuously be transferred
from the processor to the module.

The Block Transfer Size parameter basically configures how the Read Data and
Write Data areas are broken down into data blocks (60, 120, or 240).

If Block Transfer Size = 60:

CompactLogix MVI69-Module
0
Read Block 1
- |
Read Block 2 60
Read Block 3 120
Read Block 4 180
-
Read Block 5 240
-
Read Black 6 300
360
420
Write Block 1 480
540
ProSoft Technology, Inc. Page 29 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable
Application Development Module

Understanding the MVI-ADM API

If Block Transfer Size = 120:

CompactLogix

MVIE9 Module

Read Block 1

-

Read Block 2

n Read Block 3

Bl

Read Block 4

-

Write Block 1

o
-

Write Block 2

-

120

240

360

480

600

720

Page 30 of 318

ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

If Block Transfer Size = 240:

CompactLogix MVI69 Module

Read Block 1

-
-

240

Read Block 2

-

480

Write Block 1 o

|

720

Write Block 2

-

960

Write Block

These blocks of data transfer information from the processor to the module. The
structure of the output image used to transfer this data is shown below:

Offset Description Length
0 Write Block ID 1
1ton Write Data n

where n = 60, 120, or 240 depending on the Block Transfer Size parameter (refer
to the configuration file).

The Write Block ID is an index value used to determine the location in the
module's database where the data will be placed.
Warm Boot

This block is sent from the processor to the module (output image) when the
module is required to perform a warm-boot (software reset) operation. The
structure of the control block is shown below:

Offset Description Length
0 9998 1
1ton Spare n
ProSoft Technology, Inc. Page 31 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

n=60, 120, or 240 depending on what is entered in the Block Transfer Size
parameter (refer to the configuration file).

MVI71 Backplane Data Transfer

The MVI71-ADM module communicates directly over the backplane. Data is
paged between the module and the PLC processor across the backplane using
the module's input and output images or directly to the processor using the side-
connect interface (requires a side-connect adapter). The update frequency of the
images is determined by the scheduled scan rate defined by the user for the
module and the communication load on the module. Typical updates are in the
range of 2 to 10 milliseconds.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module is set to 64 words. This large data area permits fast
throughput of data between the module and the processor.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module is set to 64 words. This large
data area permits fast throughput of data from the processor to the module.

The following illustration shows the data transfer method used to move data
between the PLC processor, the MVI71-ADM module and the foreign device.

Block Transfer

PLCS Processor MVI7T1- MCM Module

User Data Flles Module's
Intermal

T Gotabnse
=)

Master
Drivar

Farsign | €

Devics i
Logle To Foreign
= o) Natwork

‘Write Data

Spacial Control |
Blacks

. Slave
Driver >

Logle

The following illustration shows the data transfer operations used when using the
side-connect interface (requires the side-connect adapter):

Page 32 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

Side-Connect

PLCS Processar MWIT1- MCM Module

Waer Cata Flls s Maduls'e

Inernal
status
Read Daty _—

Cahb g o
legee — 1
Mackr Farslgn
Oriver Diedoe

Login rivers

Wirlte Dath I

-
=
o

e
-
£

E
E]

p solal Con trol
Blocke

When the side connect interface is used, data is transferred directly between the
processor and the module. The module's program interfaces directly to the set of
user data files established in the PLC to pass all data between the two devices.
No ladder logic is required for data transfer, only the establishment of the data
files.

All data transferred between the module and the processor over the backplane is
through the input and output images. Ladder logic must be written in the PLC
processor to interface the input and output image data with data defined in the
Controller Tags. All data used by the module is stored in its internal database.

Module’s Internal Database

5000 registers for user data Register ¢
Data

EEE)
000

3000 words of configuration Statu=
and status data and
Config

%

Data contained in this database is paged through the input and output images by
coordination of the PLC ladder logic and the MV171-ADM module's program. Up
to 60 words of data can be transferred from the module to the processor at a
time. Up to 60 words of data can be transferred from the processor to the
module. Each image has a defined structure depending on the data content and
the function of the data transfer as defined in the following topics.

Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module's
internal database in registers 0 to 4999 and the status data. These data are
transferred through read (input image) and write (output image) blocks. The
structure and function of each block is discussed in the following topics.

ProSoft Technology, Inc. Page 33 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Read Block

These blocks of data transfer information from the module to the PLC processor.
The structure of the input image used to transfer this data is shown in the
following table:

Offset Description Length
0 Read Block ID 1

1 Write Block ID 1

2 to 61 Read Data 60

62 to 63 Spare 2

The Read Block ID is an index value used to determine the location of where the
data will be placed in the PLC processor user data table. Each transfer can move
up to 60 words (block offsets 2 to 61) of data.

The Write Block ID associated with the block requests data from the PLC
processor. Under normal program operation, the module sequentially sends read
blocks and requests write blocks. For example, if three read and two write blocks
are used with the application, the sequence will be as follows:

R1W1-->R2W2-->R3W1-->R1W2-->R2W1-->R3W2-->R1W1-->

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the foreign network or
operator control through the module's Configuration/Debug port.

If the ladder logic does not send a BTW instruction to the module quickly enough,
it is possible for the MVI71-ADM module to send a new BTR instruction
requesting the same write block ID.

Write Block

These blocks of data transfer information from the PLC processor to the module.
The structure of the output image used to transfer this data is shown in the
following table:

Offset Description Length
0 Write Block ID 1

1to 60 Write Data 60
6110 63 Spare 3

The Write Block ID is an index value used to determine the location in the
module's database where the data will be placed. Each transfer can move up to
60 words (block offsets 1 to 60) of data.

Configuration Data Transfer

When the module performs a restart operation, it will request configuration
information from the PLC processor. This data is transferred to the module in
specially formatted write blocks (output image). The module will poll for each
block by setting the required write block number in a read block (input image).
The module will request all command blocks, according to the number of
commands configured by the user for each Master port.

Page 34 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

Module Configuration data

This block sends general configuration information from the processor to the
module. The data is transferred in a block with an identification code of 9000.
The structure of the block is displayed in the following table:

Write Block

Offset Description Length
0 9000 1

1t06 Backplane Setup 6

7 to 31 Port 1 Configuration 25

32 to 56 Port 2 Configuration 25

57 to 63 Spare 7

The read block used to request the configuration has the following structure:

Read Block

Offset Description Length
0 -2 1

1 9000 1

2 Module Configuration Errors 1

3 Port 1 Configuration Errors 1

4 Port 2 Configuration Errors 1
51063 Spare 59

If there are any errors in the configuration, the bit associated with the error will be
set in one of the three configuration error words. The error must be corrected
before the module starts operating.

Command Control Blocks

Command control blocks are special blocks used to control the module or
request special data from the module. The current version of the software
supports three command control blocks: write configuration, warm boot and cold
boot.

Write Configuration

This block is sent from the PLC processor to the module to force the module to
write its current configuration back to the processor. This function is used when
the module's configuration has been altered remotely using database write
operations. The write block contains a value of -9000 in the first word. The
module will respond with blocks containing the module configuration data. Ladder
logic must handle the receipt of these blocks. The blocks transferred from the
module are as follows:

ProSoft Technology, Inc. Page 35 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Block -9000, General Configuration Data:

Offset Description Length
0 -9000 1

1 -9000 1

2to7 Backplane Setup 6

81to 32 Port 1 Configuration 25
33to 57 Port 2 Configuration 25

58 to 63 Spare 6

Blocks -6000 to -6003 and -6100 to 6103, Master Command List Data for ports 1
and 2, respectively:

Offset Description Length
0 -6000 to 6016 and -6100 to 6116 1

1 -6000 to 6016 and -6100 to 6116 1

2to 11 Command Definition 10
12t0 21 Command Definition 10

22 to 31 Command Definition 10

32 to 41 Command Definition 10

42 to 51 Command Definition 10

52 to 61 Command Definition 10

62 to 63 Spare 2

Each of these blocks must be handled by the ladder logic for proper module
operation. The processor can request the module's configuration by sending a
configuration read request block, block code 9997, to the module. The format of
this request block is as follows:

Offset Description Length
0 9997 1
1to 63 Spare 63

When the module receives this command block, it transfers the module's current
configuration to the processor. If the block transfer interface is used, the blocks
defined in the previous tables (-9000 and -6000 series blocks) will be sent from
the module. If the side-connect interface is used, the user data files will be
updated directly by the module.

Warm Boot

This block is sent from the PLC processor to the module (output image) when the
modaule is required to perform a warm-boot (software reset) operation. This block
is commonly sent to the module any time configuration data modifications are
made in the controller tags data area. This will force the module to read the new
configuration information and to restart. The structure of the control block is
shown in the following table:

Offset Description Length
0 9998 1
1to 63 Spare 63
Page 36 of 318 ProSoft Technology, Inc.

December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

Cold Boot

This block is sent from the PLC processor to the module (output image) when the
module is required to perform the cold boot (hardware reset) operation. This
block is sent to the module when a hardware problem is detected by the ladder
logic that requires a hardware reset. The structure of the control block is shown
in the following table:

Offset Description Length
0 9999 1
1to 63 Spare 63

MVI194 Backplane Data Transfer

Central to the functionality of the module is the database. This database is used
as the interface between remote foreign slave devices or foreign master devices
and the Flex I/O bus. The size, content and structure of the database are
completely user defined.

The Flex I/0O bus reads data from and write data to the database using the
backplane interface. The module interfaces data contained in remote foreign
slave devices to the database when using the MVI94-ADM as a master. User
commands are issued out of the master port from a command list. These
commands gather or control data in the foreign slave devices. When configured
as a slave, control information from the foreign master and data from the
processor are exchanged over the backplane. The following illustration shows
the relationships discussed above:

Foreign ' Application Databases | Flex 1/O Flex PLC
Devices _ ! Port L L Bus Processor
I

Data

N
e
| Command
List
—

ProSoft Technology, Inc. Page 37 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Data Transfer

Data is transferred over the backplane using the module's input and output
images. The module is configured with an eight-word input image and a seven-
word output image. The module and the Flex processor use these images to
page data and commands. The input image is set (written) by the module and is
read by the Flex processor. The output image is set (written) by the Flex
processor and read by the module. The following illustration shows this

relationship.
DATA TRANSFER OPERATION
FLEX
PROCESSOR MVI94-ADM MODULE

DATA OUTPUT INPUT

TABLE IMAGE IMAGE DATABASE
WR BLK
RD BLK Write Operation
VWR DATA

Read Operation

RD BLK
RD DATA

Write Operatio

Read Operation

The module's program is responsible for setting the block identification code
used to identify the data block written and the block identification code of the
block it wants to read from the processor. User configuration information
determines the read (Read Start Register) and write (Write Start Register)
locations in the database and the amount of data transferred (Read Register
Count and Write Register Count).

Each read and write operation transfers a six-word data area. The write operation
contains a two-word header that defines the block identification code of the write
data and the block identification code of the read block requested. These
identification codes are in the range of 0 to 666. A value of zero indicates that the
block contains no data and should be ignored. The first valid block identification
code is one and refers to the first block of six words to be read or written.

The module and the processor constantly monitor input and output images. How
does either one know when a new block of data is available? Recognizing a
change in the header information of the image (word 0) solves the problem. For
example, when the module recognizes a different value in the first word of the
output image, new read data is available. When the processor recognizes a new

Page 38 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

value in the first word of the input image, new write data is available. This
technique requires the storage of the previously processed data block
identification code. The following illustration shows the normal sequence of
events for data transfer:

NORMAL DATA TRANSFER OPERATION

FLEX
PROCESS0R MVI94-ADM MODULE
DATA OUTPUT INPUT
TABLE IMAGE IMAGE DATABASE
Program initializes the Last RD
@ blockto 0 and the WR Blk and
RD Blk values to 1 -—— \rite Start Register
Ladder logic recognizes a new
WR Blk ID (1) in Input Image 1 @
It places the data in the image 1 rogram copies data

to input image and
sets header valug

in the Data Table WR DATA
The ladder logic next writes the read data

requested to the output image and copies
the RD Blk ID to word 0 of the

input image 1

RD DATA

©

The module's program
recagnizes the value in word 0
of the output image has changed
It sets the Last RD = 1. places
the data in the DB

-—— Read Start Register

2
2
WR DATA

&)

The module now sets a new value

for the WR Blk parameter and fills

in the data in the input image. It sets
the next RD Blk and the WR Blk values
in the input image. The cycle is now
complete and at step 3

1 During program initialization, the write and read block identification codes are
set to one. The last block read variable is set to zero.

2 The program copies the first six-word block of the database starting at the
user defined Write Start Register to the input image (words 2 to 7). It then
sets the current read block code in word 1 of the input image. To "trigger" the
write operation, the program places the current write block code into word O
of the input image.

The Flex processor recognizes a new value in word 0 of the input image
(based on the last_write_block code not equal to write_block code) in its
ladder logic. The ladder logic computes the offset into the file based on the
following formula:

write_file_offset = (write_block_code - 1) * 6

ProSoft Technology, Inc. Page 39 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

The new data contained in the input image (words 2 to 7) is copied to the
offset in the processor's user data file. The last_write_block code storage
register in the processor is updated with the new write_block _code.

Note: If the data area transferred from the module exceeds the size of a single
user file in the Flex processor, logic will be required to handle multiple files.

3 The ladder logic next examines the value of the read_block code and
computes the offset into the read data file as follows:
read_file offset = (read_block code-1) * 6
The required 6-word, read data is copied to the module's output image
(words 1 to 6). To "trigger" the transfer operation, the ladder logic moves the
read_block_code into word 0 of the output image.
4 The module's program recognizes the new read_block code. It transfers the
data to the correct offset in the database using the following function:
offset = Read_Start_Register + (read_block_code -1)* 6
The module sets the last_read_block_code to the value of read_block_code.
5 The module now selects the next read and write blocks. The data for the write
operation is placed in the input image and the read_block_code is set. The
module "triggers" the transfer operation by setting the new write_block_code
in word O of the input image. The sequence continues at step 3.
The discussion above is for normal data transfer operation. The following table
lists the block identification codes used by the module.

Block ldentification Codes

Type Number Description

R/W 1 to 666 Data blocks used to transfer data from the module to the
backplane and from the backplane to the module. The
module's input/output images are used for the data transfers.

R 9998 Warm boot the module. When the module receives this block, it
will reset all program values using the configuration data.
R 9999 Cold boot the module. When the module receives this block, it

will perform a hardware restart.

Data is transferred between the processor and the module using the block
identification codes of 1 to 666. The other block codes control the module from
the processors ladder logic. They are implemented when the ladder logic needs
to control the module. In order to use one of the blocks, the ladder logic inserts
the data and code in the output image of the module. The data should be set
before the code is placed in the block. This operation should be performed after
the receipt of a new write block from the module. Each set of codes is described
in the following topics.

Warm Boot (Block 9998)

This block does not contain any data. When the processor places a value of
9998 in word 0 of the output image, the module will perform a warm-start. This
involves clearing the configuration and all program status data. Finally, the
program will load in the configuration information from the Flash ROM and begin
running. There is no positive response to this message other than the status data
being set to zero and the block polling starting over.

Page 40 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

Cold Boot (Block 9999)

This block does not contain any data. When the processor places a value of
9999 in word 0 of the output image, the module will perform a hardware restart.
This will cause the module to reboot and reload the program. There is no positive
response to this message other than the status data being set to zero and the
block polling starting over.

3.4.3 Serial Communications

The developer must provide the serial communication driver code. The serial API
has many useful functions to facilitate writing a driver. A sample communication
driver is included in the example programs.

3.4.4 Main_app.c

The application starts by opening the ADM API, initializing variables, structure
members and pointers to structures. Next, the database is created and initialized
to 0. The backplane driver is then opened and startup() is called. The function
startup(), loads the module configuration, initializes the com. ports and
finishes by showing the application version information. Now the main loop is
entered. The processing that occurs in the loop cycles through the backplane
transfer logic, the com. driver, and the debug menu logic. If the application is quit
by the user, shutdown() is called. The function shutdown() closes the com.
ports, closes the backplane driver, closes the database and closes the ADM API.

3.4.5 Debugprt.c

The debug port code shows how a sub-menu can be added to the main menu.
When "X" (Auxiliary menu) is selected, the function pointed to by
user_menu_ptr in the interface structure: that is,
interface.user_menu_ptr = DebugMenu;. The function name is
DebugMenu() but it can be named anything the developer wishes. Code can be
added for additional menu items within DebugMenu () by adding additional case
statements. It is recommended that if long strings must be sent to the debug port,
that the output buffering is used. An example of this is the "?" case. The string is
placed into the buffer (interface_ptr->buff) using sprintf.
interface_ptr->buff_ch is the pointer to the first character of the string
and should be set to 0. interface_ptr->buff_len must be set to the
number of characters placed into the buffer. The writing of the characters is
handled when ADM_ProcessDebug() is called.

Example:

sprintf(interface_ptr->buff, "\nAUXILLIARY MENU\n\
?=Display Menu\n\
1=Selection 1\n\
2=Selection 2\n\
M=Main Menu\n\n');
interface_ptr->buff_ch = 0;
interface_ptr->buff_len = strlen(interface_ptr->buff);

ProSoft Technology, Inc. Page 41 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

3.4.6 MViIcfg.c

The configuration section of the example code is intended to qualify the module
configuration after it is transferred to the module. The logic must be modified to
match any changes to the configuration data structure.

MV146

For the MV146, the function ProcessCfg() checks the data values transferred
from the configuration file in the SLC processor. If configuration values are added
to the configuration structure in the SLC, then logic to perform boundary checking
on the added data must be added to ProcessCTg().

MVI156

In the case of the MVI56, the function ProcessCfg() checks the data values
transferred from the configuration data tags in the ControlLogix processor. If data
tags are added to the configuration structure in the ControlLogix, then logic to
perform boundary checking on the added data must be added to
ProcessCfg().

MVI169

The MVI69 stores its configuration in EEPROM, downloaded via the debug port.
The EEPROM has 129 KB of configuration space. The function ReadCfg()
parses the file and qualifies the configuration data. The configuration file uses
headings in square brackets to define the sections. Each item is parsed using the
ADM RAM file functions. The file is searched for a configuration item. If a match
is found, the value is saved into a variable. Boundary checking is then performed
on the data. An example of a configuration item search follows:

ptr= ADM_RAM_find_Section (adm_handle, "[Port]');
ports[0].stopbits = ADM_RAM_GetiInt(adm_handle, "[Port]");
switch(ports[0].stopbits)

case 1:
ports[0].stopbits
case 2:
ports[0] .stopbits = STOPBITS2;
break;
default :
ports[0].CfgErr |= 0x0100;
ports[0].stopbits = STOPBITS1;

STOPBITS1;

¥
Here the file is being parsed for "Stop Bits" under the heading of [Port]. Refer to
the example code for a sample configuration file.

Because a pointer to a function is used by the ADM API to access this function,
the name can be anything the developer wishes. However, the function must
take the same arguments and the same return value.

Page 42 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

MVI71

In the case of the MVI71, the function ProcessCfg() checks the data values
transferred from the configuration file in the PLC processor. If configuration
values are added to the configuration structure in the PLC, then the logic to
perform boundary checking on the added data must be added to
ProcessCfg().

MVI194

The MVI194 stores its configuration in flash memory, downloaded via the debug
port. The function ReadCfg() parses the file and qualifies the configuration
data. The configuration file uses headings in square brackets to define the
sections. Each item is parsed using the ADM flash file functions. The file is
searched for a configuration item. If a match is found, the value is saved into a
variable. Boundary checking is then performed on the data. An example of a
configuration item search follows:

ports[0].stopbits = ADM_FileGetint("[Port]", '"Stop Bits");
switch(ports[0].stopbits)

{
case 1:
ports[0] .stopbits = STOPBITS1;
case 2:
ports[0] .stopbits = STOPBITS2;
break;
default :
ports[0].CfgErr |= 0x0100;
ports[0] .stopbits = STOPBITS1;
¥

Here the file is being parsed for "Stop Bits" under the heading of [Port]. Refer to
the example code for a sample configuration file.

Because a pointer to a function is used by the ADM API to access this function,
the name can be anything the developer wishes. However, the function must
take the same arguments and the same return value.

3.4.7 Commdrv.c

The communication driver demonstrates how a simple driver might be written.
The driver is an ASCII slave that echoes the characters it receives back to the
host. The end of a new string is detected when an LF is received. The
communication driver is called for each application port on the module. The
following figure shows information on the communication driver state machine.

The state machine is entered at state —1. It waits there until data is detected in
the receive buffer. When data is present, the state machine advances to state 1.
It will remain in state 1 receiving data from the buffer until a line feed (LF) is
found. At this time the state advances to 2. The string will be saved to the
database and the state changes to 2000.

State 2000 contains a sub-state machine for handling the sending of the
response. State 2000:2 sets RTS on. The state now changes to 2000:3. The
driver now waits for the RTS timeout period to expire. When it does, it checks for

ProSoft Technology, Inc. Page 43 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

CTS to be asserted. If CTS detection is disabled or CTS is detected, RTS is set
to off (CTS enabled only) and the state advances to 2000:4. Otherwise it is an
error and RTS is set to off and returns to state —1. The response is now placed in
the transmit buffer. The state is advanced to 2000:5 where it waits for the
response to be sent. If the response times out, RTS is set to off and the state
returns to —1. If the response is sent before timeout, the state changes to 2000:6
where it waits for the RTS timer to expire. When the timer expires, RTS is set to
off and the state returns to —1 where it is ready for the next packet.

RS-485 Programming Note

Hardware

The serial port has two driver chips, one for RS-232 and one for RS-422/485.
The Request To Send (RTS) line is used for hardware handshaking in RS-232
and to control the transmitter in RS-422/485.

In RS-485, only one node can transmit at a time. All nodes should default to
listening (RTS off) unless transmitting. If a node has its RTS line asserted, then
all other communication is blocked. An analogy for this is a 2-way radio system
where only one person can speak at a time. If someone holds the talk button,
then they cannot hear others transmitting.

In order to have orderly communication, a node must make sure no other nodes
are transmitting before beginning a transmission. The node needing to transmit
will assert the RTS line then transmit the message. The RTS line must be de-
asserted as soon as the last character is transmitted. Turning RTS on late or off
early will cause the beginning or end of the message to be clipped resulting in a
communication error. In some applications it may be necessary to delay between
RTS transitions and the message. In this case RTS would be asserted, wait for
delay time, transmit message, wait for delay time, and de-assert RTS.

R5-485 Transmit/ Receive

RTS On RTS ff
Urit A RTS
. Transmit
Urit A Dz
Unit B RTS
. Transrit
Urit B D=
Cpdanal Cptional
RTS Cn RTS it
Celay & lay
Page 44 of 318 ProSoft Technology, Inc.

December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable

Application Development Module

Software

The following is a code sample designed to illustrate the steps required to
transmit in RS-485. Depending on the application, it may be necessary to handle
other processes during this transmit sequence and to not block. This is simplified
to demonstrate the steps required.

int length = 10; // send 10 characters

int CharsLeft;

BYTE buffer[10];

// Set RTS on

MVIsp_SetRTS(COM2, ON);

// Optional delay here (depends on application)
// Transmit message

MVIsp_PutData(COM2, buffer, &length, TIMEOUT_ASAP);
// Check to see that message is done
MVIsp_GetCountUnsent(COM2, &CharsLeft);

// Keep checking until all characters sent
while(CharsLeft)

{

MVIsp_GetCountUnsent(COM2, &CharsLeft);

}

// Optional delay here (depends on application)
// Set RTS off

MVIsp_SetRTS(COM2, OFF);

3.4.8 Using Compact Flash Disks

In order to use Compact Flash disks, you must enable Compact Flash in BIOS
Setup. Once enabled, the Compact Flash Disk should appear as a DOS C: drive.
Use standard C file access functions to read and write to the Compact Flash
disk.

3.5 ADM API Architecture
The ADM API is composed of a statically-linked library (called the ADM library).
Applications using the ADM API must be linked with the ADM library. The ADM
API encapsulates the hardware, making it possible to design MVI applications
that can be run on any of the MVI family of modules.
The following figure shows the relationship between the API components.
Application
ADM API
SP APl | BP or CIP API
ProSoft Technology, Inc. Page 45 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

3.6 Example Code Files

The source files containing the example program are provided with the ADM
module. They are also available on our web site: http://www.prosoft-
technology.com.

The source files included are:

File Name Description

Main_app.c application main program
Commdrv.c communication driver
Debugprt.c debug port user menu
MVicfg.c module configuration
Main_app.h application header file
Adm.ide project file for Digital Mars C++ or Borland C++ V5.02
The configuration files included are:

File Name Description

94ADM.cfg MVI194 configuration file
MVI69ADM.cfg MVI69 configuration file

The image files included are:

File Name Description

MVI46ADM.ima Disk image file for MV146
MVI56ADM.ima Disk image file for MVI56
MVI69ADM.ima Disk image file for MVI69
MVI71ADM.ima Disk image file for MVI71
MVI94ADM.ima Disk image file for MVI94

MVI156-ADM Sample Files

MVI156-Samples\MVI56-ADM\MVI56-ADM-Serial-In
56ADM-Sl.exe

ADM.CSM

ADMAPI.H

ADMAPI.LIB
AUTOEXEC.BAT
CIPAPI.H

CIPAPI.LIB

mssccprj.scc
MVI156-ADM-Serial-In.DSW
MVI156-ADM-Serial-In.ide
MVI156-ADM-Serial-In.mbt
MVI156-ADM-Serial-In.mrt
MVI156-ADM-Serial-In.r$p
MVI156-ADM-Serial-In.~de
MVI56ADM-Serialln.C

Page 46 of 318 ProSoft Technology, Inc.
December 12, 2006

http://www.prosoft-technology.com/
http://www.prosoft-technology.com/

Understanding the MVI-ADM API

MVI-ADM e 'C' Programmable
Application Development Module

3.7

MVI156-Samples\MVI56-ADM\MVI56-ADM-Serial-In

MVI56ADM-Serialln.H

MVI56adm-serialin.obj

MVI56ADMSeriallin.ACD

MVI56ADMSerialln.IMA

MVIBPAPI.H

MVIBPAPI.LIB

MVISCAPI.H

MVISCAPI.LIB

MVISPAPI.H

MVISPAPI.LIB

MVI156-Samples\MVI156-ADM\MVI56-ADM-Serial-Out

56ADM-SO.exe

ADM.CSM

ADMAPI.H

ADMAPI.LIB

AUTOEXEC.BAT

CIPAPILH

CIPAPIL.LIB

msscceprj.scc

MV156-ADM-Serial-Out.DSW

MVI156-ADM-Serial-Out.ide

MV156-ADM-Serial-Out.mbt

MV156-ADM-Serial-Out.mrt

MVI156-ADM-Serial-Out.r$p

MV156-ADM-Serial-Out.~de

MVI56ADM-SerialOut.C

MVI56ADM-SerialOut.H

MVI56adm-serialout.obj

MVI56ADMSerialOut. ACD

MVI56ADMSerialOut.IMA

MVIBPAPI.H

MVIBPAPI.LIB

MVISCAPI.H

MVISCAPI.LIB

MVISPAPI.H

MVISPAPI.LIB

ADM API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be

ProSoft Technology, Inc.
December 12, 2006

Page 47 of 318

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

developed. These files need not be present on the module when executing the
application.

ADM API File Names

File Name Description

admapi -h Include file

admapi.lib Library (16-bit OMF format)
3.7.1 ADM Interface Structure

The ADM interface structure functions as a data exchange between the ADM API
and user developed code. Pointers to structures are used so the API can access
structures created and named by the developer. This allows the developer
flexibility in function naming. The ADM API requires the interface structure and
the structures referenced by it. The interface structure also contains pointers to
functions. These functions allow the developer to insert code into some of the
ADM functions. The functions are required, but they can be empty. Refer to the
example code section for examples of the functions. It is the developer's
responsibility to declare and initialize these structures.

The interface structure is as follows:

typedef struct

{

ADM_BT_DATA *adm_bt_data_ptr; /* pointer to struct holding
ADM_BT_DATA */

ADM_BLK_ERRORS *adm_bt_err_ptr; /* pointer to struct holding
ADM_BT_DATA */

ADM_PORT *adm_port_ptr[4]; /* pointer to struct holding ADM_PORT
*/

ADM_MODULE *adm_module_ptr; /* pointer to struct holding
ADM_MODULE */

ADM_PORT_ERRORS *adm_port_errors_ptr[4]; /* pointer to struct holding
ADM_PORT_ERRORS */

ADM_PRODUCT *adm_product_ptr; /* pointer to struct holding
ADM_PRODUCT */

int (*startup_ptr)(void); /* pointer to function for startup
code */

int (*shutdown_ptr)(void); /* pointer to function for shutdown
code */

int (*user_menu_ptr)(void); /* pointer to function for additional
menu code */

void (*version_ptr)(void); /* pointer to function for version
information */

void (*process_cfg_ptr)(void); /* pointer to function for
checking configuration */

int (*ctrl_data_block_ptr)(unsigned short); /* pointer to

function for checking configuration */
unsigned short pass_cnt;

short debug_mode;
char buff[2000]; /* data area used to hold message */
int buff_len; /* number of characters to print */
int buff_ch; /* index of character to print */
MV IHANDLE handle; /* backplane handle */

Page 48 of 318 ProSoft Technology, Inc.

December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

HANDLE sc_handle; /* side-connect handle */
int ModCfgErr;

int Apperr;

unsigned short cfg_Tfile; /* side-connect usage */

JADM_INTERFACE;
The following structures are referenced by the interface structure:

The structure ADM_PRODUCT contains the product name abbreviation and
version information.

typedef struct

{
char ProdName[5]; /* Product Name */
char Rev[5]; /* Revision */
char op[5]: /* Month/Year */
char Run[5]; /* Day/Run */

}ADM_PRODUCT;

The structure ADM_BT_DATA contains the backplane transfer configuration
settings and status counters.

typedef struct

{

short rd_start;

short rd_count;

short rd_blk_max;

short wr_start;

short wr_count;

short wr_blk _max;

WORD bt_fail_cnt; /* number of successive failures before comm
SD */

WORD bt_fail_cntr; /* current number of failures */

WORD bt _failed; /* comm SD status */

short rd_blk;

short rd_blk last;

short wr_blk;

short wr_blk_last;

unsigned short buff[130]; //only require a single buffer because only 1
op at a time

WORD wrbuff[258];

WORD rdbuff[248];

WORD cbuff[3000];

short bt_size;

JADM_BT_DATA;
The structure ADM_BLK_ERRORS contains the backplane transfer status

counters.
typedef struct
{
WORD rd; /* blocks read */
WORD wr; /* blocks written */
WORD parse; /* blocks parsed */
WORD event; /* reserved */
WORD cmd; /* reserved */
WORD err; /* block transfer errors */

}ADM_BLK_ERRORS;

ProSoft Technology, Inc. Page 49 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable
Application Development Module

Understanding the MVI-ADM API

The structure ADM_PORT contains the application port configuration and status

variables.

typedef struct

{

char
unsigned
short
short
short
unsigned
unsigned
unsigned
char
short
int
int
unsigned
int
int
unsigned
unsigned
long
long
unsigned
unsigned
unsigned
unsigned
char
unsigned
unsigned
JADM_PORT;

short

short
short
short

long

short
short

short
short
short
short

char
char

enabled;
baud;
parity;
databits;
stopbits;
MinDelay;
RTS_On;
RTS_Off;
CTS;
state;
len;
expLen;
timeout;
ComState;
RTULen;
tm;
tmlast;
tmout;
tmdiFF;
Curkrr;
LastErr;
CfgErr;
buff_ptr;
buff[600];

SendBuff[1000];

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Y=Yes, N=No */

port baud rate */

port parity */

number of data bits per character */
number of stop bits */

minimum response delay */

RTS delay before assertion */

RTS delay before de-assertion */
Y=Yes, N=No */

state of comm. Message state machine */
length of data in buffer */

expected length of message */

timeout for message */

State of serial communication */
reserved */

timing variable; used for current time */
time of previous time check */

timeout time variable */

holds tm - tmlast */

current comm. error */

previous comm. error */

port configuration error */

pointer to current location in buff */
buffer for holding comm. packets */

/* reserved */
RecBuff[1000]; /* reserved */

The structure ADM_MODULE contains the module database configuration

variables.

typedef struct

{

char
short
short
unsigned
short
short
short
short
short
short
short

}ADM_MODULE ;

short

name[81];
max_regs;
err_offset;
err_freq;
rd_start;
rd_count;
rd_blk_max;
wr_start;
wr_count;
wr_blk_max;
bt_fail_cnt;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

module name */

number of database registers */

address of status table in database */
status table update time in ms */

read block start address*/

read block register count */

maximum number of read blocks */

write block starting address */

write block register count */

maximum number of write blocks */

number of backplane transfer failures */
before ending communications (not used)*/

The structure ADM_PORT_ERRORS contains the application port
communication status variables.

typedef struct

{
WORD

CmdList;

/*

Total number of command list requests */

Page 50 of 318

ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable
Application Development Module

WORD CmdListResponses; /* Total number of command list responses
*/

WORD CmdListErrors; /* Total number of command list errors */

WORD Requests; /* Total number of requests of slave */

WORD Responses; /* Total number of responses */

WORD ErrSent; /* Total number of errors sent */

WORD ErrRec; /* Total number of errors received */

JADM_PORT_ERRORS;
The following are the prototypes for the referenced functions:

extern int (*startup_ptr)(void); /* pointer to function for startup code */
extern int (*shutdown_ptr)(void); /* pointer to function for shutdown code */
extern int (*user_menu_ptr)(void); /* pointer to function for additional menu
code */

extern void (*version_ptr)(void); /* pointer to function for version
information */

extern void (*process_cfg_ptr)(void); /* pointer to function for checking
configuration */

extern int (*ctrl_data_block_ptr)(unsigned short); /* pointer to function for
checking configuration */

The following is an example excerpted from the sample code of how the pointers

to functions can be initialized:

interface.startup_ptr = startup;
interface.shutdown_ptr = shutdown;
interface.version_ptr = ShowVersion;
interface.user_menu_ptr = DebugMenu;
interface.process_cfg_ptr = ProcessCfg;
interface.ctrl_data block_ptr = CtriDataBlock;

3.8 Backplane API Files

The backplane API provides a simple backplane interface that is portable among
members of the MVI family. This is useful when developing an application that
implements a serial protocol for a particular device, such as a scale or barcode
reader. After an application has been developed, it can be used on any of the
MVI family modules.

The following table lists the supplied backplane API file names. These files
should be copied to a convenient directory on the computer on which the
application is being developed. These files need not be present on the module
when executing the application.

File Name Description

MVIbpapi.h Include file

MVIbpapi.lib Library (16-bit OMF formatted)
3.8.1 Backplane API Architecture

The MVI APl is composed of two parts: a memory resident driver (called the MVI
driver) and a statically-linked library (called the MVI library). Applications using
the MVI API must be linked with the MVI library. In addition, the MVI driver must
be loaded before an MVI API application can be executed.

ProSoft Technology, Inc. Page 51 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

This architecture makes it possible to design MVI applications that can be run on
any of the MVI family of modules without modification or even recompilation.

Data Transfer

The primary purpose of the APl is to allow data to be transferred between the
module and the Controller. The API supports two types of data transfer functions:
Direct I/0O and Messaging. Each of these methods has advantages and
disadvantages. The appropriate function for use will mainly depend upon the
amount of data to be transferred.

Direct I/0O Access

For small amounts of data (that is, data that will fit into the specific module's input
or output image), the direct I/O functions provide simple, fast access to the
module's input and output images. This is the simplest and fastest way to transfer
data to and from the control processor, because the control processor code
accesses the module's 1/0 image as it would for any other /O module.

The disadvantage of this method is that the amount of data that can be
transferred is limited by the size of the module's I/O image.

The direct I/0O functions are MVIbp_Writelnputimage (page 194) and
MVIbp_ReadOutputimage (page 193).

It is important to note that if messaging is used, a portion of each 1/0O image must
be reserved for messaging, and therefore will not be available for direct 1/0
access. One word of input and one word of output are required for messaging
control for each direction of desired data flow.

For example, if bi-directional messaging is used, at least two words of output and
two words of input image must be reserved for messaging.

Direct I/0O access begins at the first word of the input and output images (word 0).
If only one direction of messaging data flow is enabled, that messaging control
word is always the last word of the total image size (refer to the
MVIbp_SetlOConfig (page 187) function). If both directions of messaging data
flow are enabled, the SendMessage (from the MVI to the Controller) control word
is the last word of the total image size, and the ReceiveMessage (from the
Controller to the MVI) control word is the word before the last word of the total
image size.

Messaging

For large amounts of data (that is, data that is too large to fit into the module's
input or output image), the Messaging functions provide a data transfer
mechanism that is very simple for the module application to use. Large amounts
of data may be transferred to and from the control processor with a single
function call, with the transfer protocol handled by the API.

The main disadvantage of this method is that the control processor code is more
complex.

Example ladder logic code is provided to illustrate how the messaging protocol
may be implemented on the control processor.

Page 52 of 318 ProSoft Technology, Inc.
December 12, 2006

Understanding the MVI-ADM API MVI-ADM e 'C' Programmable

Application Development Module

3.9

Note: At this time, messaging is not supported on the MVI169.

Messaqing Protocol

The APl messaging protocol has been designed to be as simple as possible,
while providing the necessary controls for reliable data transfer between the
module and the control processor. The protocol is completely handled by the
API, and is therefore transparent to the module application. However, the
protocol must be implemented in the control processor's code. For this reason,
details of the protocol are presented here.

The protocol utilizes two control words for each direction of data flow: the Input
Control Word, which is written by the module and read by the processor, and the
Output Control Word, which is written by the processor and read by the module.
The location of these control words depends upon how the module is configured
by the user. If only one direction of messaging data flow is enabled, that
messaging control word is always the last word of the total image size (refer to
the MVIbp_SetlOConfig (page 187) function).

If both directions of messaging data flow are enabled, the SendMessage (from
the MVI to the Controller) control word is the last word of the total image size and
the ReceiveMessage (from the Controller to the MVI) control word is the word
before the last word of the total image size.

Serial API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

File Name Description

MVlspapi.h Include file

MVlspapi.lib Library (16-bit OMF format)

3.9.1 Serial API Architecture

The serial APl communicates with foreign serial devices via industry standard
UART hardware.

The API acts as a high level interface that hides the hardware details from the
application programmer. The primary purpose of the APl is to allow data to be
transferred between the module and a foreign device. Because each foreign
device is different, the communications protocol used to transfer data must be
device specific. The application must be programmed to implement the specific
protocol of the device, and the data can then be processed by the application
and transferred to the control processor.

Note: Care must be taken if using PRT1 (COM1) when the console is enabled
or the Setup jumper is installed. If the console is enabled, the serial API will not

ProSoft Technology, Inc. Page 53 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

be able to change the baud rate on PRT1. In addition, console functions such
as keyboard input may not behave properly while the serial API has control of
PRT1. In general, this situation should be avoided by disabling the console
when using PRT1 with the serial API.

3.10 Side-Connect API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the

application.

File Name Description

MVlscapi.h Include file

MVlscapi.lib Library (16-bit OMF format)
3.10.1 Side-Connect API Architecture

The side-connect APl is an alternative communication path to the backplane
interface. This architecture is only used in the MVI71 module. Applications using
the MVI API must be linked with the MVI library, and the MVI must be directly
connected to the PLC-5 via the side-connect interface.

3.10.2 Data Transfer

The side-connect interface provides the fastest available communications path to
the PLC-5. With the API, applications may read and write to the PLC-5 data
tables, synchronize with the PLC-5 ladder scan, handle message instructions
from the PLC-5, set the PLC-5 mode, clear faults, perform block transfers
through the PLC-5, and perform other functions.

When the side-connect interface is used, no ladder logic is required for normal
data transfer. The module directly reads and writes information between the
module and the processor using the user data files defined. The SC_DATA.TXT
file contains the file number to be used for the configuration file. This file number
and the module configuration determine the set of user data files required in the
PLC. In order to perform special control of the module (for example, warm-boot
operation), ladder logic is required.

Page 54 of 318 ProSoft Technology, Inc.
December 12, 2006

Setting Up Your Development Environment MVI-ADM e 'C' Programmable

Application Development Module

4.1

Setting Up Your Development Environment

In This Chapter
» Setting Up Your Compiler ..o 55
> Setting Up WINIMAGEccooiiiiiiiiiieeieee e 72

» Installing and Configuring the Module...............cccceeriiinenne 72

Setting Up Your Compiler

There are some important compiler settings that must be set in order to
successfully compile an application for the MVI platforms. The following topics
describe the setup procedures for each of the supported compilers.

41.1 Configuring Digital Mars C++ 8.49

The following procedure allows you to successfully build the sample ADM code
supplied by Prosoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note: This procedure assumes that you have successfully installed Digital
Mars C++ 8.49 on your workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_MVI.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the ProSoft-
Technology.com web site. When you unzip the file, you will find the sample code
files in \ADM_TOOL_MVNSAMPLES\.

ProSoft Technology, Inc. Page 55 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Building an Existing Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project — Open from the Main

Menu.
Open Project B ﬁ i
File: name: Folders: oK
= pri cih mviBE-adm-serial-in -
Cancel
SBadm-si.prj _."_I (= o _:I —l
(= ADM_TOOL_MWI
(== SAMPLES
[MYI5E-Samples
B MVISB AD M
Lizt files of type: Dirives:
lF‘roiect [=prl _'_i I Hc j Netwark. .. |

2 From the Folders field, navigate to the folder that contains the project
(C\ADM_TOOL_MVINSAMPLES\...).

3 In the File Name field, click on the project name (56adm-si.prj).

4 Click OK. The Project window appears:

| Project B [B
=| Parze View Trace
B BBadn-s1.pri: | | Hane | Ext | path
MYISEAOM-Serial .C CznADM_TOOL_ |
SBadm-s1.0EF .OEF C:“ADM_TOOL_
admapi.h .h CiuADM_TOOL_
cipapi.h .h CiuADM_TOOL_
MYISEAOM-Serial .H C:%ADK_TOOL_
mvibpapi.h .h CzxADM TOOL_
mvizcapi.h .h CzxADM TOOL_
mvispapi.h S C:%ADM_TOOL_
40AP]. LIE .LIB
CIPAPL.LIE .LIB
WVIBPAPT.LIE .LIE
WVISCAPT.LIE .LIE
WV ISPART.LIE .LIE
H

5 Click Project — Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

[Bietimt:] ECE |
=] Edit_ Stopl

Setup_module

Link /M /PACE) M (d5badm—=1. LNk
Error: CzuaDi Sb-ADMHYSB-ADR-SERTAL-THVMVIBPAPT.LIB{ut11) (1232578): Previous Definition Different : B0elay x_ImsSqus
Error: C:wADM_TOOL_| MVI\SF\MPLES\MVISG SAMPLES MY IS6-A0M VI S6-ADM-SERTAL~TH\MYIBPART.LIB(utily (1232576): Previous Definition Different : @Delay_x_10ussqul

ren . \SSCHS.EXE Shadn-si.EXE

« \S6adu-51. EXE built

Lines Processed: 3069 Errors: 2 Warnings: O

Build failed :'j

Porting Notes: The Digital Mars compiler classifies duplicate library names as
Level 1 Errors rather than warnings. These errors will manifest themselves as
"Previous Definition Different : function name". Level 1 errors are non-fatal and
the executable will build and run. The architecture of the ADM libraries will
cause two or more of these errors to appear when the executable is built. This
is a normal occurrence. If you are building existing code written for a different
compiler you may have to replace calls to run-time functions with the Digital

Page 56 of 318 ProSoft Technology, Inc.
December 12, 2006

Setting Up Your Development Environment MVI-ADM e 'C' Programmable
Application Development Module

Mars equivalent. Refer to the Digital Mars documentation on the Run-time
Library for the functions available.

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be
accessed by clicking Project — Settings from the Main Menu.

Project Settings

Target | Erwild I Option Sets

Include Directories:

Library Directories:

Compiler Output Directorn:

Target Output Directony:

Browser Exclude Dirsctories:

Source Search Path:

oK I Cancel |

Creating a New Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project — New from the Main

Menu.
ProjectExpress
1EHene m:lia::t Froject Name: Directories:
2. Set project tupe - : S
3. Add files to project l58adm-sd pri o AmwiBE-adm-serial-in
4. Initial settings EGadm-si.pri :J = ch :_I
(= ADM_TOOL_MVI
(= SAMPLES
(= MWIBE-S amples
(2= MVIEE-ADM
E = MvISE-ADM Se |
List Files of Type: Diives:
IF'roiec:t [*pri] L! | = ;i
ListEiles |
Mew Directory... |
™ lse AppE xpress to create new application
< Brevious I Mest » I Finish | Cancel |
|Type a hame fiar your project and either press Mest, or check |ze AppExpress and press Finish. |

2 Select the path and type in the Project Name.

ProSoft Technology, Inc.

Page 57 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable
Application Development Module

Setting Up Your Development Environment

3 Click Next.

ProjectExpress

Mame project - :
CENETEIEERTE Project Settings
3. Add files to project ' Debug
4. Initial settings ' Release
Flatfarm Target Type
I bos LI I Executable L!
—Use i~ Character Type
[OLE ™ MFC ¢ Single Byte
1= s O HFEEILE] || £ MultiByte
" DDEC) MEELBLL | €2 Wricode
¥ isllows Project to be Buil W Automatically Parse

™ Parze System Files

<F'revious| Next » |

Finizh |

Cancel |

|Choose the type of project you

would like to create and press Nest.

4 |n the Platform field, choose DOS.
5 In the Project Settings choose Release if you do not want debug information
included in your build.
6 Click Next.
ProjectExpress
File Hame: Directories:
c:h. AmviBE-adm-serial-in
E=roh ;I
(= ADM_TOOL_MWI
(= SAMPLES
(== MVISE-SAMPLES
(= MVISE-ADM
= MvISE-ADM-SERL |
List Files of Type: Drives:
|Default files [".cpp;".cxx;".c.ﬂ I BHc j
Froject Files:
=
&
|
Add Eemave Select All Unzelect All |
< Previous I Mest » I Finish | Cancel |
i |If_l,lou would like to add esisting files to the project, add them here. When done, press Mest. |
7 Select the first source file necessary for the project.
8 Click Add.
9 Repeat this step for all source files needed for the project.
10 Repeat the same procedure for all library files (.lib) needed for the project.

Page 58 of 318

ProSoft Technology, Inc.
December 12, 2006

Setting Up Your Development Environment

MVI-ADM e 'C' Programmable
Application Development Module
11 Choose Libraries (*.lib) from the List Files of Type field to view all library files:

ADMAFILIE =T
CIPAPLLIE T
MVIBPAPLIB BE T
| MvISCAPILLIE
MyISPAPILIE [MVIBE-SAMPLES
‘ (= MYISE-ADM

- = MVISE-ADM-SER
Project
Express

12 Click Next.

1. Mame project
S

Project
Express

13 Add any defines or include directories desired.
14 Click Finish.

ProSoft Technology, Inc.
December 12, 2006

Page 59 of 318

MVI-ADM ¢ 'C' Programmable Setting Up Your Development Environment
Application Development Module

15 The Project window should now contain all the necessary source and library
files as shown in the following window:

Project EEEB
= | Paze “iew Trace

B Bhadm-s0.pri |

| Ext [path i
Seriall (€ CiMADH_TDDL M~
JLIE C:hADM_TOOL_H
JLIE C:hADM_TOOL_Hh
JLIE C:hADM_TOOL_Hh
JLIE C:hADM_TOOL_Hh
JLIE C:hADM_TOOL_Hh

16 Click Project — Settings from the Main Menu.
Project Settings
Talgell EBiwild | Option Sets | Drirectories |
1
— Project Settings
= Debug
¥ Release
Flatfarm Target Type
I Los _VJ I Executable j
~Uses——————— - Character Type
= HLE " MFC % Single Eyte
= O MEEE] Multi Byte
[ODBC K EELOLLH | Unicode
v Allow Project to be Built ¥ Automatically Parze
™ Parse System Files
(]9 I Cancel |

17 These settings were set when the project was created. No changes are
required. The executable must be built as a DOS executable in order to run
on the MVI platform.

Page 60 of 318 ProSoft Technology, Inc.
December 12, 2006

Setting Up Your Development Environment

MVI-ADM e 'C' Programmable
Application Development Module

18 Click the Directories tab and fill in directory information as required by your

project's directory structure.

Project Settings

Target I Build | Option Sets 1
Include Directories:
|
Library Directories:
|
Compiler Output Directary:
|
Target Output Directony:
|

Browser Exclude Directories:

Source Search Path:

o]

Cancel |

19 If the fields are left blank then it is assumed that all of the files are in the

same directory as the project file. The output files will be placed in this

directory as well.

20 Click on the Build tab, and choose the Compiler selection. Confirm that the
settings match those shown in the following screen:

Project Settings

Target BU“dl Option Sets | Directaries |

Code Generation ™ Enforce AMS| Compatibility
Header Files
Memory Modelz ™ Treat Source as C++

Code Optimizations

‘windows Prolog/E pilog ™ Relax Type Checking

Output ,
Wwamings ; | Suppress Predefined Macros
Lirli);eb[ug GO ™ Exception handling
Paqk!r)g M ap Fil ™ Run time type information
Definitions
Segments ™ Enable new]. delete]] overloading

Imports/E wports

- char Behavior
' signed
T unzigned

" char==unsigned char

— Prototyping
& Standard

' Autoprotatype
1 Strict

Fezource Compiler

i~ International Characters

M ake
External Make & Mone
Librarian " Japanese B ciean

 Taiwaneze/Chinese

Current Option Set: Defines I

|_—5§adm-so.DF‘N

Include Filename I

|Rtent o Erojeet |

Instantiate Template l

o]

Cancel |

ProSoft Technology, Inc.
December 12, 2006

Page 61 of 318

MVI-ADM ¢ 'C' Programmable Setting Up Your Development Environment
Application Development Module

21 Click Code Generation from the Topics field and ensure that the options
match those shown in the following screen:

3
Memary Modelz

Code Optimizations
Windows Prolog/E pilog
Output
‘Warmings
Debug Infarmation
Linker
Packing & Map File
Definitions
Segments
Imports/E sports
Resource Compiler
Make
External Make
Librariar

R
mEEEEE

22 Click Memory Models from the Topics field and ensure that the options
match those shown in the following screen:

Project Settings

Compiler
Code Generation
Header Fi
I ernory :
Code Optimizations
windows Prolog/E pilog
Output
‘W arnings
Debug Information
Linker
Packing & Map File
Drefiritions

Segments
Imports/Exports
Resource Compiler
Make
External Make
Librarian

Page 62 of 318 ProSoft Technology, Inc.
December 12, 2006

MVI-ADM e 'C' Programmable

Setting Up Your Development Environment
Application Development Module

23 Click Linker from the Topics field and ensure that the options match those
shown in the following screen:

Project Settings

Target BUildl Option Sets | [Drirectories |

Code Optimizations
Windows Prolog/E pilog
Output

‘Warmings

[ebug Information

Packing & Map File
Definitions
Segments
Imports/E sports
Resource Compiler

Current Option Set:

|_ BRadm-so.0PN

|Ftieritfrom Braject |

™ Far Call Translation
™ Reorder Segments
™ Ewport By Ordinal
[~ Don't Export Names

—Exports
1 Expoth Base Sensitive
= Evpott, [ppercase

Compiler E ™ Debug Information W DOSSEG Ordering
(it Do Ak I~ Mo Defaul Lib I™ Mo Mull DOSSEG
Header Files b e Eh
Memary Models [Case Sensitive I “Wam if Dups

™ Delete EXE/DLL on Emor
I™ Create ImpDief
I FixD5

i~ Resource Options
= e Seanments i DERETHE
™ Requires Windows 3.0
™ Fequires Wwindows 3.1

i

Sligrment: |

Make
Esternal Make ™| Gererate mport Litran ™ Impart Lib Page Size: |1B
Librariar

Base |

Entr Bt I

Cancel

o]

24 Click Packing & Map File from the Topics field and ensure that the options

match those shown in the following screen:

Project Settings

Target Bl-lildl Option Sets | Directories |

Code Optimizations
windows Prolog/E pilog

Current Option Set:

V¥ Smart Linking

Eocm%ilerG . —Packing
ode Generation
Header Files ™ win Pack W Pack Code: lS‘I 92
Memnory Models
i I ExePack I Pack Dats: [5192

™ Group Information

Output
‘W arnings
Debug Information ~Man Fil
Linker ARE
Fa NoMap © Segment Map & Detailed Seament Map
Drefiritionz
Segments
Imports/Exports — Map File Optian
Resource Compiler
Make [Cross Reference Suibolblan
Ei”lgjt:a[r?:rLMake W e " Sorted by Address
* Sorted by Address and Name

| BEadm-si.0PN

|Ftientfromm Braject |
oK I

Cancel |

ProSoft Technology, Inc.
December 12, 2006

Page 63 of 318

MVI-ADM ¢ 'C' Programmable
Application Development Module

Setting Up Your Development Environment

25 Click Make from the Topics field and ensure that the options match those
shown in the following screen:

Project Settings

Target BUildl Option Sets | [Drirectories |

Flesource Compiler
External Make
Librariar

Current Option Set:

| SBadm-s0.0PN

|Ftieritfrom Braject |

Compiler .
Code Gareration % Use IDDE Make © Use Extemal Make File
neader I;::esd | —|DDE Make Options

emary Models ;
Code Dptimizations T ¥ Track Dependencies
Windaws Prolog/Epilog —I S ™ Track Spstem Includes
Evu;FnLi‘;gg m [~ On Eror Continue Unrelated
Debug Information V' lanore Errors in Build

Linker I
Packing & Map Fils i~ Multitasking
Definitions | " Frequent * toderate = None

Segments
Imports/E sports — MetBuild

[T Use NetBuild

= Use Bemote Headsrs

kit Directon

Hemate Bassmond

o]

Cancel |

26 Click OK.

27 Click Parse — Update All from the Project Window Menu. The new settings
may not take effect unless the project is updated and reparsed.

28 Click Project — Build All from the Main Menu.

29 When complete, the build results will appear in the Output window:

= Edit Stop!

ren ASSCUS. EXE SBadn-so.EXE
-\Sbadn-s0.EXE built
Lines Processed: 3108 Errors: 2 MWarnings: O

sC .. MY ISE-A0M-SERTAL-OUT WY IS6A0M-SerialOut.c -p -ml -otcnp —otcp -otda -otdc -o+dv -otcse -otli -otliv -ot+loop —otreg —otvbe -5 -al -Nc -c -o. ARYISE-ADM-SERTAL-OUT MY ISEAOM-SerialOut.
link /PACKD;8192 /PAC:S192 /00 /PACKF /¥H B56adm—s0.LHK

Error: CovaDR_TOOL_ MY [NSARPLESWHY IS6-SAMPLES MY ISE-ADM MY IS6-ADM-SERTAL- TN, . \My IS6-A0M-SERTAL-0UTWMY IBPAPL. LIB{Util)
Error: C:ADM_TOOL_MYI\SAMPLESWMY ISH-SAMPLES MY TS6-ADMHY IS6-ADM-SERTAL-THY. . "My 1S6-A0M-SERTAL-OUTWMY TBPAPT. LIG(Util)

: Previous Definition Different : BDelay x ImsSous
: Previous Definition Different : BDelay x 10ussqul

Build failed

Ll

The executable file will be located in the directory listed in the Compiler Output
Directory box of the Directories tab (that is, CAADM_TOOL_MVNSAMPLES\...).
The Project Settings window can be accessed by clicking Project — Settings

from the Main Menu.

Porting Notes: The Digital Mars compiler classifies duplicate library names as
Level 1 Errors rather than warnings. These errors will manifest themselves as
"Previous Definition Different : function name". Level 1 errors are non-fatal and
the executable will build and run. The architecture of the ADM libraries will
cause two or more of these errors to appear when the executable is built. This
is a normal occurrence. If you are building existing code written for a different
compiler you may have to replace calls to run-time functions with the Digital
Mars equivalent. Refer to the Digital Mars documentation on the Run-time
Library for the functions available.

Page 64 of 318

ProSoft Technology, Inc.
December 12, 2006

Setting Up Your Development Environment MVI-ADM e 'C' Programmable

Application Development Module

4.1.2 Configuring Borland C++5.02

The following procedure allows you to successfully build the sample ADM code
supplied by Prosoft Technology. using Borland C++ 5.02. After verifying that the
sample code can be successfully compiled and built, you can modify the sample
code to work with your application.

Note: This procedure assumes that you have successfully installed Borland
C++ 5.02 on your workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_MVI.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the ProSoft-
Technology.com web site. When you unzip the file, you will find the sample code
files in \ADM_TOOL_MVNSAMPLES\.

Building an Existing Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click Project — Open Project from the
Main Menu.

Open Project File 2lxl

File: Marme: Directolies:

Cancel |

ADM.PRI

[F=r &0M
= SaMPLE

Cinc
b
- =
Wigwer Drives:
I-DefauItViewer- j I (=K j Metwark... |
List Files of Type:
| Project fles [*.de.* pri) =

2 From the Directories field, navigate to the directory that contains the project
(C:\adm\sample).
3 In the File Name field, click on the project name (adm.ide).

ProSoft Technology, Inc. Page 65 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Setting Up Your Development Environment
Application Development Module

4 Click OK. The Project window appears:

. -0 lib~admapi.lib [.lib]

. -[lib“cipapi.lib [.lib]

. [libsmvibpapi.lib [.1lib]
. -0 lib~mviscapi.lib [.1ib]
. -@ lib~mvispapi.lib [.1libk]
. -0 commdrv.c [.c]

. - debugprt.c [.c]

. 0 mvicfg.c [.c]

. e B main_app.c [.c]

5 Click Project — Build All from the Main Menu to create the .exe file. The
Building ADM window appears when complete:

&7 Building ADM - Complete i] 9]

Status: Success |

Funning

Frogram: C:ABCENBIMtink, exe
Command ling: @CAADMYSAMPLEVWADM . r$p
Infarmation: Elapzed Time: 2.531 Seconds

Statistics Tatal Current
Lines: 17535 1]
Wwarnings: 1] 1]
Errors: a a

6 When Success appears in the Status field, click OK.

Page 66 of 318 ProSoft Technology, Inc.
December 12, 2006

Setting Up Your Development Environment MVI-ADM e 'C' Programmable

Application Development Module

7 The executable file will be located in the directory listed in the Final field of
the Output Directories (that is, C:\adm\sample). The Project Options window
can be accessed by clicking Options — Project Menu from the Main Menu.

& Project Options

Topics:

* Directonies
<k Compiler] Directories
=R 16-bit Compiler
= 32:bit Compiler Thiz section letz you tell Borland C++ where to look for source,
4}:[:++. D_DUQNS include, and library files. The output directories control where
=0 ptimizations intermediate files [[OBJ, .RES] and final files [.EXE. .DLL,
chMeszages .RES] are placed.
PLinker
o Librariah r— Source Directories:
Gh]
- Bsilsdoi[tctﬁbsutes Include: Ic::\ch\incIude;c:\adm\sample\inc j
° Make Library: |c::\ch\Iib;c:\adm\sample\lib j
Saurce: Ic:\adm_wrkg\sample j
— Output Drectories:
Intermediate: Ic:\adm\sample j
Final: Ic:\adm\sample j

Set paths far input and output files

Directonies

v ak I‘UndoF’agEl x Eancell ? Help |

Creating a New Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click File — Project from the Main Menu.

N

& x|
— Project Path and Mame: v R
|c:\adm\sample\my_proi.ide
[|
— Target Name: x anee |
Imy_proi EE_ Browse |
— Target Type: & Advanced |
Frameworks:
Diynaric: Library [dli] ’7 ¥ Class Library ‘ 2 Heb |
Easyhwfin [exe]
Static: Library [for .exe) [.ib] Math Support: ——————————
Static lerary [fo_r .l [lib] " Floating Poirt
Import Library [lib] ;I = Enmulation
 None
Platformm:
! Libraries:
Target Model: ’7 I~ MoEsceptions [~ BGI
L. -
= J | [T ademate Statup [Diagnostic |

automatically.

(o2 &) RSN GN]

In the Target Type field, choose Application (.exe).
In the Platform field, choose DOS (Standard).

In the Target Model field, choose Large.

Ensure that Emulation is checked in the Math Support field.

Type in the Project Path and Name. The Target Name is created

ProSoft Technology, Inc.

December 12, 2006

Page 67 of 318

MVI-ADM ¢ 'C' Programmable Setting Up Your Development Environment
Application Development Module

7 Click OK. A Project window appears:

oject : ' admisampletmy pi = |EI|1|

« 0% nv_proj .exe [.exe]
. - proj.cpp [.cpp]

8 Click on the .cpp file created and press the Delete key. Click Yes to delete
the .cpp file.

9 Right click on the .exe file listed in the Project window and choose the Add
Node menu selection. The following window appears:

& Add to Project List 3 |
Laok i | 3 SAMPLE x| @k E-
[:I inc
ik
2] ComMmDRY. C
[DEBLIGPRT.C
(2] MaIN_aPP.C
2] MVICFE.C
File name: Imy_proi. cpp ﬂ Open I
N Files of type: |C++ source [*.opp;t.c) j Cancel |
7 |

10 Click source file, then click Open to add source file to the project. Repeat this
step for all source files needed for the project.

11 Repeat the same procedure for all library files (.lib) needed for the project.

Page 68 of 318

ProSoft Technology, Inc.
December 12, 2006

Setting Up Your Development Environment MVI-ADM e 'C' Programmable
Application Development Module

12 Choose Libraries (*.lib) from the Files of Type field to view all library files:

Look in: |3 1 r e ®mcFE-

] ADMAPLLIE
&
8] CIPAPI LIE

History 8] MVIBRAPILIE

e 8] MYISCAPLLLIE
ﬁ! {38 MYISPAPILIE

by Ne

File name: j Open I
Files of type: Libraries [* lib] Cancel |
A

13 The Project window should now contain all the necessary source and library
files as shown in the following window:

. [lib~admapi.lib [.lib]

. [lib~cipapi.lib [.lib]

. [lib~mvibpapi.lib [.lib]
. [lib~mviscapi.lib [.1lih]
. [lib~mvispapi.lib [.1lih]
. 0O commdre .o [.c]

. [debugprt.c [.c]

. 0 mvicfg.c [.c]

. M@ main_app.c [.c]

ProSoft Technology, Inc. Page 69 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable
Application Development Module

Setting Up Your D

evelopment Environment

14 Click Options — Project from the Main Menu.

_(:'+‘ Project Options

Topics:

o Compiler

k1 6-bit Compiler
R 32-bit Compiler
SR C++ Options
or 0 ptimizations
qhM essages
qRLinker

= Librarian
ArResources

= Build Attributes
= Make

Set paths for input and output files

Directonies

21|

Directories

intermediate files (OBJ, .RES] and final files [.EXE. .DLL,
.RES] are placed.

— Source Directories:

Thiz section lets pou tell Barland C++ where to look for source,
include, and library files. The output directaries control where

Irciude: |c:\b05\include

Library: |c:\bc5\|ib

LefLefLel

Saurce: |

— Output Drectories:

Intermediate: I

LedLed

Final: I

v oK I‘UndoF’agEl x Eancell 2 Hep |

15 Click Directories from the Topics field and fill in directory information as
required by your project's directory structure.

& Project Options

2x|
Topics: Directories
o Directonies
5 Compiler Directories
ir 1 6-bit Compiler
= 32-bit Compiler Thiz zection lets you tell Barland C++ where ta look for source,
4}:[:++. Options include, and library files. The output directaries control where
=0 ptimizations intermediate files [[OBJ, .RES] and final files [.EXE. .DLL,
chMeszages .RES] are placed.
PLinker
o Librariah r— Source Directories:
Gh]
N Bsilsdoi[tctﬁbsutes Include: Ic::\ch\incIude;c:\adm\sample\inc j
° Make Library: |c::\ch\Iib;c:\adm\sample\lib j
Saource: Ic:\adm\sample'\my_proi j
— Output Drectories:
Intermediate: Ic::\adm\sample'\my_proi\out j
Final: Ic:\adm\sample'\my_proi\ouﬂ j

The output directory for pour EXE,
.DLL, and .M&P filez

v ak I‘UndoF’agel x Eancell ? Help

Page 70 of 318

ProSoft Technology, Inc.

December 12, 2006

Setting Up Your Development Environment

MVI-ADM e 'C' Programmable

Application Development Module

16 Double-click on the Compiler header in the Topics field, and choose the
Processor selection. Confirm that the settings match those shown in the
following screen:

_(:'+‘ Project Options

Topics:

= Directories
=R Compiler
=1E-bit Compiler

= Calling Convention
= Memory Model
= Segment Mames Data
= Segment Mames Far Data
@ Segment Mames Code
= Entr/Exit Code

=k 32-Lil Conpiler

SR C++ Options

=R O ptimizations

fPieszages

eRLinker

= Librarian

qrResources

= Build Attributes

= Make

Select a target processor

Processar

r Instruction set:
8086
80186
 80:86
& o0:8g
486

— Data alignment:
= Byte
" wod

V oK I‘UndoF‘agEl x Eancell 2 Hep |

17 Click Memory Model from the Topics field and ensure that the options match
those shown in the following screen:

18 Click OK.

" Project Options

Topics:

@ Directories

qF Compiler

=1E-bit Compiler
= Processor

& Eallins Corvention

= Segment Mames Data
* Segment Mames Far Data
@ Segment Mames Code
= Entr/Exit Code

oh 32-bit Compiler

2R C++ Options

o O ptirizations

fi eszages

arLinker

= Librarian

arResouces

= Build Attributes

= Make

Select a memory madel [refer ta
T argetE xpert for application model]

kemory Model
 Miked Model Override:
" Tiny
& Smal
 Medium
" Compact
@ Large
" Huge

2l

Agsume 55 Equal: DS ——
& Default
 Mever
 Always

— Options:

™ Far virtual tables
" Fast huge pointers
[~ Automatic far data

™ Put constant strings in code segments

Far Data Threshold: |32?8? 'l

V u]: I‘UndoF’agEl x Eancell ? Help |

19 Click Project — Build All from the Main Menu.

ProSoft Technology,
December 12, 2006

Inc.

Page 71 of 318

MVI-ADM ¢ 'C' Programmable Setting Up Your Development Environment
Application Development Module

4.2

4.3

20 When complete, the Success window appears:

&7 Building ADM - Complete i] 9]

Status: Success |

Funning

Frogram: C:ABCENBIMtink, exe
Command ling: @CAADMYSAMPLEVWADM . r$p
Infarmation: Elapzed Time: 2.531 Seconds

Statistics Tatal Current
Lines: 17535 1]

Wwarnings: 1] 1]
Errors: a a

21 Click OK. The executable file will be located in the directory listed in the Final
box of the Output Directories (that is, C:\adm\sample). The Project Options
window can be accessed by clicking Options — Project from the Main Menu.

Setting Up WINIMAGE

WINIMAGE is a Win9x/NT utility used to create disk images for downloading to
the MVI module. It does not require the used of a floppy diskette. In addition, it is
not necessary to estimate the disk image size, because WINIMAGE does this
automatically and can truncate the unused portion of the disk. WINIMAGE will
de-fragment a disk image so that files may be deleted and added to the image
without resulting in wasted space.

To install WINIMAGE, unzip the winima40.zip file from the CD-ROM in a sub-
directory on your PC running Win9x or NT 4.0. To start WINIMAGE, run
WINIMAGE.EXE.

Installing and Configuring the Module

This chapter describes how to install and configure the module to work with your
application. The configuration process consists of the following steps.

1 Use RSLogix to identify the module to the processor and add the module to a
project.

NOTE: The RSLogix software must be in "offline" mode to add the module to a
project.

2 Modify the module's configuration files to meet the needs of your application,
and copy the updated configuration to the module. Example configuration
files are provided on the CD-ROM.

3 Modify the example ladder logic to meet the needs of your application, and
copy the ladder logic to the processor. Example ladder logic files are provided
on the CD-ROM.

Page 72 of 318 ProSoft Technology, Inc.

December 12, 2006

Setting Up Your Development Environment MVI-ADM e 'C' Programmable
Application Development Module

Note: If you are installing this module in an existing application, you can copy
the necessary elements from the example ladder logic into your application.

The rest of this chapter describes these steps in more detail.

Note for MVI194: Configuration information for the MVI94-ADM module is
stored in the module's Flash ROM. This provides permanent storage of the
information. The user configures the module using a text file and then using
the terminal emulation software provided with the module to download it to the
module's Flash ROM. The file contains the configuration for the Flex
backplane data transfer, master port and the command list. This file is
downloaded to the module for each application.

Note for MVI69: Configuration information for the MVI69-ADM module is
stored in the module's EEPROM. This provides permanent storage of the
information. The user configures the module using a text file and then using
the terminal emulation software provided with the module to download it to the
module's EEPROM. The file contains the configuration for the virtual database,
backplane data transfer, and serial port. This file is downloaded to the module
for each application.

Note for MVI71: The first step in installing and configuring the module is to
define whether the block transfer or side-connect interface will be used. If the
block transfer interface is used, remove the Compact Flash Disk from the
module if present and insert the module into the rack with the power turned off.

4.3.1 Using Side-Connect (Requires Side-Connect
Adapter) (MVI71)

If the side-connect interface is used, the file SC_DATA.TXT on the Compact
Flash Disk must contain the correct configuration file number. To set the
configuration file number to be used with your application, run the setdnpsc.exe
program. Install the module in the rack and turn on the power. Connect the
terminal emulator to the module's debug/configuration port and exit the program
by pressing the Esc key followed by the "X" key. This causes the program to exit
and remain at the operating system prompt. Run the setdnpsc.exe program with
a command line argument of the file number to use for the configuration file. For
example, to select N10: as the configuration file, enter the following:

SETDNPSC 10

The program will build the SC_DATA.TXT on the Compact Flash Disk (C: drive in
the root directory).

The next step in module setup is to define the data files to be used with the
application. If the block transfer interface is used, define the data files to hold the
configuration, status, and user data. Enter the module's configuration in the user
data files. Enter the ladder logic to handle the blocks transferred between the
module and the PLC. Download the program to the PLC and test the program
with the module.

ProSoft Technology, Inc. Page 73 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Setting Up Your Development Environment
Application Development Module

If the side-connect interface is used, no ladder logic is required for data transfer.
The user data files to interface with the module must reside in contiguous order
in the processor. The first file to be used by the interface is the configuration file.
This is the file number set in the SC_DATA.TXT file using the SETDNPSC.EXE
program. The following table lists the files used by the side-connect interface:

File Number Example Size Description

Cfg File N10 300 Configuration/Control/Status File

Cfg File+1 N11 to 1000 Port 1 commands 0 to 99

Cfg File+2 N12 to 1000 Port 2 commands 0 to 99

Cfg File+5 N15 to 1000 Data transferred from the module to the processor.
Other files for read data.

Cfg File+5+n N16 to 1000 Data transferred from the processor to the module.

Cfg File +5+n+m Other files for write data.

n is the number of read data files minus one. Each file contains up to 1000

words.

m is the number of write data files minus one. Each file contains up to 1000
words.

Even if both files are not required for a port's commands, they are still reserved
and should only be used for that purpose. The read and write data contained in
the last set of files possess the data transferred between the module and the
processor. The number of files required for each is dependent on the number of
registers configured for each operation. Two examples follow:

Example of 240 words of read and write data (cfg file=10)
Data Files Description

N15:0 to 239 Read Data

N16:0 to 239 Write Data

Example of 2300 read and 3500 write data registers (cfg file=10)

Data Files Description

N15:0 to 999 Read data words 0 to 999
N16:0 to 999 Read data words 1000 to 1999
N17:0 to 299 Read data words 2000 to 2299

N18:0 to 999 Write data words 0 to 999

N19:0 to 999 Write data words 1000 to 1999

N20:0 to 999 Write data words 2000 to 2999

N21:0 to 499 Write data words 3000 to 3499

Special care must be taken when defining the files for the side-connect interface.
Because the module directly interacts with the PLC processor and its memory,
any errors in the configuration may cause the processor to fault and it may even
lose its configuration program. After defining the files and populating them with
the correct data, download the program to the processor, and place the
processor in Run mode. If everything is configured properly, the module should
start its normal operation.

Page 74 of 318 ProSoft Technology, Inc.
December 12, 2006

Setting Up Your Development Environment MVI-ADM e 'C' Programmable
Application Development Module

If all the configuration parameters are set correctly, the module's application LED
(OK LED) should remain off and the backplane activity LED (BP ACT) should
blink rapidly. Refer to the Diagnostics and Troubleshooting of this manual if you
encounter errors. Attach a terminal to Port 1 on the module and look at the status
of the module using the Configuration/Debug Menu in the module.

ProSoft Technology, Inc. Page 75 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 76 of 318 ProSoft Technology, Inc.
December 12, 2006

Programming the Module MVI-ADM e 'C' Programmable

Application Development Module

5

5.1

Programming the Module

In This Chapter
» ROM Disk Configurationcccccooiiiiiiiiiaieeee e 77
» Creating a ROM Disk Imagecoccoceiviiiiiniiiiieec e 81
» Downloading a ROM Disk Imageccccevviieiiiiieeiiniieeee 83
» MVI System BIOS Setup.......cccoveiiiiiiiiiiiie e 85

» Debugging Strategies.........ccccvviiiieeiiiiiiiiee e 86

This section describes how to get your application running on the MVI module.
After an application has been developed using the backplane and serial API's, it
must be downloaded to the MVI module in order to run. The application may then
be run manually from the console command line, or automatically on boot from
the AUTOEXEC.BAT or CONFIG.SYS files.

ROM Disk Configuration

User programs are stored in the MVI module's ROM disk. This disk is actually a
portion of Flash ROM that appears as Drive A:.

The ROM disk size is:

Module Type Disk Size

MV146 896K bytes

MVI56 896K bytes

MVI69 896K bytes

MVI71 896K bytes

MVI194 384K bytes

This section describes the contents of the ROM disk.

Along with the user application, the ROM disk image must also contain, at a
minimum, a CONFIG.SYS file and the backplane device driver file:

Module Type File Name

MV146 MVI146BP.EXE

MVI156 MVI56BP.EXE

MVI169 MVI69BP.EXE

MVI71 MVI71BP.EXE

MVI194 MVI94BP.EXE

If a command interpreter is needed, it should also be included.

ProSoft Technology, Inc. Page 77 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Programming the Module
Application Development Module

5.1.1 CONFIG.SYS File
The following lines should always be present in your CONFIG.SYS file:

MV146

IRQPRIORITY=1
INSTALL=A:\MVI46bp.exe -i1omix=0 -class=4 -m0size=3000 -mlsize=10000

Note: The MVI146 driver file is called MVI46BP.EXE, and may be loaded from
the CONFIG.SYS or AUTOEXEC.BAT files. The driver must be loaded before
executing an application which uses the MVI API.

The SLC platform supports several classes of modules. The MVI46 can be
configured as a Class 1 or Class 4 module. Also, the I/O image sizes are
configurable. If the MVI146 is configured as Class 4, MO and M1 files are
supported and their sizes are configurable.

Note: Messaging is only supported when the MVI146 is Class 4.

To configure the class of the MVI146, use the command line options shown below
when loading the MVI driver MVI46BP.EXE. If no options are given, the MVI146
MVI driver defaults to Class 4, 32 words of I/O, and MO and M1 sizes of 1024
words (module ID = 13635).

[C:\IwV146bp -?

MVI46 MVI Driver V1.00

Copyright (c) 2000 Online Development, Inc.

Usage:

C:\MVI46bp.EXE [-iomix=n] [-class=n] [-mOsize=n] [-mlsize=n]
where:

iomix=n sets the 1/0 image sizes. Valid values for n are:

=> 2 words of 10 5 => 12 words of 10

=> 4 words of 10 6 => 16 words of 10

=> 6 words of 10 7 => 24 words of 10

=> 8 words of 10 8 => 32 words of 10 (default)

=> 10 words of 10

class=n sets the module class. Valid values for n are:

=> Class 1 (Messaging disabled)

=> Class 4 (Messaging enabled, default)

mOsize=n sets the number of words for the Messaging

receive buffer, default mOsize=1024

- mlsize=n sets the number of words for the Messaging send buffer, default
mlsize=1024 NOTE: mOsize + mlsize must be less than 16320 words.

When configuring the Host Controller for the MV146, the programming software
requires the Module ID for each module in the system. The Module ID for the
MV146 depends upon the configuration set by the driver. When the driver is
loaded, it prints to the console the Module ID value that can be entered into the
programming software for the Host Controller. For example, the default
configuration prints the following information:

I AP, I hDWONPFELOI

[C:\IMV146bp
MV146 MVI Driver V1.00
Copyright (c) 2000 Online Development, Inc.

Page 78 of 318 ProSoft Technology, Inc.
December 12, 2006

Programming the Module MVI-ADM e 'C' Programmable
Application Development Module

1746 MVI1 Configuration

Class 4

10 mix 8 = 32 words of 10

MO File size = 1024 words

M1 File size = 1024 words

SLC Module ID = 13635

The first line, IRQPRIORITY=1, assigns the highest interrupt priority to the I/O
backplane interrupt. The next line loads the backplane device driver. In this
example, the backplane device driver file (MVI46BP.EXE) must be located in the
root directory of the ROM disk. In the case of the MV146, the module 1/O is set
when the backplane driver is loaded. The module is set to class 4 with a 3000
word MO file and a 10000 word M1 file. The Module ID for installing and
configuring the module in the ladder program will be printed to the console when
the backplane driver is loaded.

If a command interpreter is needed, a line like the following should be included in
CONFIG.SYS:

SHELL=A:\TINYCMD.COM /s /p

If a command interpreter is not needed, the user application may be executed
directly from the CONFIG.SYS file as shown (where USERAPP.EXE is the user
application executable file name):

SHELL=A:\USERAPP.EXE

The user application may also be executed automatically from an
AUTOEXEC.BAT file, or manually from the console command line. In either
case, a command interpreter (page 80) must be loaded.

MVI56

IRQPRIORITY=1
INSTALL=A:\MVI56bp.exe
MVI169

IRQPRIORITY=1
SYSTEMPOOL=16384

STACKS=5
SHELL=A:\TINYCMD.COM /s /p
INSTALL=A:\MVI169bp .exe

Note: At this time, messaging is not supported on the MVI69.

MVI71

IRQPRIORITY=1
INSTALL=A:\MVI71bp.exe

MVI94

IRQPRIORITY=1
INSTALL=A:\MVI194bp .exe

ProSoft Technology, Inc. Page 79 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable
Application Development Module

Programming the Module

5.1.2 Command Interpreter

A command interpreter is needed if you want the module to boot to a command
prompt, or if you want to execute an AUTOEXEC.BAT file. Two command
interpreters are included, a full-featured COMMAND.COM, and the smaller, more

limited TINYCMD.COM. Refer to the General Software Embedded DOS 6-XL
Developer's Guide located on the MVI CD-ROM for more information.

5.1.3

Sample ROM Disk Image

The sample ROM disk image that is included with the MVI module contains the

following files:

MVI146

File Name Description

AUTOEXEC.BAT Runs the executable at startup

CONFIG.SYS Loads the backplane device driver and the command interpreter
TINYCMD.COM Command interpreter

MVI146BP.EXE Backplane device driver

ADM.EXE Sample application

MVI56

File Name Description

AUTOEXEC.BAT Runs the executable at startup

CONFIG.SYS Loads the backplane device driver and the command interpreter
TINYCMD.COM Command interpreter

MVI56BP.EXE Backplane device driver

ADM.EXE Sample application

MVI69

File Name Description

AUTOEXEC.BAT Runs the executable at startup

CONFIG.SYS Loads the backplane device driver and the command interpreter
TINYCMD.COM Command interpreter

MVI169BP.EXE Backplane device driver

ADM.EXE Sample application

MVI71

File Name Description

AUTOEXEC.BAT Runs the executable at startup

CONFIG.SYS Loads the backplane device driver and the command interpreter
TINYCMD.COM Command interpreter

MVI71BP.EXE Backplane device driver

Page 80 of 318

ProSoft Technology, Inc.
December 12, 2006

Programming the Module MVI-ADM e 'C' Programmable
Application Development Module

File Name Description

ADM.EXE Sample application

SETDNPSC.EXE Configures the module to use either backplane or side-connect interface.
MVI194

File Name Description

AUTOEXEC.BAT Runs the executable at startup

CONFIG.SYS Loads the backplane device driver and the command interpreter
TINYCMD.COM Command interpreter

MVI194BP.EXE Backplane device driver

ADM.EXE Sample application

5.2 Creating a ROM Disk Image

To change the contents of the ROM disk, a new disk image must be created
using the WINIMAGE utility.

The WINIMAGE utility for creating disk images is described in the following
topics.

5.2.1 WINIMAGE: Windows Disk Image Builder

WINIMAGE is a Win9x/NT utility that may be used to create disk images for
downloading to the MVI module. It does not require the use of a floppy diskette.
Also, it is not necessary to estimate the disk image size, since WINIMAGE does
this automatically and can truncate the unused portion of the disk. In addition,
WINIMAGE will de-fragment a disk image so that files may be deleted and added
to the image without resulting in wasted space.

To install WINIMAGE, unzip the winima40.zip file in a subdirectory on your PC
running Win9x or NT 4.0. To start WINIMAGE, run WINIMAGE.EXE.

Follow these steps to build a disk image:
1 Start WINIMAGE.

ProSoft Technology, Inc. Page 81 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable

Programming the Module
Application Development Module

2 Select File, New and choose a disk format as shown in the following
diagram. Any format will do, as long as it is large enough to contain your files.
The default is 1.44Mb, which is fine for our purposes. Click on OK.

Dizkette Format E2

— Faormat
Standard format:

B0 KB
180 KB
 320KB
360 KB
 720KE
-

" 2BIME

Mor-standard format:
820 KB

172 MB

 1.68 MB

' DMF [cluster 1024]
' DMF [cluster 2048

Cancel |

3 Drag and drop the files you want in your image to the WINIMAGE window.
4 Click on Options, Settings and make sure the Truncate unused image part
option is selected, as shown in the following figure. Click on OK.

Seltings 2]

Disk Image |Extract| File I Notificationl Generall

-

V' Truncate unused image part

[V Uze incremented opendsave wizard

V' Werify disk contents before writing image to disk,

LCompression:

1
C e
Mormal [E]

oK I Cancel Help

Page 82 of 318 ProSoft Technology, Inc.

December 12, 2006

Programming the Module MVI-ADM e 'C' Programmable
Application Development Module

5 Click on File, Save As, and choose a directory and filename for the disk
image file. The image must be saved as an uncompressed disk image, so be
sure to select Save as type: Image file (*.IMA) as shown in the following

figure.
Save As K
Save in: I {3 images j gl IE i
I it b
= iz it
File name: |m\ri3 Save I
Save as ype: IImage file [, 1b4) j Cancel |

Comment:

6 Check the disk image file size to be sure it does not exceed the maximum
size of the MVI module's ROM disk (896K bytes, 384K bytes for MV194). If it
is too large, use WINIMAGE to remove some files from the image, then de-
fragment the image and try again. (Note: To de-fragment an image, click on
Image, Defrag current image.

7 The disk image is now ready to be downloaded to the MVI module.

For more information on using WINIMAGE, refer to the documentation included

with it.

Note: WINIMAGE is a shareware utility. If you find this program useful, please
register it with the author.

5.3 Downloading a ROM Disk Image

MVI Flash Update is a Windows-compatible program for Win9x and NT used to
download a ROM Disk image.

5.3.1 MVI Flash Update

Installation

System Requirements:

= Windows 95/98 or Windows NT 4.0
= Available serial port COM1 to COM4
= 2Mb free disk space

ProSoft Technology, Inc. Page 83 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Programming the Module
Application Development Module

Before you install a new version, it is recommended that you uninstall any
previous versions. Click on the Add/Remove Programs icon in the Control Panel
window.

To install the MVI Flash Update tool, use the SETUP.EXE installation program.
When the program is installed, click on the "MVI Flash Update" icon, to run the
program.

Using the MVI Flash Update Utility

The MVI Flash Update tool allows a disk image to be downloaded to the MVI
module. The disk image must be an uncompressed FAT-format diskette image
created with WINIMAGE or a compatible utility.

To download a disk image to the module, follow these steps:

1 |Install the Setup Jumper on the MVI module.

2 Connect PRT1 of the MVI module to the selected port on the computer with a
null-modem serial cable.

3 Click on the MVI Flash Update icon to start the program. Select the COM port
which is connected to PRT1 of the MVI module.

@ E stablish Connection E

Select Part

' COM1 € CCM3
' COM2 ' CCM4

{Conect | Cancel

4 Turn on the power to the MVI module.

5 When a connection to the module has been established, the download dialog
is displayed. Choose the diskette image file to download, the click on the
Download button. The progress bar indicates the download progress.

0 Download File X|
Madule Infarmation
Module Mame: 1756-b41 Multityendor Interface
“Wendor [0 1 Major Rew: 1

Device Type: 12 Minor Few: 1
Prod. Code: 83 Serial No: 816145
BIOS Rev: 013 Mfg. Date: 114141333

File: Narne: ID:\tmp\mvi\disk‘I.ima Erowse |

Page 84 of 318 ProSoft Technology, Inc.
December 12, 2006

Programming the Module MVI-ADM e 'C' Programmable
Application Development Module

6 After the download has completed, the module will reboot.

Note: Only one program at a time may access a serial port. If you are using
HyperTerm or a similar terminal program for the MVI module console, exit or
disconnect from the serial port before running the MVI Flash Update tool.

5.4 MVI System BIOS Setup

The BIOS Setup for the MVI products contains module configuration settings and
allows for placing the MVI module in a flash update mode. To access the BIOS
Setup, attach a null modem cable from the PC COM port to the Status/Debug
port on the MVI module. Start HyperTerm with the appropriate communication
settings for the Debug port. Press CTRL-C during the memory test portion in the
booting of the module.

wrsian &,

1

HUT RTOS w1.81
Ceprighl Lel 1999 2B0Q Online levelepael, Tro,

BAT12_KE DK
Hit 00T v wanl e monc SFTIR.

AACARE FIX 4.1 G164 AZAR

!

EET] SR [N R p

It may be necessary to install the setup jumper in order to access the BIOS
Setup. The setup jumper will be necessary if the Console is disabled. When the
BIOS Setup is entered the following screen will appear:

| sl en Bi s‘ll lllllu.';nm |
| [{x] 10080 <<<<< rrnl s:.r uuuuu T, A1 righls Fresreod |

SHUT Nadilre Conl g
Eri I'] I I?nN llxdl 1 clor
Reser | venl i a Talery delml s
le

| <Fucd 1o wan | ine |

é

Sl 1012 s A)

To place the MVI module in a mode where it is waiting to receive a new flash
image, select Begin Flash ROM Update Mode.

Select MVI Module Configuration to set the Console, Console Baud Rate and
Compact Flash mode. The Console allows keyboard entry and text output to the
debug port. The baud rate of the console port is selected by the Console Baud

ProSoft Technology, Inc. Page 85 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Programming the Module
Application Development Module

Rate option. In order to use a Compact Flash disk in the MVI module the
Compact Flash option must be set to CHS mode.

| Sysclem RTOS Selop Duslan Gonlinralio |

1 Iiian
| (0] 1998 Goneral Sallware. Tne. AT righls rescrocd |
Larzalve en Par 1 2D snbled Canpri:l “lash CHE Hele:
8 I B Ral 156

| RSN Tl
tFaa 1

e LIS

Sl D0 s e 0

5.5 Debugging Strategies

For simple debugging, printf's may be inserted into the module application to
display debugging information on the console connected to PRT1.

Page 86 of 318 ProSoft Technology, Inc.
December 12, 2006

Creating Ladder Logic

MVI-ADM e 'C' Programmable
Application Development Module

6 Creating

In This
>
>
>
>

>

Ladder Logic

Chapter

MVI146 Ladder LOGICuueeeeeeeiiiiiiiiee e 87
MVI56 Ladder LOGICuueeeeeieiiiiiiiiee e 87
MVI69 Ladder LOGICuvvveiiiiieiiiiee e 88
MVI71 Ladder LOGICouvvveiiiiiiiiiee e 90
Y/ AVA L7 1= To [o 1= ot I o T | [o 96

6.1 MVI46 Ladder Logic

6.1.1

oooo |

Main Routine

6.2 MVI56 Ladder Logic

6.2.1

Main Routine

—COP
Copy File
Source #M1:1.0
Dest #N31:0
Length 40

JSR

(End}

Jump To Subroutine

Routine Name ReadData

6.2.2

Read Routine

COP

(End}

Copy File

Length

Source Local1:1.Data[0]
De=t ADM.ReadData[0]

200

ProSoft Technology, Inc.

December 12, 2006

Page 87 of 318

MVI-ADM ¢ 'C' Programmable
Application Development Module

Creating Ladder Logic

6.3

6.3.1

MVI169 Ladder Logic

Main

Routine

or 240

The user must edit thiz rung depending on the configured Black Transfer Size parameter for the module [please refer to the configuration file). The module accepts 3 possible values: B0, 120

This walug infarms the logic how many words of data is transferred on each read and write black.

b 0
Move

Source 240

Dest ADM BlockTransferSize
240 €|

This mung is uzed o wait a certain period of time before rezetting the warmboat or coldboat requests

EQL TOM

b’ Equal Timer On Delay —<EN>——o

Source & Local1:0.D ata[0] Tirmer ADM.BP BootTimer —DMN>—

2€| Preset 10%
Source B 9353 Accum 0
EQU
Equal
Source & Local1:0.0 ata[0]
2 €
Source B 9933
Thiz rung clears the boot request ance the waiting period iz over
ADM BP BootTimer DN —MoV——
2 = Move
Source i}
Dest Local1:0.0ata[0]
2 ¢
The routines will only be scanned once the processor receives 3 new read block 1D from the module
NED ,—J Sh
3 —— Mot Equal Jump To Subroutine
Source & ADM.BF LastRead Foutine Name ReadData
&
Sowrce B Locallil Dala[DD](- ISR
Jump To Subrouting
Routine Name ‘WiiteData

[End]

6.3.2

Read Routine

This rung updates the new read block 1D to the LastRead variable

MO

Miowve
Source LocalT:1.Data[0]
«

Dest ADM.BP.LastRead
¢

Thiz rung copies the read blocks from the input image to the ReadData(] anay according to the corect block [D.

=

This rung implements the configuration where the Read D ata size was configured for 480 words and the Block Transter Size is configured for 240 words [so there are 2 Read Blocks to be

transfened). The user should edit the GEC and LEQ) limits if using a different configuration

GEQ
Grtr Than or Eql [4>=B]
Source A ADM BP LastRead
1 #|

Source B I

LECH
Less Than or Eql [4<=B)
Source A ADM BP LastRead
1€

Source B 4

Campute
Dest

Expression [ADM.BP.LastRead-11%DM BlockTransferSize

PT

ADM.BP.Blocklndex
T20 €|

LEQ
Less Than or Eql [A<=B]
Source & ADM.BP Blackindex
TN

Source B 719

OF
Copy File
Source Locak1:l Datal2]
Dest ADM ReadD ata[4DM BP Blacklndex]
Length ADM BlockTransferSize

Page 88 of 318

ProSoft Technology, Inc.
December 12, 2006

Creating Ladder Logic MVI-ADM e 'C' Programmable
Application Development Module

EQU aF.

2 Equal Copy File

Source & ADM BP LastRead Source Local1:1.Datal2]
1% Dest ADM ModuleStatus Pass_| Cnt

Source B -1 Length

OF-

E0QL- Copy Fil2
Equal Source Locat 11 Datal3]
Source & ADM.BP LastRead Dest ADM.ModuleStatus, F‘lod[D]
1% Length

Source B o

0P

Copy File

Source Local:1:1.0ata(a]
Dest ADM.ModuleStatus.| F!ev[D]
Length

OF

Capy File

Source Local 1:1.0vata(8]
Dest ADM.ModuleStatus, DD[D]
Length

0P

Copy File

Source Local1:1.Data(10]
Diest ADM.ModuleStatus.| F!un[D]
Length

aF-
— Enpy File

ource Local1:1.Data(13]
Dest Al MaduleS tatus. PartEn[0] EmdLlst
Length

aF-
— CDDy File I—

aurce Local1:1.Data(20]
Dest ADM ModuleStatus PortEn(1] EmdLlst
Length

—— Copy File —
Source Local1:1.Data(27]
Dest ADM ModuleStatus BlkS tats ReadCht
Length B

OF-
Copy File —
Source Local1:1.Data(33]
Dest ADM. ModuleStatus Portl_CuEr
Length 4

6.3.3 Write Routine

This rung reads the "new wite block |0 received in the previous read block to be used for the next wite block to be sent by the processor to the module
"

Move —
Source Local1:1.Data[1]

4
Dest ADM BP Lastiwirite
1 &

Thiz rung shows howlo request a coldboot to the module

ADM.BlockRequest. Coldbaat MO

o =B Move

Source 9333

Dest Local1:0.Data[0]
2 ¢

L]
—— Move —
Source 9999

Dest ADM.BP.Lastwiite
4 €|

ADM. BlackRequest Caldboat
10

This rung shows how o request a warmboot to the module
ADM BlockR equest W aimbaoat ¥ [u]
2 1 E Mave
Source 9333

Dest ADM.BP.Lastwiite
1%

Source 9338

Dest Local1:0.Data[0]
2 ¢

ADM.BlockR equest \w/aimbaoot
{10

ProSoft Technology, Inc. Page 89 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Creating Ladder Logic
Application Development Module

This rung copies the write blocks from the ReadD ata[] aray to the output image according to the corect block 1D
This rung implements the configuration where the Wwite Data size was configured for 480 words and the Black Transter Size is configured for 240 words (3o there are 2'Wiite Blocks ta be
transfered). The user should edit the GEL and LED limits if using a different configuration

GE(Q LEQ
3 1 Grtr Than or Eql [4>=B) Less Than or Eql [4<=B)
Source & ADM BP Lastwirite Source & ADM BP Lastwiite
4 1€
Source B 1 Source B 4

P

Compute
Dest ADM.BP Blockindex
720 €

Expression [ADM.BP.Lastwiite-1)"40M BlockTransterSize

LEL) 0P

——— Less Than o Eqgl (4<=8) Copy File

Source & ADM.BP Blockindex Source ADM.wiiteData[ADM.BP.Blockindex]
720 ¢ Dest Local1:0.Data[1]

Source B 713 Length ADM. Black TransterSize

0

Move
Source ADM.BF Lastiw/rite
€

Dest Lacal1:0.Data[0]
2

This rung handles the situation where the write blacks containg a black D of -1 ar 0.

GEQ LEQ MO
4 t——— Grtr Than o Eql [4>=R) Less Than or Eql [4<=RB] M ove —
Source A ADM.BP Lastwiite Source & ADM BP.Lastwiite Source ADM BP Lastwiite
4% 4€] €
Source B -1 Source B o Drest Locak1:0.Data0]
Ze

6.4 MVI71 Ladder Logic

The ladder files included are:

File Name Description
MVI71ADM_BT.RSP RSLogix5 Sample Program (For Backplane Interface)
MVI71ADM_SC.RSP RSLogix5 Sample Program (For Side-connect Interface)

Note: The ladder files for the various hardware platforms are provided with the
ADM module. They are also available on on the ProSoft Technology web site
at http://www.prosoft-technology.com.

6.4.1 Sample Ladder Logic

Ladder logic is required for application of the MVI171-ADM module when using the
block transfer interface. Ladder logic is only required when using the side-
connect interface to perform special functions. Tasks that must be handled by the
ladder logic are module configuration, data transfer, and special block handling.
This section discusses each aspect of the ladder logic as required by the module.
The sections that follow describe the simple ladder logic example provided for
each interface.

Block Transfer Interface

When the block transfer interface is used, ladder logic is required to transfer all
data between the module and the processor.

Page 90 of 318 ProSoft Technology, Inc.
December 12, 2006

http://www.prosoft-technology.com/

Creating Ladder Logic MVI-ADM e 'C' Programmable
Application Development Module

Main Routine

The Main program file is used to jump to the routine that processes the BTR and
BTW functions for the interface. Ladder logic to accomplish this task is shown

below:
| g
ooo Jamp To Subroutine
‘ Prog File Fumber U3

Block Transfer Routine

The Block Transfer Routine handles the BTR and BTW operations to transfer
data between the processor and the module. Each block to be interfaced
between the processor and the module must be addressed in this logic. The
example ladder logic displays the minimum application of the module and does
not use any of the special features offered by the module. The first rung of the
routine handles the BTR operation (data read from the module). The rung is
shown in the following example:

ProSoft Technology, Inc. Page 91 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Creating Ladder Logic
Application Development Module

H7:300 H7:400 ETE
falalula] 1-£ J-£ Elock Transfer Read —CEH
15 15 Modile Type Generic Block Transfer
Rark 000 DN T—
Group]
Madule 0 [—CERT—
Contrel Black ¥7:400
Dista File H7:410
Lensth &4
Contimous Ho
Setup Screen
Raceive
confignration from
modale
#WRITE_START_REG
EQU ——COP
Equal Copy File
Source A H7:410 Source #97:412
0= Drast #10:0
Scurce B -2000 Lensth &0
-2000=
EQU ———————— ——COP
Equal Copy File
Somrce & 7410 Scurce #7412
0= Drest #710:100
Source B 82 Length &0
-2«
EQU ——COP
Equal Copy File
Source A H7:410 Source #97:412
0= Drast #10:200
Scurce B S Lensth &0
-1«
EQT —COP
Equal Copy File
Source & H7:410 Source #7412
it Drest #715:0
Scurce B 1 Length &0
1=
EQU —COP
Equal Copy File
Scurce & H7:410 Scurce #97:412
0= Drest #15:60
Scurce B 2 Lensth &0
2=
EQU ———————— ——COP
Equal Copy File
Source & H7:410 Somrce #7412
0= Drest #T15:120
Source B 3 Length &0
3=
EQT —COP
Equal Copy File
Source & H7:410 Source #7412
0= Drest #5180
Scurce B 4 Length &0
4=
MOT
Move
Source H7:411
1=
Drest H7:310
3=
Pexform a cold-baot
cperation of the
module
COLDEOOT
E30 OV
JE Mowve
o Source EEEE]
9995
Drest H7:310
3=
perform awarm boot
cperation on the
maodale
WARMEOOT
E30 MOV
J E Move —
Source EEEL
9998
Drest H7:310
3=

This rung will only execute when a BTR or BTW message is not enabled. This
logic is required to alternate between the BTR and BTW messages. When it is
time to perform a BTR operation, the 64-word data block will be transferred to
N7:410. The remaining branches of the rung then process this data.

The first branch examines the block identification code to see if the data
contained in the block is status data. If the block code is set to —1, the status data

Page 92 of 318 ProSoft Technology, Inc.
December 12, 2006

Creating Ladder Logic MVI-ADM e 'C' Programmable
Application Development Module

is copied N10:200, the status data area. With the block code —2, the module
returns an error code for module configuration and port configuration to the PLC.

The next four branches check to see if the block identification code corresponds
to a read data block (1 to 4). If the block contains a valid code, the 60-word data
set is copied to the user data file.

The next branch is very important, as it copies the BTW block identification code
received from the module into the BTW block. This code requests data from the
processor for the module.

The last two branches in the rung override the BTW block identification code
requested. These branches request the module to perform the cold-boot or
warm-boot operation. If you want to perform any other special functions, add
branches to the rung at this location.

The next rung in the ladder logic handles the BTW message blocks. An example
rung is displayed below. As with the BTR rung, execution of this rung alternates
between the BTR and BTW operation with the contacts in the rung guaranteeing
this mode. The topmost branch of the rung checks if the module is requesting the
configuration information (block 9000). The module requests this block each time
a module restart operation occurs. The branch will execute when the block is
requested and will copy the module configuration information into the BTW block.

ProSoft Technology, Inc. Page 93 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable
Application Development Module

Creating Ladder Logic

noo1

ooz

H7400 H7:300 ——EQT —— ——)
3£ 3£ Equal Copy File
15 15 Source 4 H7:310 Sonurce #710:0
3= Dast #7311
Somrce B 000 Length 60
000=
Perform a cold-boaot
operation of the
module
COLDEOOT
—EQT —— B30
Equal iy
Source 4 H7:310 i}
3=
Source B 99599
F900=
perform a warm-hoot
operation on the
module
WARMEOOT
——EQT —— B30
Equal Wiy
Sonarce & H7:310
3=
Somrce B 350
F959E=
——EQT —— —o0F ———
Equal Copy File
Somree 4 HY:310 Sonree #716:0
3= Dest #7311
Sorce B 1 Length &0
1=
——EQT —— —o0F ———
Equal Copy File
Somrce 4 H71:310 Sonrce #1660
3= Dest #7311
Sorce B 2 Length &0
2=
——EQT —— —o0F ———
Eqal Capy File
Somrce 4 H71:310 Sonrce #16:120
3= Dest #7311
Sorce B 3 Length &0
3=
——EQT —— —0F ————
Equal Copy File
Somrce 4 H7:310 Sonrce #116:180
S Drest #7311
Seoarce B 4 Length &0
4=
BTW
BElack Transfor Write —CEN)—
Moadule Type Generic Block Transfer
Rack 000 DN T—
Group u]
Maodale 0 —{ERT—
Control Elack 7300
Data File H7:3l0
Length 64
Contimoms Hao
Setup Screen
END "—

The next two branches clear the cold-boot and warm-boot request bits in the
processor. The block numbers for these special functions are set in the BTR rung

above.

The next four branches transfer the write data from the processor to the module.
The branches determine the block to write (1 to 4) and copy the associated data
into the BTW block.

The last branch of the rung performs the BTW message operation. This
operation will be recognized by the module, and the data contained in the
received BTW block will be processed by the module. If the data contained in the

Page 94 of 318

ProSoft Technology, Inc.

December 12, 2006

Creating Ladder Logic MVI-ADM e 'C' Programmable
Application Development Module

block is normal write data, the data will be placed in the module's internal
database. If the block is a special control block (for example, warm-boot block),
the module will perform the selected operation.

Side-Connect Interface

When the side-connect interface is used, no ladder logic is required for normal
data transfer. The module directly reads and writes information between the
module and the processor using the user data files defined. The SC_DATA.TXT
file contains the file number to be used for the configuration file. This file number
and the module configuration determine the set of user data files required in the
PLC.

In order to perform special control of the module (for example, warm-boot
operation), ladder logic is required. A reserved area in the configuration file is
constantly monitored by the module (elements 80 to 139). If the module
recognizes a valid control command code in element 80, it will use the data in the
block to perform the requested operation. For example, to perform a warm-boot
operation on the module, copy a value of 9998 into element 80 of the
configuration file. The module should perform the warm-boot operation and reset
the register value back to zero.

Boot
Perform a cold-boot
operation of the
module
COLDEOOT
B30 MOV
0000 J E Move
0 Sonree P393
FRFF=
Dest H10:80
0=
Perform a cold-baat
operation of the
modila
COLDEOOT
B30
Py
i}
perform awarm-hoot
operation on the
moduls
WARMEOOT
B30 MOV
0001 JE Move
1 Source @995
P95
Dest Hio:20
0=
perform awarm-hoot
operation on the
module
WARMEOOT
B30
iy
1
nnoz END "—
ProSoft Technology, Inc. Page 95 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Creating Ladder Logic
Application Development Module

6.5 MVI94 Ladder Logic

6.5.1 Main Routine

| ISE.
tHEHH Jump To Subrovtine
‘ Prog File Number 3
Block Transfer Data From The MVIS4-ADM Database To The Procassor.
Block Transfer Read Block Transfar Read
Writs OK Flaz =~ Read OKFlaz Enable From Moduls
N7:420 NT:420 N7:400 —BTE

BN T——
002 = DN ==
£ pom-

4 E 3£ 1 E

Length g
Continvous No
Satup Scrzen

Test Block ID To Se= If It Is A New Block Of Data.
Block Transfer Read

Write OK Flag Read OK Flag Done Read Block ID Read Block ID Read OK Flag
NT:420 NT:420 N7:400 Q GRT N7:420
=-F =-F J E 2r Than (A>B) g
1 0 13 N7:410 =4 N7ALD 0
81« 81<
ues B NT421 vece B
81< <

Page 96 of 318 ProSoft Technology, Inc.
December 12, 2006

Creating Ladder Logic MVI-ADM e 'C' Programmable
Application Development Module

Use The Block ID To Caleslate An Indexx. Use This Index To Stors The Data From The MVIS4-ADM In The Processor’s Memory.

Raad OK Flag Raad Data Index
N7:420 c2T
0002 1 E Comguts
0 Dest N7

Exprassion (N7410-1)

Read Data Index Data Storazz Index
GRT LPT
— Than (4B} Compute —
N70 Deast N72
120= 444
Source B 145 Exprassion N70- 150
148<
Read Block ID Ezad Data
-LIM CoP
1 Limit T=st Copy Fil= —
LowLim 41
t &
Tast Length
High Lim

Next Write Block ID

MOV

‘Warm Boot Enable
B3:1
JE
1

Writs OK Flaz
N7:420
1

Read OK Flag
NT420

ProSoft Technology, Inc. Page 97 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable

Application

Development Module

Creating Ladder Logic

Block Transfer Write
Writs OK Flaz ~ Enable Writ Data Index:
N7:420 N7:300 coT
0003 1 F 3-F Compute
1 15 Dast
Exprsssion (N7:310-1
Next Weitz Block ID Wit Data To Modulz
1M
f——— Limit Test
LowLim 0
0< 1
Test N7:310 Length 6
424
High Lim 00
0=
Next Weitz Block ID Waem Boot Ensble
LM Bil
——— Limit Tzst U
Low Lim 5838 0
9998
Text §7:310
42=
HighLim 5999
5999<
Block Transfer Write
To Mods
Transfer Write = EN =
Typs Generic Block Transfar
002 —DNI—
Group 0
Module 0 —CERT}—
Contrsl Block N7:300
Datz Fils 7310
Lanzta 7
Continuous No
Sztup Serzen
Re-znable The Bead When The Write Iz Completed.
Bloclk Transfer Write
Dons Write OK Flag
7300 NTA420
nond q E q E
il a1 C a1 C

Write Data From The Processor To The MVIS4-ADM Database Using The Block ID To Index The Data.

13 1

Page 98 of 318

ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

7 Application Development Function Library:
ADM API

In This Chapter

» ADM API FUNCHONScoiiiiiiiiiiiic e 99
» ADM API Initialization FUNCHiONScccooeiiiiiiiiiiiiceiieee 102
» ADM API Debug Port FUNCtions..........cccccevvviviiiiiiiiiieceeeee, 104
> ADM API Database Functions............c.cccevvveiieeniicnieenieee 111
» ADM API Clock FUNCHONScccueiiiiiiiieniec e 146
» ADM API Backplane Functionsc.cccccccveveveviiiiiiiiececeeeee, 148
> ADM LED FUNCHONS.....ccociiiiiiiie e 155
> ADM API Flash FUNCLIONScooviiiiiiiiiice e 156
> ADM API Miscellaneous FUNCLONScccocveveiiieiciniinenns 164
» ADM Side-Connect FUNCLONScceeviiiieiiiiiieieee e 167
» ADM APl RAM FUNCHONS ...ccuviiiiiiiiicrieesiee e 172

7.1 ADM API Functions

This section provides detailed programming information for each of the ADM API
library functions. The calling convention for each API function is shown in C
format.

The same set of API functions is supported for all of the modules in the MVI
family. Differences between modules are noted where appropriate.

The API library routines are categorized according to functionality as shown in
the following table.

Function Category Function Name Description

Initialization ADM_Open Initialize access to the API
ADM_Close Terminate access to the API

Debug Port ADM_ProcessDebug Debug port user interface
ADM_DAWriteSendCtl Writes a data analyzer Tx control symbol
ADM_DAWriteRecvCtl Writes a data analyzer Rx control symbol

ADM_DAWriteSendData Writes a data analyzer Tx data byte

ProSoft Technology, Inc. Page 99 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable

Application Development Module

Application Development Function Library: ADM API

Function Category

Function Name

Description

ADM_DAWriteRecvData

Writes a data analyzer Rx data byte

ADM_ConPrint

Outputs characters to Debug port

ADM_CheckDBPort

Checks for character input on Debug port

Database

ADM_DBOpen Initializes database
ADM_DBClose Closes database
ADM_DBZero Zeros database

ADM_DBGetBit

Read a bit from the database

ADM_DBSetBit

Write a 1 to a bit to the database

ADM_DBClearBit

Write a 0 to a bit to the database

ADM_DBGetByte

Read a byte from the database

ADM_DBSetByte

Write a byte to the database

ADM_DBGetWord

Read a word from the database

ADM_DBSetWord

Write a word to the database

ADM_DBGetlLong

Read a double word from the database

ADM_DBSetlLong

Write a double word to the database

ADM_DBGetFloat

Read a floating-point number from the
database

ADM_DBSetFloat

Write a floating-point number to the database

ADM_DBGetDFloat

Read a double floating-point number from the
database

ADM_DBSetDFloat

Write a double floating-point number to the
database

ADM_DBGetBuff

Reads a character buffer from the database

ADM_DBSetBuff

Writes a character buffer to the database

ADM_DBGetRegs

Read multiple word registers from the
database

ADM_DBSetRegs

Write multiple word registers to the database

ADM_DBGetString

Read a string from the database

ADM_DBSetString

Write a string to the database

ADM_DBSwapWord

Swaps bytes within a word in the database

ADM_DBSwapDWord

Swaps bytes within a double word in the
database

ADM_GetDBCptr

Get a pointer to a character in the database

ADM_GetDBIptr

Get a pointer to a word in the database

ADM_GetDBInt

Returns an integer from the database

ADM_DBChanged

Tests a database register for a change

ADM_DBBitChanged

Tests a database bit for a change

ADM_DBOR_Byte

Inclusive OR a byte with a database byte

ADM_DBNOR_Byte

Inclusive NOR a byte with a database byte

ADM_DBAND_Byte

AND a byte with a database byte

ADM_DBNAND_Byte

NAND a byte with a database byte

ADM_DBXOR_Byte

Exclusive OR a byte with a database byte

Page 100 of 318

ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API

MVI-ADM e 'C' Programmable
Application Development Module

Function Category

Function Name

Description

ADM_DBXNOR_Byte

Exclusive NOR a byte with a database byte

Timer ADM_StartTimer Initialize a timer
ADM_CheckTimer Check current timer value

Backplane ADM_BtOpen Opens and initializes backplane interface
ADM_BtClose Closes backplane interface
ADM_BtNext Sets next write block number
ADM_ReadBtCfg Reads configuration from the processor
ADM_BtFunc Handles backplane transfers
ADM_SetStatus Writes status to Error/Status table
ADM_SetBtStatus Writes status to processor

LED ADM_SetlLed Turn user LED indicators on or off

Flash ADM_FileGetString Searches for a string in a config file

ADM _FileGetint

Searches for an integer in a config file

ADM_FileGetChar

Searches for a char in a config file

ADM_GetVal Gets an integer from a buffer
ADM_GetStr Gets a string from a buffer
ADM_Getc Gets a char from a buffer

ADM_SkipToNext

Skips white space

Miscellaneous

ADM_GetVersionInfo

Get the ADM API version information

ADM_SetConsolePort

Enable the console on a port

ADM_SetConsoleSpeed

Set the console port baud rate

Side Connect

ADM_ScOpen Open and initializes the side-connect
interface
ADM_ScClose Close the side-connect interface

ADM_ReadScFile

Read SC_DATA.TXT file from the C drive
on a Compact Flash in the module to select
between using backplane or side-connect
interface

ADM_ReadScCfg

Read configuration from the processor

ADM_ScScan Handles side-connect transfer
RAM ADM_EEPROM_Read Read configuration file
Configuration

ADM_RAM_Find_Section

Find section in the configuration file

ADM_RAM_GetString

Get string under topic name

ADM_RAM_GetlInt

Get integer under topic name

ADM_RAM_GetlLong

Get Long under topic name

ADM_RAM_GetFloat

Get Float under topic name

ADM_RAM_GetDouble

Get Double under topic name

ADM_RAM_GetChar

Get Char under topic name

ProSoft Technology, Inc.

December 12, 2006

Page 101 of 318

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM API Initialization Functions

ADM_Open

Syntax
int ADM_Open(ADMHANDLE *adm_handle);

Parameters
adm_handle Pointer to variable of type ADMHANDLE

Description

ADM_Open acquires access to the ADM API and sets adm_handle to a unique
ID that the application uses in subsequent functions. This function must be called
before any of the other API functions can be used.

IMPORTANT: After the API has been opened, ADM_Close should always be
called before exiting the application.

Return Value

ADM_SUCCESS API| was opened successfully
ADM_ERR_REOPEN APl is already open
ADM_ERR_NOACCESS API cannot run on this hardware
Note: ADM_ERR_NOACCESS will be returned if the hardware is not from
ProSoft Technology.
Example
ADMHANDLE adm_handle;
iT(ADM_Open(&adm_handle) != ADM_SUCCESS)
{
printf('\nFailed to open ADM API... exiting program\n');
exit(l);
}
See Also

ADM_Close (page 103)

Page 102 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_Close

Syntax
int ADM_Close(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function is used by an application to release control of the API. adm_handle
must be a valid handle returned from ADM_Open.

IMPORTANT: After the API has been opened, this function should always be
called before exiting the application.

Return Value

ADM_SUCCESS API was closed successfully
ADM_ERR_NOACCESS adm_handle does not have access
Example

ADMHANDLE adm_handle;

ADM_Close(adm_handle);

See Also
ADM_Open (page 102)

ProSoft Technology, Inc. Page 103 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM API Debug Port Functions

ADM_ProcessDebug

Syntax
int ADM_ProcessDebug(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function provides a module user interface using the debug port. adm_handle
must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access or user pressed ESC to exit
program

Example

ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM__INTERFACE interface;

interface_ptr = &interface;
ADM_ProcessDebug(adm_handle, interface ptr);

Page 104 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API

ADM_DAWriteSendCtl

Syntax

int ADM_DAWriteSendCtl (ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,

int app_port, int marker);

Parameters

adm_handle

Handle returned by previous call to ADM_Open

adm_interface_ptr

Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced
marker Flow control symbol to output to the data analyzer screen
Description

This function may be used to send a transmit flow control symbol to the data
analyzer screen. The control symbol will appear between two angle brackets:

<R+>, <R->, <CS>.

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF <R->

RTSON <R+>
CTSRCV <CS>
MVI194 Note

Only application port 0 is valid for the MV194.

Return Value

MVI_SUCCESS

No errors were encountered

MVI_ERR_NOACCESS

adm_handle does not have access

MVI_ERR_BADPARAM

Value of marker is not valid

Example

ADMHANDLE adm_|

ADM_INTERFACE
ADM_INTERFACE
interface_ptr =

handle;
*interface_ptr;
interface;
&interface;

ADM_DAWriteSendCtl (adm_handle, interface_ptr, app_port, RTSON);

See Also

ADM_DAWTriteRecvCtl (page 106)

ProSoft Technology, Inc.
December 12, 2006

Page 105 of 318

MVI-ADM e 'C' Programmable
Application Development Module

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DAWriteRecvCitl

Syntax

int ADM_DAWriteRecvCtl (ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,
int app_port, int marker);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

marker Flow control symbol to output to the data analyzer screen

Description

This function may be used to send a receive flow control symbol to the data
analyzer screen. The control symbol will appear between two square brackets:
[R+], [R-], [CS].

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF [R-]
RTSON [R+]
CTSRCV [CS]
MVI194 Note

Only application port 0 is valid for the MV194.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access
MVI_ERR_BADPARAM Value of marker is not valid
Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

interface_ptr = &interface;
ADM_DAWriteRecvCtl (adm_handle, interface_ptr, app_port, RTSON);

See Also
ADM_DAWTriteSendCtl (page 105)

Page 106 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DAWriteSendData

Syntax

int ADM_DAWriteSendData(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ ptr,
int app_port, int length, char *data_buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

length The number of data characters to send to the data analyzer

data_buff The buffer holding the transmit data

Description

This function may be used to send transmit data to the data analyzer screen. The
data will appear between two angle brackets: <data>.

adm_handle must be a valid handle returned from ADM_Open.

MVI94 Note
Only application port 0 is valid for the MV194.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access
Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_PORT ports[MAX_APP_PORTS] ;

Int app_port;

ADM__INTERFACE interface;

interface_ptr = &interface;
ADM_DAWriteSendData(adm_handle, interface ptr, app_port, ports[app_port].len,
ports[app_port].buff);

See Also
ADM_DAWriteRecvData (page 108)

ProSoft Technology, Inc. Page 107 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DAWriteRecvData

Syntax

int ADM_DAWriteRecvData(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ ptr,
int app_port, int length, char *data_buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

length The number of data characters to send to the data analyzer

data_buff The buffer holding the receive data

Description

This function sends receive data to the data analyzer screen. The data will
appear between two square brackets: [data].

adm_handle must be a valid handle returned from ADM_Open.

MVI94 Note
Only application port 0 is valid for the MV194.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access
Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_PORT ports[MAX_APP_PORTS];

Int app_port;

ADM__INTERFACE interface;

interface_ptr = &interface;
ADM_DAWriteRecvData(adm_handle, interface_ptr, app_port, ports[app_port].len,
ports[app_port].buff);

See Also
ADM_DAWriteSendData (page 107)

Page 108 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_ConPrint

Syntax
int ADM_ConPrint(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function outputs characters to the debug port. This function will buffer the
output and allow other functions to run. The buffer is serviced with each call to
ADM_ProcessDebug and can be serviced by the user's program. When sending
data to the debug port, if printf statements are used, other processes will be held
up until the printf function completes execution. Two variables in the interface
structure must be set when data is loaded. The first, buff_ch is the offset of the
next character to print. This should be set to 0. The second is buff_len. This
should be set to the length of the string placed in the buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_ERR_NOACCESS adm_handle does not have access
Number of characters left in the buffer

Example

ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_INTERFACE interface;

interface_ptr = &interface;
sprintf(interface.buff,""MVI ADM\n');

interface.buff _ch = 0;

interface.buff_len = strlen(interface.buff);
/* write buffer to console */

while(interface.buff_len)

{
interface.buff_len = ADM_ConPrint(adm_handle, interface_ ptr);
}
ProSoft Technology, Inc. Page 109 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_CheckDBPort

Syntax
int ADM_CheckDBPort(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function checks for input characters on the debug port. adm_handle must be
a valid handle returned from ADM_Open.

Return Value

ADM_ERR_NOACCESS adm_handle does not have access
Returns the character input to the debug port

Example

int key;
key = ADM_CheckDBPort(adm_handle);
printf("'key = %i\n", key);

Page 110 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM API| Database Functions

ADM_DBOpen

Syntax
int ADM_DBOpen(ADMHANDLE adm_handle, unsigned short max_size)

Parameters

adm_handle Handle returned by previous call to ADM_Open
max_size Maximum number of words in the database
Description

This function creates a database in the RAM area of the MVI module.

adm_handle must be a valid handle returned from ADM_Open.

MVI194 Note: The maximum number of database registers in the MVI94 is
limited to 3996.

MVI156 Note: The maximum number of database registers in the MVI56 is
limited to 7000.

MVI146 Note: The maximum number of database registers in the MVI46 is
limited to 10000.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_DB_MAX_SIZE max_size has exceeded the maximum allowed
ADM_ERR_REG_RANGE max_size requested was zero

ADM_ERR_OPEN Database already created
ADM_ERR_MEMORY Insufficient memory for database
Example

ADMHANDLE adm_handle;

i F(ADM_DBOpen(adm_handle, ADM_MAX_DB_REGS) != ADM_SUCCESS)
printf(""Error setting up Database!\n');

See Also
ADM_DBClose (page 112)

ProSoft Technology, Inc. Page 111 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBClose

Syntax
int ADM_DBClose(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description
This function closes a database previously created by ADM_DBOpen.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
Example

ADMHANDLE adm_handle;

ADM_DBClose(adm_handle);

See Also
ADM_DBOpen (page 111)

Page 112 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBZero

Syntax
int ADM_DBZero(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description
This function writes zeros to a database previously created by ADM_DBOpen.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
Example

ADMHANDLE adm_handle;

ADM_DBZero(adm_handle);

See Also
ADM_DBOpen (page 111)

ProSoft Technology, Inc. Page 113 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBGetBit

Syntax
int ADM_DBGetBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description

This function reads a bit from the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested bit

ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;
unsigned short offset;
iT(ADM_DBGetBit(adm_handle, offset))
printf('bit is set");
else
printf("bit is clear™);

Page 114 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBSetBit

Syntax
int ADM_DBSetBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description

This function sets a bit to a 1 in the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;
unsigned short offset;
ADM_DBSetBit(adm_handle, offset);

See Also
ADM_DBClearBit (page 116)

ProSoft Technology, Inc. Page 115 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBClearBit

Syntax
int ADM_DBClearBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description

This function clears a bit to a 0 in the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;
unsigned short offset;
ADM_DBClearBit(adm_handle, offset);

See Also
ADM_DBSetBit (page 115)

Page 116 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBGetByte

Syntax
char ADM_DBGetByte(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database

Description

This function reads a byte from the database at a specified byte offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested byte

Example

ADMHANDLE adm_handle;
unsigned shor offset;
int i;

i = ADM_DBGetByte(adm_handle, offset);

See Also
ADM_DBSetByte (page 118)

ProSoft Technology, Inc. Page 117 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBSetByte

Syntax
int ADM_DBSetByte(ADMHANDLE adm_handle, unsigned short offset, const char val)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database

val Value to be written to the database
Description

This function writes a byte to the database at a specified byte offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;
unsigned short offset;
const char val ;

ADM_DBSetByte(adm_handle, offset, val);

See Also
ADM_DBGetByte (page 117)

Page 118 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBGetWord

Syntax
int ADM_DBGetWord(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description

This function reads a word from the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested word

Example

ADMHANDLE adm_handle;
unsigned shor offset;
int i;

i = ADM_DBGetWord(adm_handle, offset);

See Also
ADM_DBSetWord (page 120)

ProSoft Technology, Inc. Page 119 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBSetWord

Syntax
int ADM_DBSetWord(ADMHANDLE adm_handle, unsigned short offset, const short val)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

val Value to be written to the database
Description

This function writes a word to the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;
unsigned short offset;
const short val ;

ADM_DBSetWord(adm_handle, offset, val);

See Also
ADM_DBGetWord (page 119)

Page 120 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBGetLong

Syntax
long ADM_DBGetLong(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Long int offset into database

Description

This function reads a long int from the database at a specified long int offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested long int

Example

ADMHANDLE adm_handle;
unsigned short offset;
long 1;

1 = ADM_DBGetLong(adm_handle, offset);

See Also
ADM_DBSetLong (page 122)

ProSoft Technology, Inc. Page 121 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBSetLong

Syntax
int ADM_DBSetLong(ADMHANDLE adm_handle, unsigned short offset, const long val)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Long int offset into database

val Value to be written to the database
Description

This function writes a long int to the database at a specified long int offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;
unsigned short offset;
const long val ;

ADM_DBSetLong(adm_handle, offset, val);

See Also
ADM_DBGetLong (page 121)

Page 122 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBGetFloat

Syntax
float ADM_DBGetFloat(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset float offset into database

Description

This function reads a floating-point number from the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested floating-point number.

Example

ADMHANDLE adm_handle;
unsigned short offset;
float f;

T = ADM_DBGetFloat(adm_handle, offset);

See Also
ADM_DBSetFloat (page 124)

ProSoft Technology, Inc. Page 123 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBSetFloat

Syntax
int ADM_DBSetFloat(ADMHANDLE adm_handle, unsigned short offset, const float val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset float offset into database

val Value to be written to the database

Description

This function writes a floating-point number to the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;
unsigned short offset;
const float val;

ADM_DBSetFloat(adm_handle, offset, val);

See Also
ADM_DBGetFloat (page 123)

Page 124 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBGetDFloat

Syntax
double ADM_DBGetDFloat(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset double float offset into database
Description

This function reads a double floating-point number from the database at a
specified double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested double floating-point number

Example

ADMHANDLE adm_handle;
unsigned short offset;
double d;

d = ADM_DBGetDFloat(adm_handle, offset);

See Also
ADM_DBSetDFloat (page 126)

ProSoft Technology, Inc. Page 125 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBSetDFloat

Syntax

int ADM_DBSetDFloat(ADMHANDLE adm_handle, unsigned short offset, const double
val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset double float offset into database

val Value to be written to the database

Description

This function writes a double floating-point number to the database at a specified
double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;
unsigned short offset;
const double val;

ADM_DBSetDFloat(adm_handle, offset, val);

See Also
ADM_DBGetDFloat (page 125)

Page 126 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBGetBuff

Syntax

char * ADM_DBGetBuff(ADMHANDLE adm_handle, unsigned short offset, const unsigned
short count, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
count Number of characters to retrieve

str String buffer to receive characters

Description

This function copies a buffer of characters in the database to a character buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short char_count;

char *string_buff;

ADM_DBGetBuff(adm_handle, offset, char_count, string_buff);

See Also
ADM_DBSetBuff (page 128)

ProSoft Technology, Inc. Page 127 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBSetBuff

Syntax

int ADM_DBSetBuff(ADMHANDLE adm_handle, unsigned short offset, const unsigned
short count, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
count Number of characters to write

str String buffer to copy characters from
Description

This function copies a buffer of characters to the database.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

NULL adm_handle has no access, the database is not allocated, or
count + offset is beyond the max size of the database

Characters from buffer

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short char_count;

char *string_buff = "MVI ADM";

char_count = strlen(string_buff);
ADM_DBSetBuff(adm_handle, offset, char_count, string_buff);

See Also
ADM_DBGetBuff (page 127)

Page 128 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBGetRegs

Syntax

unsigned short * ADM_DBGetRegs(ADMHANDLE adm_handle, unsigned short offset,
const unsigned short count, unsigned short * buff)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
count Number of integers to retrieve

buff Register buffer to receive integers

Description

This function copies a buffer of registers in the database to a register buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.

Returns buff if successful.

Example

ADMHANDLE adm_handle;
unsigned short offset;
const unsigned short reg_count;
unsigned short *reg_buff;

ADM_DBGetRegs(adm_handle, offset, reg_count, reg_buff);

See Also
ADM_DBSetRegs (page 130)

ProSoft Technology, Inc. Page 129 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBSetRegs

Syntax

int ADM_DBSetRegs(ADMHANDLE adm_handle, unsigned short offset, const unsigned
short count, unsigned short * buff)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
count Number of integers to write

buff Register buffer from which integers are copied
Description

This function copies a buffer of registers to the database.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short reg_count;

unsigned short *reg_buff;

ADM_DBSetRegs(adm_handle, offset, reg_count, reg_buff);

See Also
ADM_DBGetRegs (page 129)

Page 130 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBGetString

Syntax

char * ADM_DBGetString(ADMHANDLE adm_handle, unsigned short offset, const
unsigned short maxcount, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
maxcount Maximum number of characters to retrieve

str String buffer to receive characters

Description

This function copies a string from the database to a string buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.

Returns str if string is copy is successful.

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short maxcount;

char *string_buff;
ADM_DBGetString(adm_handle, offset, maxcount, str);

See Also
ADM_DBSetString (page 132)

ProSoft Technology, Inc. Page 131 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBSetString

Syntax

int ADM_DBSetString(ADMHANDLE adm_handle, unsigned short offset, const unsigned
short maxcount, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
maxcount Maximum number of characters to write

str String buffer to copy string from

Description

This function copies a string to the database from a string buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short maxcount;

char *string_buff;

ADM_DBSetString(adm_handle, offset, maxcount, str);

See Also
ADM_DBGetString (page 131)

Page 132 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBSwapWord

Syntax
int ADM_DBSwapWord(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database where swapping is to be performed
Description

This function swaps bytes within a database word.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBSwapWord(adm_handle, offset);

ProSoft Technology, Inc. Page 133 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBSwapDWord

Syntax
int ADM_DBSwapDWord(ADMHANDLE adm_handle, unsigned short offset, int type)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset long offset into database where swapping is to be performed
type If type = 3 then bytes will be swapped in pairs within the long.
Description

This function swaps bytes within a database long word.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBSwapDWord(adm_handle, offset, 3);

Page 134 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_GetDBCptr

Syntax
char * ADM_GetDBCptr (ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description

This function obtains a pointer to char corresponding to the database + offset
location. Because offset is a word offset, the pointer will always reference a
character on a word boundary.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.

Returns pointer to char if successful.

Example

ADMHANDLE adm_handle;
int offset;

char C;

c = *(ADM_GetDBCptr(adm_handle, offset));

ProSoft Technology, Inc. Page 135 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_GetDBIptr

Syntax
int * ADM_GetDBIptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains a pointer to int corresponding to the database + offset
location.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.

Returns pointer to int if successful.

Example

ADMHANDLE adm_handle;
int offset;

int i;

i = *(ADM_GetDBIptr(adm_handle, offset));

Page 136 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_GetDBInt

Syntax
int ADM_GetDBIptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description

This function obtains an int corresponding to the database + offset location.
adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns 0 if not successful.

Returns int requested if successful.

Example

ADMHANDLE adm_handle;
int offset;

int i;

i = ADM_GetDBInt(adm_handle, offset);

ProSoft Technology, Inc. Page 137 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBChanged

Syntax
int ADM_DBChanged(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description

This function checks to see if a register has changed since the last call to
ADM_DBChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

0 No change

1 Register has changed
Example

ADMHANDLE adm_handle;

int offset;

if(ADM_DBChanged(adm_handle, offset))
printf(*'Data has changed™);

else
printf(*'Data is unchanged");

Page 138 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBBitChanged

Syntax
int ADM_DBBitChanged(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description

This function checks to see if a bit has changed since the last call to
ADM_DBBitChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

0 No change

1 Bit has changed
Example

ADMHANDLE adm_handle;

int offset;

if(ADM_DBBitChanged(adm_handle, offset))
printf("'Bit has changed™);

else
printf(""Bit is unchanged™);

ProSoft Technology, Inc. Page 139 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBOR_Byte

Syntax
int ADM_DBOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database

bval Bit mask to be ORed with the byte at offset
Description

This function ORs a byte in the database with a byte-long bit mask.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBOR_Byte(adm_handle, offset, bval);

Page 140 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBNOR_Byte

Syntax
int ADM_DBNOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database

bval Bit mask to be NORed with the byte at offset
Description

This function NORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBNOR_Byte(adm_handle, offset, bval);

ProSoft Technology, Inc. Page 141 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBAND_Byte

Syntax
int ADM_DBAND_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database

bval Bit mask to be ANDed with the byte at offset
Description

This function ANDs a byte in the database with a byte-long bit mask.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBAND_Byte(adm_handle, offset, bval);

Page 142 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBNAND_Byte

Syntax
int ADM_DBNAND_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database

bval Bit mask to be NANDed with the byte at offset
Description

This function NANDs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBNAND_Byte(adm_handle, offset, bval);

ProSoft Technology, Inc. Page 143 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_DBXOR_Byte

Syntax
int ADM_DBXOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database

bval Bit mask to be XORed with the byte at offset
Description

This function XORs a byte in the database with a byte-long bit mask.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBXOR_Byte(adm_handle, offset, bval);

Page 144 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_DBXNOR_Byte

Syntax
int ADM_DBXNOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database

bval Bit mask to be XNORed with the byte at offset
Description

This function XNORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBXNOR_Byte(adm_handle, offset, bval);

ProSoft Technology, Inc. Page 145 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM API Clock Functions

ADM_StartTimer

Syntax
unsigned short ADM_StartTimer (ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

ADM_StartTimer can be used to initialize a variable with a starting time with the
current time from a microsecond clock. A timer can be created by making a call
to ADM_StartTimer and by using ADM_CheckTimer to check to see if timeout
has occurred. For multiple timers call ADM_StartTimer using a different variable
for each timer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Current time value from millisecond clock

Example
Initialize 2 timers.
ADMHANDLE adm_handle;

unsigned short timerl;
unsigned short timer2;

timerl = ADM_StartTimer(adm_handle);
timer2 = ADM_StartTimer(adm_handle);
See Also

ADM_CheckTimer (page 147)

Page 146 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_CheckTimer

Syntax

int ADM_CheckTimer (ADMHANDLE adm_handle, unsigned short *adm_tmlast, long
*adm_tmout)

Parameters

adm_handle Handle returned by previous call to ADM_Open.
adm_tmlast Starting time of timer returned from call to ADM_StartTimer.
adm_tmout Timeout value in microseconds.

Description

ADM_CheckTimer checks a timer for a timeout condition. Each time the function
is called, ADM_CheckTimer updates the current timer value in adm_tmlast and
the time remaining until timeout in adm_tmout. If adm_tmout is less than 0, then
a 1 is returned to indicate a timeout condition. If the timer has not expired, a 0 will
be returned.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Timer not expired.

Timer expired.

Example
Check 2 timers.

ADMHANDLE adm_handle;

unsigned short timerl;

unsigned short timer2;

long timeoutl;

long timeout?2;

timeoutl = 10000000L; /* set timeout for 10 seconds */
timerl = ADM_StartTimer(adm_handle);

/* wait until timer 1 times out */
while(YADM_CheckTimer(adm_handle, &timerl, &timeoutl))
timeout2 = 5000000L; /* set timeout for 5 seconds */
timer2 = ADM_StartTimer(adm_handle);

/* wait until timer 2 times out */
while(YADM_CheckTimer(adm_handle, &timer2, &timeout2))

See Also
ADM_StartTimer (page 146)

ProSoft Technology, Inc. Page 147 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM API Backplane Functions

ADM_BtOpen

Syntax

int ADM_BtOpen(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function opens and initializes the backplane interface.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
Backplane error number If there is an error writing to the backplane during initialization,

the error code is returned.

Example

ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
int verbose = 1;
ADM_INTERFACE interface;
interface_ptr = &interface;
ADM_BtOpen(adm_handle, interface_ptr, verbose);

See Also
ADM_BtClose (page 149)

Page 148 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_BtClose

Syntax
int ADM_BtClose(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function closes the backplane interface.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

interface_ptr = &interface;
ADM_BtClose(adm_handle, interface_ptr);

See Also
ADM_BtOpen (page 148)

ProSoft Technology, Inc. Page 149 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_BtNext

Syntax
int ADM_BtNext(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function sets the next write block number.

MVI156 Note

If the write block is equal to the maximum write block, the next write block will be
set to 1. If the maximum is 1, the next write block will be 0. If the maximum is 0,
then the next write block will be —1.

MV194 Note

If the write block is equal to the maximum write block, the next write block will be
setto 1.

MVI169 Note

If the write block is equal to the maximum write block, the next write block will be
set to 0. If the maximum is 0, the next write block will be —1.

MV146 Note
This is a null function for the MVI46.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_NOTSUPPORTED Function is not supported on this platform

Example

ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_INTERFACE interface;

interface_ptr = &interface;
ADM_BtNext(adm_handle, interface_ptr);

See Also
ADM_BtOpen (page 148)

Page 150 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_ReadBtCfg

Syntax

int ADM_ReadBtCfg(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function reads the module configuration from the processor. The function
will make a call to the function pointed to by interface.process_cfg_ptr.
The user function can be used to perform boundary checking on the
configuration parameters.

MVI169 Note
This is a null function for the MVI69.

MVI194 Note
This function is a null function for the MV194.

Return Value:

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access, or configuration was
interrupted by operator.

ADM_ERR_NOTSUPPORTED This function is not supported on this platform

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM__INTERFACE interface;

interface_ptr = &interface;
ADM_ReadBtCfg(adm_handle, interface_ptr, verbose);

See Also
ADM_BtOpen (page 148)

ProSoft Technology, Inc. Page 151 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_BtFunc

Syntax

int ADM_BtFunc(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function handles the transfer of data across the backplane.

Return Value

0 Block transfer was successful
1 Invalid block number received
Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

interface_ptr = &interface;
/* call backplane transfer logic */
ADM_BtFunc(adm_handle, interface_ptr, verbose);

See Also
ADM_BtOpen (page 148)

Page 152 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable

Application Development Module

ADM_SetStatus

Syntax

int ADM_SetStatus(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int
pass_cnt)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr

Pointer to ADM_INTERFACE structure to allow API access to structures

pass_cnt

Counter from user code to indicate module health. This counter could be
updated in the main loop of the program.

Description

This function writes status data to the database at the location set by Error/Status
Pointer in the module configuration. The data is written in the following order:

pass_cnt (in the ADM_INTERFACE structure)

ADM_PRODUCT (structure)

ADM_PORT_ERRORS (structure, 1 time for each application port)
ADM_BLK_ERRORS (structure)

Return Value

ADM_SUCCESS

The function has completed successfully.

ADM_ERR_NOACCESS adm_handle does not have access
Example
ADMHANDLE adm_handle;

ADM__INTERFACE

*interface_ptr;

int pass_cnt;

ADM__INTERFACE

interface_ptr

interface;
= &interface;

ADM_SetStatus(adm_handle, interface_ptr, interface.pass_cnt);

See Also

ADM_SetBtStatus (page 154)

ProSoft Technology, Inc.

December 12, 2006

Page 153 of 318

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_SetBtStatus

Syntax
int ADM_SetBtStatus(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int
pass_cnt)
Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to structures
pass_cnt Counter from user code to indicate module health. This counter could be
updated in the main loop of the program.
Description

In the MV156, this function writes status data to the processor at word 202 in the
input image and to the database at location 6670. The data is written in the
following order:

pass_cnt (in the ADM_INTERFACE structure)

ADM_PRODUCT (structure)

ADM_PORT_ERRORS (structure, 1 time for each application port)
ADM_BLK_ERRORS (structure)

CurErr (port 1, from ADM_PORT structure)

LastErr (port 1, from ADM_PORT structure)

CurErr (port 2, from ADM_PORT structure)

LastErr (port 2, from ADM_PORT structure)

MV194 Note: This function is a null function for the MV194.
MVI146 Note: This function is a null function for the MVI146.

Return Value:

ADM_SUCCESS The function has completed successfully.
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_NOTSUPPORTED This function is not supported on this platform
Example

ADMHANDLE adm_handle;

ADM__INTERFACE *interface_ptr;

int pass_cnt;

ADM_INTERFACE interface;
interface_ptr = &interface;
ADM_SetBtStatus(adm_handle, interface_ptr, interface.pass_cnt);

See Also
ADM_SetStatus (page 153)

Page 154 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM LED Functions

ADM_SetlLed

Syntax

int ADM_SetLed(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr, int led,
int state);

Parameters

adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to the interface structure

led Specifies which of the user LED indicators is being addressed
state Specifies whether the LED will be turned on or off
Description

ADM_SetlLed allows an application to turn the user LED indicators on and off.
adm_handle must be a valid handle returned from ADM_Open.

led must be setto ADM_LED USER1, ADM_LED_USER2 or
ADM_LED_STATUS for User LED 1, User LED 2 or Status LED, respectively.

state must be set to ADM_LED OK, ADM_LED_FAULT to turn the Status LED
green or red, respectively. For User LED 1 and User LED 2 state must be set to
ADM_LED_OFF or ADM_LED_ON to turn the indicator On or Off, respectively.

Return Value

ADM_SUCCESS The LED has successfully been set.
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_BADPARAM led or state is invalid.

Example

ADMHANDLE adm_handle;

/* Set Status LED OK, turn User LED 1 off and User LED 2 on */

ADM_SetLed(adm_handle, interface_ptr, ADM_LED STATUS, ADM_LED_OK);
ADM_SetLed(adm_handle, interface ptr, ADM_LED USER1, ADM_LED OFF);
ADM_SetLed(adm_handle, interface_ptr, ADM_LED USER2, ADM_LED ON);

ProSoft Technology, Inc. Page 155 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM API Flash Functions

ADM_FileGetString

Syntax
char* ADM_FileGetString(ADMHANDLE adm_handle, char *SubSec, char *Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open
SubSec Subsection denoted by [].

Topic The individual line item under the subsection.
Description

ADM_FileGetString allows an application to fetch a string topic under a
subsection of a configuration file located in flash. This function is valid for MV194
only.

adm_handle must be a valid handle returned from ADM_Open.
SubSec must be a pointer to the subsection.

Topic must be a pointer to the topic.

Return Value:

Pointer to string where the data value starts. If the subsection is [Module] and the
topic is Module Name, then the pointer will point to the first non-space character
after the colon.

Example

Get the data from [Module]

Module Name: MV156-ADM

The return value will point to the "M" at the start of MVI56-ADM.

ADMHANDLE adm_handle;
char *cptr;
cptr = ADM_FileGetString(adm_handle, "[Module]', "Module Name'™);

See Also
ADM_FileGetint (page 157)

ADM_FileGetChar (page 158)

Page 156 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_FileGetInt

Syntax
unsigned int ADM_FileGetInt(ADMHANDLE adm_handle, char *SubSec, char *Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open
SubSec Subsection denoted by [].

Topic The individual line item under the subsection.
Description

ADM_FileGetint allows an application to fetch an integer topic under a
subsection of a configuration file located in flash. This function is valid for MV194
only.

adm_handle must be a valid handle returned from ADM_Open.
SubSec must be a pointer to the subsection.

Topic must be a pointer to the topic.

Return Value:

Integer data.

[Module]

Maximum Register 3996 #Maximum number of database registers

If the subsection is [Module] and the topic is Maximum Register, then the value
after the colon will be returned. In this example 3996 will be returned from the
function call.

Example
Get the data from [Module]
Maximum Register: 3996

The return value will be 3996.
ADMHANDLE adm_handle;

module._max_regs = ADM_FileGetInt(adm_handle, "[Module]™, **Maximum Register');

See Also
ADM_FileGetString (page 156)

ADM_FileGetChar (page 158)

ProSoft Technology, Inc. Page 157 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_FileGetChar

Syntax
char ADM_FileGetChar (ADMHANDLE adm_handle, char *SubSec, char *Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open
SubSec Subsection denoted by [].

Topic The individual line item under the subsection.
Description

ADM_FileGetChar allows an application to fetch a topic under a subsection of a
configuration file located in flash. This function is valid for MVI94 only.

adm_handle must be a valid handle returned from ADM_Open.
SubSec must be a pointer to the subsection.

Topic must be a pointer to the topic.

Return Value:
Character data.

'N' if no character found.

[Port]
Use CTS Line : N #Monitor CTS modem line (Y/N)

If the subsection is [Port] and the topic is Use CTS Line, then the value after the
colon will be returned. In this example N will be returned from the function call.

Example:
Get the data from [Port]
Use CTS Line: N

The return value will be N.
ADMHANDLE adm_handle;
ports[0].CTS = ADM_FileGetChar(adm_handle, "[Port]', "Use CTS Line');

See Also
ADM_FileGetString (page 156)

ADM_FileGetint (page 157)

Page 158 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_GetVal

Syntax
int ADM_GetVal (ADMHANDLE adm_handle, char *buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open
buff pointer to character buffer

Description

ADM_GetVal converts the first character in buff from ASCII to an integer.
adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a character buffer.

Return Value
Integer data.

Example:

ADMHANDLE adm_handle;
char *puffer;

int data_val;

data_val = ADM_GetVal(adm_handle, buffer);

See Also
ADM_GetChar (page 160)

ADM_GetStr (page 161)
ADM_Getc (page 163)

ProSoft Technology, Inc. Page 159 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_GetChar

Syntax
char ADM_GetChar (ADMHANDLE adm_handle, char *buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open
buff pointer to character buffer

Description

ADM_ GetChar will skip white space and return the first non-white space
character in uppercase.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a character buffer.

Return Value
Character data.

Example

ADMHANDLE adm_handle;
char *puffer;

char data_val;

data_val = ADM_GetChar(adm_handle, buffer);

See Also
ADM_GetVal (page 159)

ADM_GetStr (page 161)
ADM_Getc (page 163)

Page 160 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_GetStr

Syntax
int ADM_GetStr(ADMHANDLE adm_handle, char *buff, char *fbuff);

Parameters

adm_handle Handle returned by previous call to ADM_Open
buff pointer to source string buffer

fouff pointer to destination string buffer
Description

ADM_ GetStr copies characters from the source buffer to the destination buffer.
White space at the start of the string is discarded. The function will copy up to 9
characters until a space is encountered.

adm_handle must be a valid handle returned from ADM_Open.
buff must be a pointer to a string buffer.

Fbuff must be a pointer to a string buffer.

Return Value

ADM_SUCCESS The string has been successfully copied.
ADM_ERR_NOACCESS adm_handle does not have access
Example

ADMHANDLE adm_handle;

char *src_buffer;

char *dest_buffer;

ADM_GetStr(adm_handle, src_buffer, dest_buffer);

See Also
ADM_GetVal (page 159)

ADM_GetChar (page 160)
ADM_Getc (page 163)

ProSoft Technology, Inc. Page 161 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_SkipToNext

Syntax
char* ADM_SkipToNextl (ADMHANDLE adm_handle, char *buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open
buff pointer to string buffer

Description

ADM_SkipToNext skips characters encountered until white space is reached.
The white space is skipped. A pointer to the next non-white space character is
returned. If no character is found, null is returned.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a string buffer.

Return Value:
Pointer to char at start of next data.

NULL if no character found.

Example
ADMHANDLE adm_handle;
char *buffer;

buffer = ADM_SkipToNext(adm_handle, buffer);

Page 162 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_Getc

Syntax
char ADM_Getc(ADMHANDLE adm_handle, char *buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open
buff pointer to character buffer

Description

ADM_Getc skips white space and returns the next character.
adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a string buffer.

Return Value
Character data.

Example

ADMHANDLE adm_handle;
char *puffer;

char data val;

data_val = ADM_Getc(adm_handle, buffer);

See Also
ADM_GetStr (page 161)

ADM_GetVal (page 159)
ADM_GetChar (page 160)

ProSoft Technology, Inc. Page 163 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM API Miscellaneous Functions

ADM_GetVersionInfo

Syntax
int ADM_GetVersionInfo(ADMHANDLE adm_handle, ADMVERSIONINFO *adm_verinfo);

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_verinfo Pointer to structure of type ADMVERSIONINFO
Description

ADM_GetVersionInfo retrieves the current version of the ADM API library. The
information is returned in the structure adm_verinfo. adm_handle must be a valid
handle returned from ADM_Open.

The ADMVERSIONINFO structure is defined as follows:

typedef struct

{
char APlISeries[4];
short APIRevisionMajor;
short APIRevisionMinor;
long APIRun;

JADMVERSIONINFO;

Return Value

ADM_SUCCESS The version information was read successfully.
ADI_ERR_NOACCESS adm_handle does not have access
Example

ADMHANDLE adm_handle;

ADMVERSIONINFO verinfo;
/* print version of APl library */
ADM_GetVersioninfo(adm_handle, &adm_version);
printf("'Revision %d.%d\n", verinfo.APIRevisionMajor, verinfo.APIRevisionMinor);

Page 164 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_SetConsolePort

Syntax
void ADM_SetConsolePort(int Port);

Parameters
Port Com port to use as the console (COM1=0, COM2=1, COM3=2)

Description

ADM_SetConsolePort sets the specified communication port as the console. This
allows the console to be disabled in the BIOS setup and the application can still
configure the console for use.

MVI146 Note: The MVI46 should have the console disabled in the BIOS setup
in order for the module to avoid faulting the processor on power-on boot. The
console can still be used if the application uses ADM_SetConsolePort to
enable console services and ADM_SetConsoleSpeed to set the baud rate.

Return Value
None

Example

/* enable console on COM1 */
ADM_SetConsolePort(COM1);

See Also
ADM_SetConsoleSpeed (page 166)

ProSoft Technology, Inc. Page 165 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_SetConsoleSpeed

Syntax
void ADM_SetConsoleSpeed(int Port, long Speed);

Parameters

Port Com port to use as the console (COM1=0, COM2=1, COM3=2)

Speed Baud rate for console port.
Available settings are: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2400,
4800, 9600, 19200, 38400, 57600 and 115200.

Description

ADM_SetConsoleSpeed sets the specified communication port to the baud rate

specified.

MVI46 Note: The MVI46 should have the console disabled in the BIOS setup
in order for the module to avoid faulting the processor on power-on boot. The
console can still be used if the application uses ADM_SetConsolePort to
enable console services and ADM_SetConsoleSpeed to set the baud rate.

Return Value
None

Example

/* set console to 115200 baud */
ADM_SetConsoleSpeed (COM1, 115200L);

See Also
ADM_SetConsolePort (page 165)

Page 166 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM Side-Connect Functions

ADM_ScOpen

Syntax

int ADM_ScOpen(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function opens and initializes the side-connect interface.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_NOTSUPPORTED Function is not supported on this platform
Example

ADMHANDLE adm_handle;

ADM__INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

interface_ptr = &interface;
ADM_ScOpen(adm_handle, interface_ptr, verbose);

See Also
ADM_ScClose (page 168)

ProSoft Technology, Inc. Page 167 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_ScClose

Syntax
int ADM_ScClose(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures.

Description

This function closes the side-connect interface.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_NOTSUPPORTED Function is not supported on this platform
Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

interface_ptr = &interface;
ADM_ScClose(adm_handle, interface_ptr);

See Also
ADM_ScOpen

Page 168 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_ReadScFile

Syntax
int ADM_ReadScFile(ADMHANDLE adm_handle, int verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function reads SC_DATA.TXT file from C drive on a compact flash in the
module to select between using the backplane or the side-connect interface.

Return Value

>4 and <200 value for the side-connect used (valid value is 5-199).

0 value for the backplane used, value that is not between 5-199,
or if SC_DATA.TXT is not existed. Note: set verbose to 1 to see
message according to this return value.

ADM_ERR_NOACCESS adm_handle does not have access.

Example

ADMHANDLE adm_handle;

int verbose = 1;

ADM_INTERFACE interface;

interface.cfg_Ffile = ADM_ReadSCFile(adm_handle, verbose);

See Also
ADM_ScOpen (page 167)

ProSoft Technology, Inc. Page 169 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_ReadScCfg

Syntax

int ADM_ReadScCfg(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function reads the module configuration from the processor. The function
will directly read from the module file name according to what has been set in the
file SC_DATA.txt. The user function can be used to perform boundary checking
on the configuration parameters.

MVI71 Note
This function is used only for the MVI71.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access, or configuration was
interrupted by operator.

ADM_ERR_BADPARAM A parameter is invalid.

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

interface_ptr = &interface;
iT(ADM_ReadScCfg(adm_handle, interface ptr, 1))

{
printf(""ADM_ReadScCfg() failed.™);

return 1;

}

See Also
ADM_ScOpen (page 167)

Page 170 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_ScScan

Syntax

int ADM_ScScan(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function handles the transfer of data across the side-connect.

Return Value

0 Block transfer was successful
1 Invalid block number received
Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

interface_ptr = &interface;
/* call backplane transfer logic */
ADM_ScScan(adm_handle, interface_ptr, verbose);

See Also
ADM_ScOpen (page 167)

ProSoft Technology, Inc. Page 171 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM APl RAM Functions

ADM_EEPROM_ReadConfiguration

Syntax
long ADM_EEPROM_ReadConfiguration(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

ADM_EEPROM_ReadConfiguration read configuration information from a
configuration file located on the EEPROM.

Return Value
Length of the data read from the configuration file.

Example

if (YADM_EEPROM_ReadConfiguration(adm_handle)) //if no configuration data,
return

{
printf(""ERROR: No configuration return\n');
return (1);

}

See Also

Page 172 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_RAM_Find_Section

Syntax
char huge * ADM_RAM_Find_Section(ADMHANDLE adm_handle, char * SubSec);

Parameters

adm_handle Handle returned by previous call to ADM_Open

SubSec String of Sub-section that you'd like to find in the configuration file.
Description

ADM_RAM_Find_Section tries to find the section passed to the function.

Return Value
Pointer to the location found in the file or NULL if the sub-section is not found.

Example
if((tptr = ADM_RAM_Find_Section(adm_handle, "[Module]')) != NULL)

cptr = (char*)ADM_RAM_GetString(tptr, "Module Name');
if(cptr == NULL)

strcpy(module._name, "No Module Name');
else

{

strcpy(module.name, cptr);

}

See Also

ProSoft Technology, Inc. Page 173 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_RAM_GetString

Syntax

char huge ADM_RAM_GetString (ADMHANDLE adm_handle, char huge * mydata, char *
Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetString tries to find the Topic name passed to the function in the

file.

Return Value
Pointer to the string found in the file or NULL if the sub-section is not found.

Example

cptr = (char*)ADM_RAM_GetString(adm_handle, tptr, "Module Name'™);
if(cptr == NULL)
strcpy(module_name, "No Module Name™);
else
{
if(strlen(cptr) > 80)
*(cptr+80) = O;
strcpy(module_name, cptr);
if(module_name[strlen(module.name)-1] < 32)
module._name[strlen(module_name)-1] = O;

}

See Also

Page 174 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_RAM_GetInt

Syntax

unsigned short ADM_RAM_GetInt(ADMHANDLE adm_handle, char huge * mydata, char *
Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_Getlnt tries to find the Topic name passed to the function in the file.

Return Value

Value of type Integer found under the Topic name or 0 if the sub-section is not
found.

Example

module._err_offset = ADM_RAM_GetInt(adm_handle, tptr, 'Baud Rate'™);
if(module.err_offset < 0 || module.err_offset > module._max_regs-61)
{

_1;

0;

module.err_offset
module.err_freq

}

else

{
+

module.err_freq 500;

See Also

ProSoft Technology, Inc. Page 175 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_RAM_GetLong

Syntax

unsigned long ADM_RAM_GetLong (ADMHANDLE adm_handle, char huge * mydata, char *
Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetlLong tries to find the Topic name passed to the function in the

file.

Return Value

Value of a type Long found under the Topic name or 0 if the sub-section is not
found.

Example

module.err_offset = ADM_RAM_GetLong(adm_handle, tptr, "Baud Rate™);
if(module.err_offset < 0 || module.err_offset > module.max_regs-61)
{

_1;

0;

module.err_offset
module.err_freq

}

else

{
}

module.err_freq 500;

See Also

Page 176 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_RAM_GetFloat

Syntax
float ADM_RAM_GetFloat (ADMHANDLE adm_handle, char huge * mydata, char * Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetFloat tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Float found under the Topic name or 0 if the sub-section is not
found.

Example

module.time = ADM_RAM_GetFloat(adm_handle, tptr, "Time™);
if(module.time < O || module.time > module.max_regs-61)
{
module.time = -1;
module.err_freq

1}
o

}

else

{
}

module.err_freq 500;

See Also

ProSoft Technology, Inc. Page 177 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

ADM_RAM_GetDouble

Syntax
double ADM_RAM_GetDouble (ADMHANDLE adm_handle, char huge * mydata, char * Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetDouble tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Double found under the Topic nhame or O if the sub-section is not
found.

Example

module._time = ADM_RAM_GetDouble(adm_handle, tptr, "Time'™);
if(module.time < O || module.time > module.max_regs-61)
{
module.time = -1;
module.err_freq

1}
o

}

else

{
}

module.err_freq 500;

See Also

Page 178 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM e 'C' Programmable
Application Development Module

ADM_RAM_GetChar

Syntax

unsigned char ADM_RAM_GetChar (ADMHANDLE adm_handle, char huge * mydata, char *
Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetChar tries to find the Topic name passed to the function in the

file.

Return Value
Character found under the Topic name or '’ if the sub-section is not found.

Example

module._enable = ADM_RAM_GetChar(adm_handle, tptr, "Enable');
if(module.enable == = *)
{
modulle.time = -1;
module.err_freq

1}
o

}

else

{
+

module.err_freq 500;

See Also

ProSoft Technology, Inc. Page 179 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 180 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions

MVI-ADM e 'C' Programmable
Application Development Module

8 Backplane API Functions

In This Chapter

» Backplane API Initialization Functionsccccccoeiniee. 183
» Backplane API Configuration Functions..............ccccceonee. 185
» Backplane API Synchronization Functions.............ccceceeen. 189
> Backplane API Direct /0O ACCess........ccccociiiciieiiiciiieeee 193
» Backplane APl Messaging Functions..........cccccccvvvvveveienenn.n. 195
» Backplane APl Miscellaneous Functionscccccceeeeenn. 199
» Platform Specific FUNCHONS..........cocociiiiiiieiiiiieeee e 209

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in C

format.

The API library routines are categorized according to functionality as follows:

Initialization
MVIbp_Open

MVIbp_Close

Configuration
MVIbp_GetlOConfig

MVIbp_SetlOConfig

Synchronization
MVIbp_WaitForlnputScan

MVIbp_ WaitForOutputScan

Direct 1/0 Access
MVIbp_ReadOutputimage

MVIbp_Writelnputlmage

Messaging
MVIbp_ReceiveMessage

ProSoft Technology, Inc.
December 12, 2006

Page 181 of 318

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

MVIbp_SendMessage

Miscellaneous
MVIbp_GetVersioninfo

MVIbp_ErrorString
MVIbp_SetUserLED
MVIbp_SetModuleStatus
MVIbp_GetSetupMode
MVIbp_GetConsoleMode
MVIbp_SetConsoleMode
MVIbp_GetModulelnfo
MVIbp_GetProcessorStatus
MVIbp_Sleep

Platform Specific
MVIbp_WriteModuleFile

MVIbp_ReadModuleFile
MVIbp_SetModulelnterrupt

Page 182 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

Backplane API Initialization Functions

MVIbp_Open

Syntax
int MVIbp_Open(MVI_HANDLE *handle);

Parameters
handle Pointer to variable of type MVI_HANDLE

Description

MVIbp_Open acquires access to the API and sets handle to a unique ID that the
application uses in subsequent functions. This function must be called before any
of the other API functions can be used.

IMPORTANT: After the API has been opened, MVIbp Close should always be
called before exiting the application.

Return Value

MVI_SUCCESS API| was opened successfully

MVI_ERR_REOPEN APl is already open

MVI_ERR_NODEVICE Backplane driver could not be accessed
Note: MVI_ERR_NODEVICE will be returned if the backplane device driver is
not loaded.

Example

MVI1_HANDLE Handle;

if (MVlbp_Open(&Handle) = MVI_SUCCESS) {
printf("'Open failed!\n");

} else {
printf("'Open succeeded\n');

}

See Also
MVIbp_Close (page 184)

ProSoft Technology, Inc. Page 183 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

MVIbp_Close

Syntax
int MVIbp_Close(MVI_HANDLE handle);

Parameters
handle Handle returned by previous call to MVIbp_Open

Description
This function is used by an application to release control of the API.

handle must be a valid handle returned from MVIbp_Open.

IMPORTANT: After the API has been opened, this function should always be
called before exiting the application.

Return Value

MVI_SUCCESS API was closed successfully
MVI_ERR_NOACCESS handle does not have access
Example

MV1_HANDLE Handle;
MVIbp_Close(Handle);

See Also
MVIbp_Open (page 183)

Page 184 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

Backplane API Configuration Functions

MVIbp_GetlOConfig

Syntax
int MVIbp_GetlOConfig(MVI_HANDLE handle, MVIBPIOCONFIG *ioconfig);

Parameters

handle Handle returned by previous call to MVIbp_Open

ioconfig Pointer to MVIBPIOCONFIG structure to receive configuration
information

Description

This function obtains the 1/O configuration of the MVI module.
handle must be a valid handle returned from MVIbp Open.
The MVIBPIOCONFIG structure is defined as shown:

typedef struct tagMVIBPIOCONFIG

{
WORD TotallnputSize; // Size of entire input image in words
WORD TotalOutputSize; // Size of entire output image in words
WORD DirectlInputSize; // Input words available for direct access
WORD DirectOutputSize; // Output words available for direct access
WORD MsgRcvBufSize; // Max size in words for received messages
WORD MsgSndBufSize; // Max size in words for sent messages

} MVIBPIOCONFIG;

The sizes in words of the module's input and output images are returned in the
MVIBPIOCONFIG structure pointed to by ioconfig. The TotallnputSize and
TotalOutputSize members are set equal to the size of the entire input or output
image, respectively. The DirectlnputSize and DirectOutputSize members are set
equal to the number of words of the respective image that is available for direct
access via the MVIbp_Writelnputimage or MVIbpReadOutputimage functions. By
default, the direct and total sizes are equal. Refer to the MVIbp_SetlOConfig
function for more information.

The MsgRcvBufSize and MsgSndBufSize members indicate the maximum size in
words for received or sent messages, respectively. By default, these values are
both zero, indicating that messaging is disabled. Refer to the MVIbp_SetlOConfig
function for more information.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
ProSoft Technology, Inc. Page 185 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

Example
MVI_HANDLE handle;
MVIBPIOCONFIG ioconfig;

MVIbp_GetlOConfig(handle, &ioconfig);
printf("'%d words of input image available\n', ioconfig.DirectlnputSize);
printf(""%d words of output image available\n", ioconfig.DirectOutputSize);

See Also
MVIbp_SetlOConfig (page 187)

Page 186 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIbp_SetlOConfig

Syntax

int MVIbp_SetlOConfig(MVI_HANDLE handle, MVIBPIOCONFIG *ioconfig);

Parameters

handle Handle returned by previous call to MVIbp_Open

ioconfig Pointer to MVIBPIOCONFIG structure which contains
configuration information

Description

This function defines the portion of the module's 1/0 images that will be used for
direct I/O access, and to enable messaging.

handle must be a valid handle returned from MVIbp Open.

By default, all of the module's I/O image is available for direct I/O access, and
messaging is disabled. The MVIbp_SetlOConfig may be used to limit the amount
of I/O image available for direct access to only that which the application expects
to use. Attempts to access I/O outside of the range defined by this function will
result in an error.

If the application is to use the messaging functions (MVIbp_SendMessage and
MVIbp_ReceiveMessage), MVIbp_SetlOConfig must be called to enable
messaging and setup the maximum message size that will be allowed. The
message size is expressed in words.

The MVIBPIOCONFIG structure is defined as shown:

typedef struct tagMVIBPIOCONFIG

{
WORD TotallnputSize; // Size of entire input image in words
WORD TotalOutputSize; // Size of entire output image in words
WORD DirectlInputSize; // Input words available for direct access
WORD DirectOutputSize; // Output words available for direct access
WORD MsgRcvBufSize; // Max size in words for received messages
WORD MsgSndBufSize; // Max size in words for sent messages

} MVIBPIOCONFIG;

The TotallnputSize and TotalOutputSize members are ignored by the API, since
the total I/0 image sizes cannot be changed by the application. The
DirectlnputSize and DirectOutputSize members should be set equal to the
number of words of the respective image that will be used for direct access via
the MVIbp_Writelnputimage or MVIbpReadOutputimage functions.

To enable the module to receive messages from the control processor via the
MVIbp_ReceiveMessage function, the MsgRcvBufSize member should be set to
the maximum message size expected. Likewise, to enable the module to send
messages to the control processor via the MVIbp_SendMessage function, the
MsgSndBufSize member should be set to the maximum message size expected.
The message sizes are expressed in words. The combined maximum message
size is 2048 words. If the sum of MsgRcvBufSize and MsgSndBufSize exceeds
2048, the error MVI_ERR_BADCONFIG will be returned.

ProSoft Technology, Inc. Page 187 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

Notes: If messaging is enabled, a portion of the input and output images must
be reserved for use by the messaging protocol. One word of input and one
word of output are required for messaging control. At least one additional word
of input and/or output is required for messaging data, depending upon the
messaging direction(s) enabled. To receive messages from the control
processor, at least one word of output image is required for messaging data.
To send messages to the control processor, at least one word of input image is
required for messaging data. Therefore, for bi-directional messaging, at least
two words of input and two words of output image must be left unallocated
when the direct 1/O sizes are specified. If messaging is enabled and insufficient
I/O image is available for messaging, the error MVI_ERR_BADCONFIG will be
returned.

For best messaging performance, set the direct I/O sizes as small as possible.

MVI156 Note MVIbp_SetlOConfig is a null function in the MVI56 module. The
I/0O image and message maximum sizes are configured by the controller and
cannot be changed by the MVI application. This function will always return
MVI_ERR_NOTSUPPORTED on the MVI56 module.

MVI194, MVI146 Notes: This function defines the portion of the module's /O
images that will be used for direct I/0 access, and to enable messaging.

MVI146 Notes: Messaging requires 1 input image word and 1 output image
word for each direction of messaging. If both sending and receiving messages
are enabled, then 2 words total are required in the input and output images.
These words are used for handshaking between the module and the
Controller. To enable messaging, the DirectlnputSize and/or DirectOutputSize
values must be 1 or 2 words less than the TotallnputSize and/or
TotalOutputSize.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADCONFIG Configuration is not valid
MVI146_ERR_INVALIDCLASS Invalid Class (only for MV146)

MVI_ERR_NOTSUPPORTED MVI56 always returns this error (only for MVI56)

Example

MV1_HANDLE handle;

MVIBPIOCONFIG ioconfig;

ioconfig.DirectlnputSize = 2; // 2 words used for input
ioconfig.DirectOutputSize = 1; // 1 word used for output

MsgSndBufSize = 256; // Enable 256 word (max) messages to processor
MsgRcvBufSize = 0; // Received messages not enabled

if (MVI_SUCCESS != MVIbp_SetlOConfig(handle, &ioconfig))
printf("Error: 1/0 configuration failed\n™);

See Also
MVIbp_GetlOConfig (page 185)

Page 188 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

Backplane API Synchronization Functions

MVIbp_WaitForinputScan

Syntax
int MVIbp_WaitForlInputScan(MVI_HANDLE handle, WORD timeout);

Parameters
handle Handle returned by previous call to MVIbp_Open
timeout Maximum number of milliseconds to wait for scan
Description

MVIbp_WaitForlnputScan allows an application to synchronize with the scan of
the module's input image. This function will return immediately after the input
image has been read. This function may also be used by a module application to
determine if the Flex I/O bus is active.

handle must be a valid handle returned from MVIbp Open.

timeout specifies the number of milliseconds that the function will wait for the
input scan to occur.

Notes: There is no distinction in the MVI94 module between input and output
scans. Therefore, the MVIbp_WaitForlnputScan and
MVIbp_WaitForOutputScan functions will perform exactly the same function
and are interchangeable.

The scan time of the Flex I/O bus varies according to the number of modules
installed. If the MVI module is the only module present, then it will be scanned
approximately every 200 microseconds. The maximum scan time for a full rack
of 8 modules is approximately 1.6 milliseconds. Note that the scan time
referred to here is not the PLC scan time, but the Flex I/O bus scan time. The
PLC scan time will depend upon which Flex adapter is used and how it is
configured.

MVI156 Note: This function is not supported for the MVI56 and will return
MVI_ERR_NOTSUPPORTED.

MVI194 Note: There is no distinction in the MVI94 module between input and
output scans. Therefore, the MVIbp_WaitForlnputScan and
MVIbp_WaitForOutputScan functions will perform exactly the same function
and are interchangeable.

Return Value

MVI_SUCCESS The input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_TIMEOUT The timeout expired before an input scan occurred.
ProSoft Technology, Inc. Page 189 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

Example

MVI_HANDLE Handle;
/* Wait here until input scan, 50ms timeout */
rc = MVIbp_WaitForlnputScan(Handle, 50);
if (rc == MVI_ERR_TIMEOUT)
printf(""Input scan did not occur within 50 milliseconds\n");
else
printf(""Input scan has occurred\n');

See Also
MVIbp_WaitForOutputScan (page 191)

Page 190 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIbp_WaitForOutputScan

Syntax
int MVIbp_WaitForOutputScan(MVI_HANDLE handle, WORD timeout);

Parameters
handle Handle returned by previous call to MVIbp_Open
timeout Maximum number of milliseconds to wait for scan
Description

MVIbp_WaitForlnputScan allows an application to synchronize with the scan of
the module's output image. This function will return immediately after the
module's output image has been written. . This function may also be used by a
module application to determine if the Flex I/O bus is active.

handle must be a valid handle returned from MVIbp_Open. timeout specifies the
number of milliseconds that the function will wait for the output scan to occur.

Notes: There is no distinction in the MVI94 module between input and output
scans. Therefore, the MVIbp_ WaitForlnputScan and
MVIbp_WaitForOutputScan functions will perform exactly the same function
and are interchangeable.

The scan time of the Flex I/O bus varies according to the number of modules
installed. If the MVI module is the only module present, then it will be scanned
approximately every 200 microseconds. The maximum scan time for a full rack
of 8 modules is approximately 1.6 milliseconds. Note that the scan time
referred to here is not the PLC scan time, but the Flex I/0 bus scan time. The
PLC scan time will depend upon which Flex adapter is used and how it is
configured.

MVI156 Note: This function is not supported for the MV156 and will return
MVI_ERR_NOTSUPPORTED.

MVI194 Note: There is no distinction in the MVI94 module between input and
output scans. Therefore, the MVIbp_WaitForlnputScan and
MVIbp_WaitForOutputScan functions will perform exactly the same function
and are interchangeable.

Return Value

MVI_SUCCESS The output scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_TIMEOUT The timeout expired before an output scan occurred.
MVI_ERR_BADCONFIG the data connection is not open. (MVI56 only)
ProSoft Technology, Inc. Page 191 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

Example

MVI_HANDLE Handle;
int rc;
/* Wait here until output scan, 50ms timeout */
rc = MVIbp_WaitForOutputScan(Handle, 50);
if (rc == MVI_ERR_TIMEOUT)
printf("'Output scan did not occur within 50ms\n");
else
printf("'Output scan has occurred\n');

See Also
MVIbp_WaitForInputScan (page 189)

Page 192 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

Backplane API Direct I/O Access

MVIbp_ReadOutputimage

Syntax

int MVIbp_ReadOutputlmage(MVI_HANDLE handle, WORD *buffer, WORD offset, WORD
length);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer to receive data from output image

offset Word offset into output image at which to begin reading

length Number of words to read

Description

MVIbp_ReadOutputlmage reads from the module's output image.
handle must be a valid handle returned from MVIbp_Open.
buffer must point to a buffer of at least length words in size.

offset specifies the word in the output image to begin reading, and length
specifies the number of words to read. The error MVI_ERR_BADPARAM will be
returned if an attempt is made to access the output image beyond the range
configured for direct I/0O. Refer to the MVIbp_SetlOConfig function for more
information.

The output image is written by the control processor and read by the module.

Return Value

MVI_SUCCESS The data was read from the output image successfully.
MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Parameter contains invalid value
MVI_ERR_BADCONFIG the data connection is not open. (MVI46 and MVI56 only)
Example

MVI_HANDLE Handle;

WORD buffer[8];

int rc;

/* Read 8 words of data from the output image, starting with word 2 */
rc = MVIbp_ReadOutputlmage(Handle, buffer, 2, 8);
if (rc = MVI_SUCCESS)

printfF("ERROR: MVIbp_ReadOutputlmage failed™);

See Also
MVIbp_SetlOConfig (page 187)

MVIbp_Writelnputimage (page 194)

ProSoft Technology, Inc. Page 193 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

MVIbp_Writelnputimage

Syntax

int MVIbp_Writelnputlmage(MVI_HANDLE handle, WORD *buffer, WORD offset, WORD
length);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer of data to be written to input image

offset Word offset into input image at which to begin writing

length Number of words to write

Description

MVIbp_Writelnputimage writes to the module's input image.
handle must be a valid handle returned from MVIbp Open.
buffer must point to a buffer of at least length words in size.

offset specifies the word in the input image to begin writing, and length specifies
the number of words to write. The error MVI_ERR_BADPARAM will be returned
if an attempt is made to access the input image beyond the range configured for
direct I/O. If this error is returned, no data will be written to the input image. Refer
to the MVIbp_SetlOConfig function for more information.

The input image is written by the module and read by the control processor.

Return Value

MVI_SUCCESS The data was written to the input image successfully.
MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Parameter contains invalid value
MVI_ERR_BADCONFIG the data connection is not open. (MV146 and MVI56 only)
Example

MV1_HANDLE Handle;

WORD buffer[2];

int rc;

/* Write 2 words of data to the input image, starting with word 0 */
rc = MVIbp_Writelnputlmage(Handle, buffer, 0, 2);
if (rc = MVI_SUCCESS)

printf("'ERROR: MVIbp_Writelnputlimage failed™);

See Also
MVIbp_SetlOConfig (page 187)

MVIbp_ReadOutputimage (page 193)

Page 194 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

Backplane APl Messaging Functions

MVIbp_ReceiveMessage

Syntax

int MVIbp_ReceiveMessage(MVI_HANDLE handle, WORD *buffer, WORD *length, WORD
reserved, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer to receive message data from processor

length Pointer to a variable containing the maximum message length in words.
When this function is called, this should be set to the size of the
indicated buffer. Upon successful return, this variable will contain the
actual received message length.

reserved Must be set to 0

timeout Maximum number of milliseconds to wait for message

Description

This function retrieves a message sent from the control processor.
handle must be a valid handle returned from MVIbp_Open.

Upon calling this function, length should contain the maximum message size in
words to be received.

buffer must point to a buffer of at least length words in size. Upon successful
return, length will contain the actual length of the message received.

If length exceeds the maximum message size specified by the value
MsgRcvBufSize (refer to the MVIbp_SetlOConfig function),
MVI_ERR_BADPARAM will be returned.

reserved is not used for the MVI94 module and must be set to zero.
MVI_ERR_BADPARAM will be returned if reserved is not zero.

timeout specifies the number of milliseconds that the function will wait for a
message. To poll for a message without waiting, set timeout to zero. If no
message has been received, MVI_ERR_TIMEOUT will be returned.

Before this function can be used, messaging must be enabled with the
MVIbp_SetlOConfig function. If messaging has not been enabled,
MVI_ERR_BADCONFIG will be returned.

If the message received from the control processor is larger than length, the
message will be truncated to length words and MVI_ERR_MSGTOOBIG will be
returned.

ProSoft Technology, Inc. Page 195 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

MVI146 Notes: The Controller passes Message data to the MVI146 via the
module's MO module file. This requires the MVI46 to be configured as a Class
4 module.

The MVIbp_ReceiveMessage function retrieves data written to the MVI module
by the processor via a MSG instruction. The MSG instruction must be
configured as shown in table A. The MSG instruction implements a 'put
attribute' command to the MVI module's assembly object. The MSG instruction
will fail if a message has already been written to the MVI module but
application has not yet retrieved the message via MVIbp_ReceiveMessage.

MVI69 Note: At this time, messaging is not supported on the MVI69.

Receive MSG Instruction Configuration

Field Value Description

Message Type CIP Generic Specify CIP message type
Service Code 10 (Hex) Set_Attribute_Single service
Object Type 4 Assembly object class code
Object ID 8 Output message instance number
Object Attribute 3 Data attribute

Num Elements Application dependent Size of message to be written
Path Application dependent Path to MVI module

Return Value

MVI_SUCCESS A message has been received.
MVI_ERR_NOACCESS handle does not have access.

MVI_ERR_TIMEOUT The timeout occurred before a message was received.
MVI_ERR_BADPARAM A parameter is invalid.

MVI_ERR_BADCONFIG Receive messaging is not enabled.
MVI_ERR_MSGTOOBIG The received message is too big for the buffer.
Example

MV1_HANDLE Handle;

int rc;

WORD buffer[256];

WORD length;

length = 256; // maximum message size that can be received

// Wait up to 5 seconds for a message
rc = MVIbp_ReceiveMessage(Handle, buffer, &length, 0, 5000);
if (rc == MVI_SUCCESS)

printf("'Message received. Length is %d words\n", length);

See Also
MVIbp_SetlOConfig (page 187)

MVIbp_SendMessage (page 197)

Page 196 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIbp_SendMessage

Syntax

int MVIbp_SendMessage(MVI_HANDLE handle, WORD *buffer, WORD length, WORD
reserved, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer of data to send to processor

length The length in words of the message to send.

reserved Must be set to 0

timeout Maximum number of milliseconds to wait for processor to read message
Description

This function sends a message to the control processor.
handle must be a valid handle returned from MVIbp Open.

Upon calling this function, length should contain the message size in words.
buffer must point to a buffer of at least length words in size.

If length exceeds the maximum message size specified by the value
MsgSndBufSize (refer to the MVIbp_SetlOConfig function),
MVI_ERR_BADPARAM will be returned.

reserved is not used for the MVI94 module and must be set to zero.
MVI_ERR_BADPARAM will be returned if reserved is not zero.

timeout specifies the number of milliseconds that the function will wait for the
message to transfer to the control processor. If the timeout occurs before the
message has been transferred, MVI_ERR_TIMEOUT will be returned.

If timeout is 0, the function will return immediately. If the message was
successfully queued to be sent, MVI_SUCCESS will be returned. If the message
was not queued (for example, a previous message is being sent),
MVI_ERR_TIMEOUT will be returned and the message must be re-tried at a later
time. A timeout of 0 allows an application to perform other tasks while the
message is being transmitted.

Before this function can be used, messaging must be enabled with the
MVIbp_SetlOConfig function. If messaging has not been enabled,
MVI_ERR_BADCONFIG will be returned.

MVI146 Notes The MVI46 passed Message data to the Controller via the M1
module file. This requires the MVI46 to be configured as a Class 4 module.

The MVIbp_SendMessage function copies the message data into a buffer to
be retrieved by the processor via a MSG instruction. The MSG instruction must
be configured as shown in table B. The MSG instruction implements a "get
attribute" command to the MVI module's assembly object. The MSG instruction

ProSoft Technology, Inc. Page 197 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

will fail if a message has not already been written by the application via
MVIbp_SendMessage.

MVI169 Note: At this time, messaging is not supported on the MVI69.

Send MSG Instruction Configuration

Field Value Description

Message Type CIP Generic Specify CIP message type
Service Code OE (Hex) Get_Attribute_Single service
Object Type 4 Assembly object class code
Object ID 7 Output message instance number
Object Attribute 3 Data attribute

Num Elements Application dependent Size of message to be written
Path Application dependent Path to MVI module

Return Value

MVI_SUCCESS A message has been received.

MVI_ERR_NOACCESS handle does not have access.

MVI_ERR_TIMEOUT The timeout occurred before the message was transferred.
MVI_ERR_BADPARAM A parameter is invalid.

MVI_ERR_BADCONFIG Send messaging is not enabled.

Example

MVI1_HANDLE Handle;

int rc;

WORD buffer[256];

// Wait 5 seconds for the message to be sent
rc = MVIbp_SendMessage(Handle, buffer, 256, 5000);
if (rc == MVI_SUCCESS)

printf('Message sent\n');

See Also
MVIbp_SetlOConfig (page 187)

MVIbp_ReceiveMessage (page 195)

Page 198 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

Backplane API Miscellaneous Functions

MVIbp_GetVersioninfo

Syntax
int MVIbp_GetVersionInfo(MVI_HANDLE handle, MVIBPVERSIONINFO *verinfo);

Parameters
handle Handle returned by previous call to MVIbp_Open
verinfo Pointer to structure of type MVIBPVERSIONINFO
Description

MVIbp_GetVersionInfo retrieves the current version of the API library and the
backplane device driver. The information is returned in the structure verinfo.

handle must be a valid handle returned from MVIbp_Open.
The MVIBPVERSIONINFO structure is defined as follows:

typedef struct tagMVIBPVERSIONINFO
{
WORD APISeries; /* APl series */
WORD APIRevision; /* APl revision */
WORD BPDDSeries;/* Backplane device driver series */
WORD BPDDRevision; /* Backplane device driver revision */
BYTE Reserved[8]; /* Reserved */ (MV194 Only)
} MVIBPVERSIONINFO;

Return Value

MVI_SUCCESS The version information was read successfully.
MVI_ERR_NOACCESS handle does not have access

Example

MV1_HANDLE Handle;

MV IBPVERSIONINFO verinfo;

/* print version of APl library */

MVIbp_GetVersionlnfo(Handle,&verinfo);

printf("'Library Series %d, Rev %d\n", verinfo.APISeries, verinfo_APIRevision);
printf("'Driver Series %d, Rev %d\n', verinfo.BPDDSeries, verinfo_BPDDRevision);

ProSoft Technology, Inc. Page 199 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

MVIbp_GetModulelnfo

Syntax
int MVIbp_GetModulelnfo(MVI_HANDLE handle, MVIBPMODULEINFO *modinfo);

Parameters
handle Handle returned by previous call to MVIbp_Open
modinfo Pointer to structure of type MVIBPMODULEINFO
Description

MVIbp_GetModulelnfo retrieves identity information for the module. The
information is returned in the structure modinfo.

handle must be a valid handle returned from MVIbp Open.
The MVIBPMODULEINFO structure is defined as follows:

typedef struct tagMVIBPMODULEINFO

{
WORD VendorliD; // Reserved
WORD DeviceType; // Reserved
WORD ProductCode; // Device model code
BYTE MajorRevision; // Device major revision
BYTE MinorRevision; // Device minor revision
DWORD SerialNo; // Serial number
BYTE Name[32] ; // Device name (string)
BYTE Month; // Date of manufacture - month
BYTE Day; // Date of manufacture - day
WORD Year; // Date of manufacture - year

} MVIBPMODULEINFO;

Return Value

MVI_SUCCESS The version information was read successfully.
MVI_ERR_NOACCESS handle does not have access

Example

MVI1_HANDLE Handle;

MV 1BPMODULE INFO modinfo;

/* print module name */
MVIbp_GetModulelnfo(Handle,&modinfo);
printf('Name is %s\n", modinfo.Name);

Page 200 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIbp_ErrorStr

Syntax
int MVIbp_ErrorStr(int errcode, char *buf);

Parameters
errcode Error code returned from an API function
buf Pointer to user buffer to receive message
Description

MVIbp_ErrorStr returns a text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value

MVI_SUCCESS Message returned in buf
MVI_ERR_BADPARAM Unknown error code
Example

char buf[80];

int rc;

/* print error message */
MVIbp_ErrorStr(rc, buf);
printf(""Error: %s"™, buf);

ProSoft Technology, Inc. Page 201 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

MVIbp_SetUserLED

Syntax
int MVIbp_SetUserLED(MVI_HANDLE handle, int lednum, int ledstate);

Parameters

handle Handle returned by previous call to MVIbp_Open

lednum Specifies which of the user LED indicators is being addressed
Description

MVIbp_SetUserLED allows an application to turn the user LED indicators on and
off.

handle must be a valid handle returned from MVIbp Open.

lednum must be set to MVI_LED USER1 or MVI_LED_USER2 to select User
LED 1 or User LED 2, respectively.

ledstate must be setto MVI_LED STATE_ON or MVI_LED STATE_OFF to turn
the indicator On or Off, respectively.

Return Value

MVI_SUCCESS The input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM lednum or ledstate is invalid.
Example

MVI1_HANDLE Handle;

/* Turn User LED 1 on and User LED 2 off */
MVIbp_SetUserLED(Handle, MVI_LED USER1, MVI_LED_STATE_ON);
MVIbp_SetUserLED(Handle, MVI_LED USER2, MVI_LED STATE_OFF);

Page 202 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIbp_SetModuleStatus

Syntax
int MVIbp_SetModuleStatus(MVI_HANDLE handle, int status);

Parameters

handle Handle returned by previous call to MVIbp_Open

status Module status, OK or Faulted

Description

MVIbp_SetModuleStatus allows an application set the state of the module to OK
or Faulted.

handle must be a valid handle returned from MVIbp Open.

state must be set to MVI_MODULE_STATUS_OK or
MVI_MODULE_STATUS_FAULTED. If the state is Ok, the module status LED
indicator will be set to Green. If the state is Faulted, the status indicator will be
set to Red.

Note: The MVI hardware can set the OK LED to Red if any of the following
occurs:

*= an unrecoverable fault

» hardware failure

= backplane driver failure

Neither the MVI hardware nor the Set ModuleStatus call has priority. Either can
overwrite the other.

Return Value

MVI_SUCCESS The input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM lednum or ledstate is invalid.
Example

MVI1_HANDLE Handle;

/* Set the Status indicator to Red */
MVIbp_SetModuleStatus(Handle, MVI_MODULE_STATUS_ FAULTED);

ProSoft Technology, Inc. Page 203 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

MVIbp_GetConsoleMode

Syntax
int MVIbp_GetConsoleMode(MVI_HANDLE handle, int *mode, int *baud);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode Pointer to an integer that is set to 1 if the console is installed, or
0 if the console is not enabled.

baud Pointer to an integer that is set to the console baud rate index if
the console is enabled.

Description

This function queries the state of the console.
handle must be a valid handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the console is enabled, or 0 if the console is disabled.

baud is a pointer to an integer. When this function returns, baud will be set to the
console's baud index value if the console is enabled. baud is not set if the
console is disabled.

It may be useful for an application to detect that the console is enabled and allow
user interaction.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
Example
MVI_HANDLE handle;
int mode;
MVIbp_GetConsoleMode(handle, &mode);
if (mode)

// Console is enabled - allow user interaction
else

// Console is not available - normal operation

Page 204 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIbp_GetSetupMode

Syntax
int MVIbp_GetSetupMode(MVI_HANDLE handle, int *mode);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode Pointer to an integer that is set to 1 if the Setup Jumper is
installed, or 0 if the Setup Jumper is not installed.

Description

This function queries the state of the Setup Jumper.
handle must be a valid handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the module is in Setup Mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup Mode. It
may be useful for an application to detect Setup Mode and perform special
configuration or diagnostic functions.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
Example

MV1_HANDLE handle;

int mode;
MVIbp_GetSetupMode(handle, &mode);
it (mode)
// Setup Jumper is installed - perform configuration/diagnostic
else
// Not in Setup Mode - normal operation

ProSoft Technology, Inc. Page 205 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

MVIbp_GetProcessorStatus

Syntax
int MVIbp_GetProcessorStatus(MVIHANDLE handle, WORD *pstatus);

Parameters

handle Handle returned by previous call to MVIbp_Open

pstatus Pointer to a word that will be updated with the current processor
status.

Description

This function queries the state of the processor.
handle must be a valid handle returned from MVIbp_Open.

pstatus is a pointer to an word. When this function returns, certain bits in this
word will be set to indicate the current processor status, as shown in the
following table.

Processor Status Bits

Bit Name Description

0 MVI_PROCESSOR_STATUS_RUN Set if processor is in Run Mode
MVI_DATA_CONNECTION_OPEN Set if data connection is open (MVI56 only)

2 MVI_STATUS_CONNECTION_OPEN Set if status connection is open (MVI56 only)

MVI156 Note: The data connection must be established in order to receive the
processor status. Therefore, if the data connection is not established, this
function will return MVI_ERR_BADCONFIG and pstatus will be zero.

MV194 Note: This function is not supported on the MVI94 and will always
return MVI_ERR_NOTSUPPORTED.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADCONFIG The data connection is not open. (MVI56 only)
Example

MVIHANDLE handle;

WORD status;

MVIbp_GetProcessorStatus(handle, &status);

if (status & MVI_PROCESSOR_STATUS_RUN)

// Processor is in Run Mode

else

// Processor is not in Run Mode or there is no connection

Page 206 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIbp_Sleep

Syntax
int MVIbp_Sleep(MVIHANDLE handle, WORD msdelay);

Parameters

handle Handle returned by previous call to MVIbp_Open
msdelay Time in milliseconds to suspend task
Description

MVIbp_Sleep suspends the calling thread for at least msdelay milliseconds. The
actual delay may be several milliseconds longer than msdelay, due to system
overhead and the system timer granularity (5ms).

Return Value

MVI_SUCCESS Success
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;

int timeout=200;

// Simple timeout loop

while(timeout--)

{

// Poll for data, etc.

// Break if condition is met (no timeout)
// Else sleep a bit and try again
MVIbp_Sleep(10);

}

ProSoft Technology, Inc. Page 207 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

MVIbp_SetConsoleMode

Syntax
int MVIbp_SetConsoleMode(MVIHANDLE handle, int mode, int baud);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode An integer that is set to 1 if the console is to be enabled, or 0 if
the console is not enabled.

baud An integer that is set to the desired console baud rate index if
the console is enabled.

Description

This function sets the state of the console.
handle must be a valid handle returned from MVIbp_Open.

mode is an integer that contains the desired state of the console. mode should
be set to 1 if the console is to be enabled, or 0 if the console is to be disabled.

baud is an integer that contains the desired baud rate of the console. baud
should be set to the console's baud index value if the console is enabled. The
baud index values are shown in Table 3.

The state of the console is normally configured with the BIOS setup menu and is
saved in battery-backed memory. If the module is removed from power for a
period of time and the battery discharges, then the state information is lost. This
function allows an application to store a desired console state into the battery-
backed memory. Note that the new console state does not take effect until the
MV146 is rebooted.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;

int mode,baud;

mode = 1; // enable the console

baud = 8; // set baud rate to 19200 baud
MVIbp_SetConsoleMode(handle, mode, baud);

Page 208 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

Platform Specific Functions

MVIbp_ReadModuleFile (MVI46)

Syntax

int MVIbp_ReadModuleFile(MVIHANDLE handle, BYTE filetype, WORD *filedata, WORD
offset, WORD len);

Parameters

handle Handle returned by previous call to MVIbp_Open
filetype Type of module file to read, MO or M1

filedata Pointer to buffer to receive data

offset Word offset into the module file to begin reading
len Number of words to read

Description

MVIbp_ReadModuleFile reads data from the MO or M1 file of the module. This
function can only be used when the module is configured as a Class 4 module.

handle must be a valid handle returned from MVIbp_Open.

The type of file to be read is determined by the value in filetype, which should be
set to FILTYP_MO or FILTYP_M1.

This function reads len words starting at word offset of the module file and copies
the data to the buffer pointed to by filedata, which must be len words in size. The
error MVI_ERR_BADPARAM will be returned if an attempt is made to access the
modaule file beyond the range configured for module file. If this error is returned,
no data will be read from the module file.

Note: This function provides data integrity in blocks of 64 Words as the data is
copied.

Note: Because Messaging uses module files, MVIbp ReadModuleFile should
not be used while Messaging is used.

Note: At this time, messaging is not supported on the MVI69.

Return Value

MVI_SUCCESS The module file data was read successfully.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM Invalid parameter

MVI46_ERR_INVALIDCLASS The module is not Class 4

Example

MVIHANDLE Handle;

WORD buffer[10];

/* Read the first 10 words of the M1 file */
MVIbp_ReadModuleFile(Handle,FILTYP_M1, &buffer[0], O, 10);

ProSoft Technology, Inc. Page 209 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

MVIbp_WriteModuleFile (MVI46)

Syntax

int MVIbp_WriteModuleFile(MVIHANDLE handle, BYTE filetype, WORD *filedata, WORD
offset, WORD len);

Parameters

handle Handle returned by previous call to MVIbp_Open
filetype Type of module file to write, MO or M1

filedata Pointer to buffer of data to write to the module file
offset Word offset into the module file to begin writing
len Number of words to write

Description

MVIbp_WriteModuleFile writes data to the MO or M1 file of the module. This
function can only be used when the module is configured as a Class 4 module.

handle must be a valid handle returned from MVIbp_Open.

The type of file to be written is determined by the value in filetype, which should
be set to FILTYP_MO or FILTYP_M1.

This function writes len words from the buffer pointed to by filedata to the module
file starting at WORD offset. The buffer must be len words in size. The error
MVI_ERR_BADPARAM will be returned if an attempt is made to access the
modaule file beyond the range configured for module file. If this error is returned,
no data will be written to the module file.

Note: This function provides data integrity in blocks of 64 words as the data is
copied.

Note: Because Messaging uses module files, MVIbp_WriteModuleFile should
not be used while Messaging is used.

Note: At this time, messaging is not supported on the MVI69.

Return Value

MVI_SUCCESS The module file data was read successfully.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM Invalid parameter

MVI46_ERR_INVALIDCLASS The module is not Class 4

Example

MVIHANDLE Handle;

WORD buffer[2];

/* write 2 words to words 5 and 6 of the MO file */
buffer[0] = 12;

buffer[1] = 34;

MVIbp_WriteModuleFile(Handle,FILTYP_MO, &buffer[0], 5, 2);

Page 210 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIbp_SetModulelnterrupt (MVI46)

Syntax
int MVIbp_SetModulelnterrupt(MVIHANDLE handle);

Parameters
handle Handle returned by previous call to MVIbp_Open

Description

MVIbp_SetModulelnterrupt generates a Module Interrupt to the host Controller.
This function can only be used when the module is configured as a Class 4
module.

handle must be a valid handle returned from MVIbp Open.

This function waits for the host Controller to acknowledge the interrupt, which
may take up to 2.5 seconds. The host Controller must be in RUN mode and must
contain a Module Interrupt function routine to process and acknowledge the
interrupt. The acknowledge from the Controller may either be Success or Failure,
depending on the interrupt routine.

Return Value

MVI_SUCCESS The module file data was read successfully.
MVI_ERR_NOACCESS handle does not have access

MVI_ERR_TIMEOUT The function timed out waiting for an acknowledge
MVI46_ERR_PROGMODE Controller not in RUN mode
MVI46_ERR_INVALIDCLASS The module is not Class 4

MVI46_ERR_SLOTDIS The module's slot has been disabled by the Controller
MVI146_ERR_SERVFAIL The Controller acknowledged the interrupt with Failure
Example

MVIHANDLE Handle;

/* Generate a module interrupt and wait for ack */
it (MVI_SUCCESS == MVIbp_SetModulelnterrupt(Handle))
printf(""Module Interrupt Successful\n™);

else

printf("'Module Interrupt Failed\n");

ProSoft Technology, Inc. Page 211 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Backplane API Functions
Application Development Module

Page 212 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions

MVI-ADM e 'C' Programmable
Application Development Module

9

Serial Port Library Functions

In This Chapter

» Serial Port API Initialization Functions
» Serial Port API Configuration Functions............
> Serial Port API Status Functions.......................
» Serial Port APl Communications.......................

» Serial Port API Miscellaneous Functions

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in C

format.

The API library routines are categorized according to functionality as follows:

Initialization
MVIsp_Open

MVIsp_Close
MVIsp_OpenAlt

Configuration
MVIsp_Config

MVIsp_SetHandshaking

Port Status

MVlisp_SetRTS, MVIsp_GetRTS
MVlisp_SetDTR, MVIsp_GetDTR
MVisp_GetCTS

MVisp_GetDSR
MVlIsp_GetDCD
MVIsp_GetLineStatus

Communications
MVIsp_Putch

MVlsp_Puts
MVIsp_PutData

ProSoft Technology, Inc.
December 12, 2006

Page 213 of 318

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVlIsp_Getch
MVlisp_Gets
MVlIsp_GetData
MVIsp_GetCountUnsent
MVlIsp_GetCountUnread
MVIsp_PurgeDataUnsent
MVIsp_PurgeDataUnread

Miscellaneous
MVIsp_GetVersioninfo

Page 214 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Serial Port API Initialization Functions

MVIsp_Open

Syntax

int MVIsp_Open(int comport, BYTE baudrate, BYTE parity, BYTE wordlen,
BYTE stopbits);

Parameters

comport Communications Port to open
baudrate Baud rate for this port

parity Parity setting for this port

wordlen Number of bits for each character
stopbits Number of stop bits for each character
Description

MVIsp_Open acquires access to a communications port. This function must be
called before any of the other API functions can be used.

comport specifies which port is to be opened. The valid values for the module are
COM1 (corresponds to PRT1 (CFG on MVI69)), COM2 (corresponds to PRT2
(PRT1 on MVI69)), and COMS (corresponds to PRT3(PRT2 on MVI169)).

Note: PRT3 is available on MVI46 and MVI56 only.

baudrate is the desired baud rate. The allowable values for baudrate are shown
in the following table.

Baud Rate Value
BAUD_110
BAUD_150
BAUD_300
BAUD_600
BAUD_1200
BAUD_2400
BAUD_4800
BAUD_9600
BAUD_19200
BAUD_28800
BAUD_38400
BAUD_57600 11
BAUD_115200 12

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

O|lo(N[ojo|(~hlWINM|~|O

N
o

ProSoft Technology, Inc. Page 215 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLENS, WORDLENG, WORDLEN7, and WORDLENS.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

The handshake lines DTR and RTS of the port specified by comport are turned
on by MVIsp_Open.

Note: If the console is enabled or the Setup jumper is installed, the baud rate
for COM1 is set as configured in BIOS Setup and cannot be changed by
MVIsp_Open. MVIsp_Open will return MVI_SUCCESS, but the baud rate will
not be affected. It is recommended that the console be disabled in BIOS Setup
if COM1 is to be accessed with the serial API.

IMPORTANT: After the API has been opened, MVIsp_Close should always be
called before exiting the application.

Return Value

MVI_SUCCESS port was opened successfully

MVI_ERR_REOPEN port is already open

MVI_ERR_NODEVICE UART not found on port
Note: MVI_ERR_NODEVICE will be returned if the port is not supported by
the module.

Example

if (MVIsp_Open(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,STOPBITS1) != MVI_SUCCESS) {
printf(*'Open failed!\n");

} else {
printf("'Open succeeded\n');

}

See Also
MVIsp_Close (page 219)

Page 216 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsp_OpenAlt

Syntax
int MVIsp_ OpenAlt(int comport, MVISPALTSETUP *altsetup);

Parameters

comport Communications port to open

altsetup pointer to structure of type MVISPALTSETUP
Description

MVIsp_OpenAlt provides an alternate method to acquire access to a
communications port.

With MVIsp_OpenAlt, the sizes of the serial port data queues can be set by the
application.

See MVIsp_Open for any considerations about opening a port.
Comport specifies which port is to be opened. See MVIsp_Open for valid values.

Altsetup points to a MVISPALTSETUP structure that contains the configuration
information for the port.

The MVISPALTSETUP structure is defined as follows:

typedef struct tagMVISPALTSETUP

{

BYTE baudrate;

BYTE parity;

BYTE wordlen;

BYTE stopbits;

int txquesize; /* Transmit queue size */

int rxquesize; /* Receive queue size */

BYTE fifosize; /* UART Internal FIFO size */

} MVISPALTSETUP;

See MVIsp_Open for valid values for the baudrate, parity, wordlen, and stopbits
members of the structure. The txquesize and rxquesize members determine the
size of the data buffers used to queue serial data. Valid values for the queue
sizes can be any value from MINQSIZE to MAXQSIZE. The MVIsp_Open

function uses a queue size of DEFQSIZE.
These values are defined as:

#define MINQSIZE 512 /* Minimum Queue Size */

#define DEFQSIZE 1024 /* Default Queue Size */

#define MAXQSIZE 16384 /* Maximum Queue Size */

By default, the API sets the UART's internal receive fifo size to 8 characters to
permit greater reliability at higher baud rates. In certain serial protocols, this
buffering of characters can cause character timeouts and can be changed or
disabled to meet these requirements. Most applications should set the fifosize to
the default RXFIFO_DEFAULT.

ProSoft Technology, Inc. Page 217 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

Either MVIsp_OpenAlt or MVIsp_Open must be called before any of the other
API functions can be used.

Return Value

MVI_SUCCESS port was opened successfully
MVI_ERR_REOPEN port is already open
MVI_ERR_NODEVICE UART not found for port
Example

MVISPALTSETUP altsetup;
altsetup.baudrate = BAUD_9600;
altsetup.parity = PARITY_NONE;
altsetup.wordlen = WORDLENS;
altsetup.stopbits = STOPBITS1;
altsetup.txquesize DEFQSIZE;
altsetup.rxquesize DEFQSIZE * 2;
if (MVIsp_OpenAlt(COM1, &altsetup) '= MVI_SUCCESS)
{

printf("'Open failed!\n");

} else {

printf("'Open succeeded!\n");

}

See Also
MVIsp_Open (page 215)

Page 218 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsp_Close

Syntax
int MVIsp_Close(int comport);

Parameters

comport Port to close

Description

This function is used by an application to release control of the a communications
port. comport must be previously opened with MVIsp_Open.

comport specifies which port is to be closed.
The handshake lines DTR and RTS of the port specified by comport are turned
off by MVlIsp_Close.

IMPORTANT: After the API has been opened, this function should always be
called before exiting the application.

Return Value

MVI_SUCCESS port was closed successfully
MVI_ERR_NOACCESS comport has not been opened
Example

MVIsp_Close(COM1);

See Also
MVIsp_Open (page 215)

ProSoft Technology, Inc. Page 219 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions

Application Development Module

Serial Port API Configuration Functions

BYTE

MVIsp_Config
Syntax
int MVIsp_Config(int comport, BYTE baudrate, BYTE parity, BYTE wordlen,
stopbits);
Parameters
comport Communications port to configure
baudrate Baud rate for this port
parity Parity setting for this port
wordlen Number of bits for each character
stopbits Number of stop bits for each character
baudrate Pointer to DWORD to receive baudrate
Description

MVIsp_Config allows the configuration of a serial port to be changed after it has
been opened.

comport specifies which port is to be configured.
baudrate is the desired baud rate.

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLENS, WORDLENG, WORDLEN7, and WORDLENS.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

Note: If the console is enabled or the Setup jumper is installed, the baud rate
for COM1 is set as configured in BIOS Setup and cannot be changed by
MVIsp_Open. MVIsp_Config will return MVI_SUCCESS, but the baud rate will
not be affected.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer
Page 220 of 318 ProSoft Technology, Inc.

December

12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Example

if (MVIsp_Config(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,STOPBITS1) != MVI_SUCCESS) {
printf(*'Config failed!\n");

} else {
printf("'Config succeeded\n');

}

See Also
MVIsp_Open (page 215)

ProSoft Technology, Inc. Page 221 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVIsp_SetHandshaking

Syntax
int MVIsp_SetHandshaking(int comport, int shake);

Parameters

comport port for which handshaking is to be set
shake desired handshake mode
Description

This function enables handshaking for a port after it has been opened. comport
must be previously opened with MVIsp_Open.

shake is the desired handshake mode. Valid values for shake are
HSHAKE_NONE, HSHAKE XONXOFF, HSHAKE_RTSCTS, and
HSHAKE_DTRDSR.

Use HSHAKE_XONXOFF to enable software handshaking for a port. Use
HSHAKE_RTSCTS or HSHAKE_DTRDSR to enable hardware handshaking for
a port. Hardware and software handshaking cannot be used together.

Handshaking is supported in both the transmit and receive directions.

Important: If hardware handshaking is enabled, using the MVIsp_SetRTS and
MVIsp_SetDTR functions will cause unpredictable results. If software
handshaking is enabled, ensure that the XON and XOFF ASCII characters are
not transmitted as data from a port or received into a port because this will be
treated as handshaking controls.

Return Values

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid handshaking mode
Example

if (MVI_SUCCESS I= MVIsp_SetHandshaking(COM1, HSHAKE_RTSCTS))
printf("Error: Set Handshaking failed\n'™);

Page 222 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Serial Port API Status Functions

MVIsp_SetRTS

Syntax
int MVIsp_SetRTS(int comport, int state);

Parameters

comport port for which RTS is to be changed
state desired RTS state

Description

This functions allows the state of the RTS signal to be controlled. comport must
be previously opened with MVIsp_Open.

state specifies desired state of the RTS signal. Valid values for state are ON and
OFF.

Note: If RTS/CTS hardware handshaking is enabled, using the
MVIsp_SetRTS function will cause unpredictable results.

Return Value

MVI_SUCCESS the RTS signal was set successfully.
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid state

Example

int rc;

rc = MVIsp_SetRTS(COM1, ON);
if (rc = MVI_SUCCESS)
printf("’'SetRTS failed\n ");

See Also
MVIsp_GetRTS (page 224)

ProSoft Technology, Inc. Page 223 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVIsp_GetRTS

Syntax
int MVIsp_GetRTS(int comport, int *state);

Parameters

comport port for which RTS is requested
state pointer to int for desired state
Description

This function allows the state of the RTS signal to be determined. comport must
be previously opened with MVIsp_Open.

The current state of the RTS signal is copied to the int pointed to by state.

Return Value

MVI_SUCCESS the RTS state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example

int state;
if (MVIsp_GetRTS(COM1, &state) == MVI_SUCCESS)
{
if (state == ON)
printf(""'RTS is ON\n"");
else
printfF("'RTS is OFF\n'");

}

See Also
MVIsp_SetRTS (page 223)

Page 224 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsp_SetDTR

Syntax
int MVIsp_SetDTR(int comport, int state);

Parameters

comport port for which DTR is to be changed
state desired state

Description

This function allows the state of the DTR signal to be controlled. comport must be
previously opened with MVIsp_Open.

state is the desired state of the DTR signal. Valid values for state are ON and
OFF.

Note: If DTR/DSR handshaking is enabled, changing the state of the DTR
signal with MVIsp_SetDTR will cause unpredictable results.

Return Value

MVI_SUCCESS the DTR signal was set successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid state

Example

if (MVIsp_SetDTR(COM1, ON) != MVI_SUCCESS)
printf(*'Set DTR failed\n');

See Also
MVIsp_GetDTR (page 226)

ProSoft Technology, Inc. Page 225 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVIsp_GetDTR

Syntax
int MVIsp_GetDTR(int comport, int *state);

Parameters

comport port for which DTR is requested
state pointer to int for desired state
Description

This function allows the state of the DTR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DTR signal is
copied to the int pointed to by state.

Return Values

MVI_SUCCESS the DTR state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example

int state;
if (MVIsp_GetDTR(COM1, &state) == MVI_SUCCESS)
{
if (state == ON)
printf(""'DTR is ON\n"");
else
printfF("'DTR is OFF\n"");

}

See Also
MVIsp_SetDTR (page 225)

Page 226 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsp_GetCTS

Syntax
int MVIsp_GetCTS(int comport, int *state);

Parameters

comport port for which CTS is requested
state pointer to int for desired state
Description

This function allows the state of the CTS signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the CTS signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS the CTS state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example

int state;
if (MVIsp_GetCTS(COM1, &state) == MVI_SUCCESS)
{
if (state == ON)
printf('CTS is ON\n"");
else
printf("'CTS is OFF\n'");

ProSoft Technology, Inc. Page 227 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVIsp_GetDSR

Syntax
int MVIsp_GetDSR(int comport, int *state);

Parameters

comport port for which DSR is requested
state pointer to int for desired state
Description

This function allows the state of the DSR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DSR signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS the DSR state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example

int state;
if (MVIsp_GetDSR(COM1, &state) == MVI_SUCCESS)
{
if (state == ON)
printf("'DSR is ON\n"");
else
printfF("'DSR is OFF\n"");

Page 228 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsp_GetDCD

Syntax
int MVIsp_GetDCD(int comport, int *state);

Parameters

comport port for which DCD is requested
state pointer to int for desired state
Description

This function allows the state of the DCD signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DCD signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS the DCD state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example

int state;
if (MVIsp_GetDCD(COM1, &state) == MVI_SUCCESS)
{
if (state == ON)
printf('DCD is ON\n"");
else
printf("'DCD is OFF\n"");

ProSoft Technology, Inc. Page 229 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVIsp_GetLineStatus

Syntax
int MVIsp_GetLineStatus(int comport, BYTE *status);

Parameters
comport port for which line status is requested
status pointer to BYTE to receive line status
Description

MVIsp_GetLineStatus returns any line status errors received over the serial port.
The status returned indicates if any overrun, parity, or framing errors or break
signals have been detected.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

status points to a BYTE that will receive a set of flags that indicate errors
received over the serial port. If the returned status is 0, no errors have been
detected. If status is non-zero, it can be logically and'ed with the line status error
flags LSERR_OVERRUN, LSERR_PARITY, LSERR_FRAMING,
LSERR_BREAK, and/or QSERR_OVERRUN to determine the exact cause of the
error. The corresponding error flag will be set for each error type detected. (Note:
The QSERR_OVERRUN bit indicates that a receive queue overflow has
occurred.)

After returning the bit flags in status, line status errors are cleared. Therefore,
MVIsp_GetLineStatus actually returns line status errors detected since the
previous call to this function.

Return Value

MVI_SUCCESS the line status was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example

BYTE sts;

if (MVIsp_GetGetLineStatus(COM2,&sts) == MVI_SUCCESS)
{

if (sts == 0)

printf("'No Line Status Errors Received\n');
else if ((sts & LSERR_BREAK) I= 0)

printf(""A Break Signal was Received\n');
else

printf(""A Line Status Error was Received\n');

Page 230 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Serial Port APl Communications

MVIsp_Putch

Syntax
int MVIsp_Putch(int comport, BYTE ch, DWORD timeout);

Parameters

comport port to which data is to be sent

ch character to be sent

timeout amount of time to wait to send character
Description

This function transmits a single character across a serial port. comport must be
previously opened with MVIsp_Open.

ch is the byte to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time after this function returns
and the actual time that the character is transmitted across the serial line. This
function attempts to insert the character into the transmission queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the character cannot be
queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until the character is queued successfully.

If the character can be queued immediately, MVIsp_Putch returns
MVI_SUCCESS. If the character cannot be queued immediately, MVIsp_Putch
tries to queue the character until the timeout elapses. If the timeout elapses
before the character can be queued, MVI_ERR_TIMEOUT is returned.

Note: If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.

Return Value

MVI_SUCCESS the char was sent successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid parameter
MVI_ERR_TIMEOUT timeout elapsed before character sent
ProSoft Technology, Inc. Page 231 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

Example

if (MVIsp_Putch(COM1, *;", 1000L) I= MVI_SUCCESS)
printf(*'Semicolon could not be sent in 1 second\n');

See Also
MVisp_GetCh (page 233)

MVIsp_Puts (page 234)
MVIsp_PutData (page 236)

Page 232 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsp_Getch

Syntax
int MVIsp_Getch(int comport, BYTE *ch, DWORD timeout);

Parameters

comport port from which data is to be received

ch pointer to BYTE to receive character
timeout amount of time to wait to receive character
Description

This function receives a single character from a serial port. comport must be
previously opened with MVIsp_Open.

ch points to a BYTE that will receive the character.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Getch.
This function attempts to retrieve a character from the reception queue, and
return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until a character is
retrieved from the reception queue successfully.

If the reception queue is not empty, the oldest character is retrieved from the
queue and MVIsp_Getch returns MVI_SUCCESS. If the queue is empty,
MVIsp_Getch tries to retrieve a character from the queue until the timeout
elapses. If the timeout elapses before a character can be retrieved,
MVI_ERR_TIMEOUT is returned.

Return Value

MVI_SUCCESS a char was retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before character retrieved

Example

BYTE ch;

if (MVIsp_Getch(COM1, &ch, 1000L) == MVI_SUCCESS)
putch((char)ch);

See Also

MVIsp_PutCh (page 231)
MVIsp_Gets (page 238)

ProSoft Technology, Inc. Page 233 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVlIsp_Puts

Syntax
int MVIsp_Puts(int comport, BYTE *str, BYTE term, int *len, DWORD timeout);

Parameters

comport port to which data is to be sent

str string of characters to be sent

term termination character of string

len pointer to BYTE to receive number of characters sent
timeout amount of time to wait to send character
Description

This function transmits a string of characters across a serial port. comport must
be previously opened with MVIsp_Open.

str is a pointer to an array of characters (or is a string) to be sent.

MVIsp_Puts sends each char in the array str to the serial port until it encounters
the termination character term. Therefore, the character array must end with the
termination character. The termination character is not sent to the serial port.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the characters are transmitted across the serial line. This function
attempts to insert the characters into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the characters
cannot be queued immediately. If timeout is TIMEOUT_FOREVER, the function
will not return until all the characters are queued successfully.

If all the characters can be queued immediately, MVIsp_Puts returns
MVI_SUCCESS. If the characters cannot be queued immediately, MVIsp_Puts
tries to queue the characters until the timeout elapses. If the timeout elapses
before the characters can be queued, MVI_ERR_TIMEOUT is returned.

If len is not NULL, MVIsp_Puts writes to the int pointed to by len the number of
characters queued successfully. len is written for successfully sent characters as
well as timeouts.

Note: If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.

Page 234 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Return Value

MVI_SUCCESS the characters were sent successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid parameter
MVI_ERR_TIMEOUT timeout elapsed before characters sent
Example

char str[] = "Hello, World!";

int nn;

if (MVIsp_Puts(COM1, str, "\0", &nn, 1000L) != MVI_SUCCESS)
printf(""%d characters were sent\n',nn);

See Also
MVIsp_Gets (page 238)

MVIsp_PutCh (page 231)
MVIsp_PutData (page 236)

ProSoft Technology, Inc. Page 235 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVIsp_PutData

Syntax
int MVIsp_PutData(int comport, BYTE *data, int *len, DWORD timeout);

Parameters

comport port to which data is to be sent

data pointer to array of bytes to be sent

len pointer to number of bytes to send / bytes sent
timeout amount of time to wait to send byte
Description

This function transmits an array of bytes across a serial port. comport must be
previously opened with MVIsp_Open.

data is a pointer to an array of bytes to be sent.

MVIsp_PutData sends each byte in the array data to the serial port. len should
point to the number of bytes in the array data to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the bytes are transmitted across the serial line. This function
attempts to insert the bytes into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the bytes cannot
be queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until all the bytes are queued successfully.

If all the bytes can be queued immediately, MVIsp_PutData returns
MVI_SUCCESS. If the characters cannot be queued immediately,
MVIsp_PutData tries to queue the bytes until the timeout elapses. If the timeout
elapses before the bytes can be queued, MVI_ERR_TIMEOUT is returned.

When MVIsp_PutData returns, it writes to the int pointed to by len the number of
bytes queued successfully. len is written for successfully sent bytes as well as
timeouts.

Note: If software handshaking is enabled on the external serial device,
sending data that contains XOFF characters may stop transmission from the
external serial device.

If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.

Page 236 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Return Value

MVI_SUCCESS the bytes were sent successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid parameter
MVI_ERR_TIMEOUT timeout elapsed before bytes sent
Example

BYTE dd[5] = { 10, 20, 30, 40, 50 };

int nn;

nn = 5;

if (M\VIsp_PutData(COM1, &dd[0], &nn, 1000L) != MVI_SUCCESS)
printf(""%d bytes were sent\n',nn);

See Also
MVisp_PutCh (page 231)

MVIsp_Puts (page 234)

ProSoft Technology, Inc. Page 237 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVIsp_Gets

Syntax
int MVIsp_Gets(int comport, BYTE *str, BYTE term, int *len, DWORD timeout);

Parameters

comport port from which data is to be received

str pointer to array of bytes to receive data
term termination character of data

len number of bytes to receive / bytes received
timeout amount of time to wait to receive character
Description

This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

str points to an array of bytes that will receive the data.
len points to the number of bytes to receive.

MVlsp_Gets retrieves bytes from the reception queue until either a byte is equal
to the termination character or the number of bytes pointed to by len are
retrieved. If a byte is retrieved that equals the termination character, the byte is
copied into the array str and the function returns.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Gets. This
function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_Gets returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.
If the function returns because a termination character was retrieved, len
includes the termination character in the length.

Note: If handshaking is enabled and the reception queue is full, this APl may
pause transmissions from the external device, and timeouts may then occur.

Page 238 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Return Value

MVI_SUCCESS bytes were retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved
Example

BYTE str[10];

int nn;

nn = 10;

if (M\VIsp_Gets(COM1, &str[0], "\r", &nn, 1000L) == MVI_SUCCESS)
printf(""%d bytes were received\n',nn);

See Also
MVisp_Getch (page 233)

MVIsp_Puts (page 234)
MVIsp_PutData (page 236)

ProSoft Technology, Inc. Page 239 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVIsp_GetData

Syntax
int MVIsp_GetData(int comport, BYTE *data, int *len, DWORD timeout);

Parameters

comport port from which data is to be received

data pointer to array of bytes to receive data

len number of bytes to receive / bytes received
timeout amount of time to wait to receive character
Description

This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

data points to an array of bytes that will receive the data.
len points to the number of bytes to receive.

MVIsp_GetData retrieves bytes from the reception queue until either the number
of bytes pointed to by len are retrieved or the timeout elapses.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_GetData.
This function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_GetData returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.

Return Value

MVI_SUCCESS bytes were retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer
MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved
Page 240 of 318 ProSoft Technology, Inc.

December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Example

BYTE data[10];

int nn;

nn = 10;

it (MVIsp_GetData(COM1, data, &nn, 1000L) == MVI_SUCCESS)
printf(""%d bytes were received\n',nn);

See Also
MVIsp_Gets (page 238)

MVIsp_Getch (page 233)
MVIsp_PutData (page 236)

ProSoft Technology, Inc. Page 241 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVIsp_GetCountUnsent

Syntax
int MVIsp_GetCountUnsent(int comport, int *count);

Parameters

comport Desired communications port

count Pointer to int to receive unsent character count
Description

MVIsp_GetCountUnsent returns the number of characters in the transmit queue
that are waiting to be sent. Since data sent to a port is queued before
transmission across a serial port, the application may need to determine if all
characters have been transmitted or how many characters remain to be
transmitted.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
sent to the serial port but not transmitted. If the returned count is 0, all data has
been transmitted. If it is non-zero, it contains the number of characters put into
the queue with MVIsp_Putch, MVIsp_Puts, or MVIsp_PutData but that have not
been transmitted.

Return Value

MVI_SUCCESS count retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example

int count;

if (MVIsp_GetCountUnsent(COM2,&count) == MVI_SUCCESS)
{

if (count == 0)
printf(""All chars sent\n');
else
printf(""%d characters remaining\n',count);

}

See Also
MVIsp_Putch (page 231)

MVIsp_Puts (page 234)
MVIsp_PutData (page 236)

Page 242 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsp_GetCountUnread

Syntax
int MVIsp_GetCountUnread(int comport, int *count);

Parameters

comport Desired communications port

count Pointer to int to receive unread character count
Description

MVIsp_GetCountUnread returns the number of characters in the receive queue
that are waiting to be read. Since data received from a port is queued after
reception from a serial port, the application may need to determine if all
characters have been read or how many characters remain to be read.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
received from the serial port but not read by the application. If the returned count
is 0, all received data has been read. If it is non-zero, it contains the number of
characters placed into the receive queue after reception from a serial port but
that have not been read from the queue with MVIsp_Getch, MVIsp_Gets, or
MVIsp_GetData.

Return Value

MVI_SUCCESS count retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example

int count;

if (MVIsp_GetCountUnread(COM2,&count) == MVI_SUCCESS)
{

if (count == 0)
printf(""All chars read\n');
else
printf(""%d characters remaining\n',count);

}

See Also
MVIsp_Getch (page 233)

MVIsp_Gets (page 238)
MVIsp_GetData (page 240)

ProSoft Technology, Inc. Page 243 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

MVIsp_PurgeDataUnsent

Syntax
int MVIsp_PurgeDataUnsent(int comport);

Parameters

comport port whose transmit data is to be purged

Description

MVIsp_PurgeDataUnsent deletes all data waiting in the transmit queue. The data
is discarded and is not transmitted.

Comport specifies the port whose transmit queue is to be purged.

Note: MVI46 and MVI56 only.

Return Value

MVI_SUCCESS the data was purged successfully
MVI_ERR_BADPARAM invalid comport
MVI_ERR_NOACCESS the comport has not been opened
Example

if (MVIsp_PurgeDataUnsent(COM1) == MVI_SUCCESS)
printf(""Transmit Data purged.-\n");

See Also:
MVIsp_PurgeDataUnread (page 245)

Page 244 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsp_PurgeDataUnread

Syntax
int MVIsp_PurgeDataUnread(int comport)

Parameters

comport port whose receive data is to be purged

Description

MVIsp_PurgeDataUnread deletes all data waiting in the receive queue. The data
is discarded and is no longer available for reading.

Note: If handshaking is enabled and the transmitting serial device has been
paused, this function will release the transmitting serial device to resume
transmission.

MVI146 and MVI56 only.

Return Value

MVI_SUCCESS the data was purged successfully
MVI_ERR_BADPARAM invalid comport
MVI_ERR_NOACCESS the comport has not been opened
Example

it (MVIsp_PurgeDataUnread(COM1) == MVI_SUCCESS)
printf("Transmit Data purged.\n');

See Also:
MVIsp_PurgeDataUnsent (page 244)

ProSoft Technology, Inc. Page 245 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Serial Port Library Functions
Application Development Module

Serial Port API Miscellaneous Functions

MVIsp_GetVersioninfo

Syntax
int MVIsp_GetVersionInfo(MVISPVERSIONINFO *verinfo);

Parameters
verinfo Pointer to structure of type MVISPVERSIONINFO

Description

MVIsp_GetVersioninfo retrieves the current version of the API. The version
information is returned in the structure verinfo.

The MVISPVERSIONINFO structure is defined as follows:

typedef struct tagMVISPVERSIONINFO
{
WORD APlSeries; /> APl series */
WORD APIRevision; /* APl revision */
} MVISPVERSIONINFO;

Return Value

MVI_SUCCESS The version information was read successfully.
Example
MVISPVERSIONINFO verinfo;

/* print version of APl library */
MVIsp_GetVersionIlnfo(&verinfo);
printf("'Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);

Page 246 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

10 CIP Messaging Library Functions

In This Chapter

» CIP Messaging API Files ... 247
> CIP API ArchiteCturecccooviiiiiiiieic e 247
» CIP API Initialization FUNCLIONSccooiiiiiiiiiieiieceieee 249
» CIP Object Registration...........cccccovviiiiiiiiiiniiceee 251
» CIP Connected Data Transfer...........cccceevieiiieniicniieneen, 254
> CIP Callback FUNCLONS........c..cocierciiiiiienic e 257
» CIP Special Callback Registration..............ccccccvvvveeeeeiinnenn. 268
» CIP Miscellaneous FUNCtiONS...........ccccevriiiiiieiniiciiecniee 271

The CIP Messaging API is one component of the MVI-ADM API Suite. CIP API
provides the lowest level of access to the ControlLogix backplane interface.
Complex applications, such as certain communications protocols, may interface
directly with the CIP API. It may be used with the MVI 56 only.

10.1 CIP Messaging API Files

The following table lists the supplied CIP messaging API filenames. These files
should be copied to a convenient directory on the computer on which the
application is to be developed. These files need not be present on the module
when executing the application.

Filename Description
Cipapi.h Include File
Cipapi.lib Library (16-bit OMF format)

10.2 CIP API Architecture

The CIP APl communicates with the ControlBus through the backplane device
driver (MVI56BP.EXE). The backplane driver must be loaded before running an
application which uses the CIP API.

10.2.1 Backplane Device Driver

Details for each function are provided in the following topics.

ProSoft Technology, Inc. Page 247 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Initialization
MVlcip_Open

MViIcip_Close

Object Registration
MVIcip_RegisterAssemblyObj

MVlcip_UnregisterAssemblyObj

Connected Data Transfer
MVlcip_WriteConnected

MViIcip_ReadConnected

Callback Functions
cnnect_proc

service_proc
rxdata_proc
fatalfault_proc
flashupdate proc

resetrequest_proc

Special Callback Registration
MVIcip_RegisterReset ReqRtn

MVIcip_RegisterFatalFaultRtn
MViIcip_RegisterFlashUpdateRtn

Miscellaneous
MViIcip_GetldObject

MVlcip_GetVersioninfo
MVicip_SetUserLED
MVlcip_SetModuleStatus
MVIcip_ErrorString
MVlcip_GetSetupMode
MViIcip_GetConsoleMode
MVicip_Sleep

Page 248 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

CIP API Initialization Functions

MVicip_Open

Syntax
int MVIcip_Open(MVIHANDLE *handle);

Parameters
handle pointer to variable of type MVIHANDLE

Description

MVlcip_Open acquires access to the CIP Messaging API and sets handle to a
unique ID that the application uses in subsequent functions. This function must
be called before any of the other CIP API functions can be used.

Return Value

MVI_SUCCESS API was opened successfully

MVI_ERR_REOPEN APl is already open

MVI_ERR_NODEVICE backplane driver could not be accessed

Note: MVI_ERR_NODEVICE will be returned if the backplane device driver is not
loaded.

Example

MVIHANDLE handle;
if (MVIcip_Open(&handle) = MVI_SUCCESS)

{
printf (""Open failed!\n™");

}

else

{
printf ("'Open succeeded\n');

}

See Also
MVIcip_Close (page 250)

After the API has been opened, MVIcip_Close should always be called before
exiting the application.

ProSoft Technology, Inc. Page 249 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

MVicip_Close

Syntax
int MVIcip_Close(MVIHANDLE handle);

Parameters

handle handle returned by previous call to MVIcip_Open

Description
This function is used by an application to release control of the CIP API.

handle must be a valid handle returned from MVIcip_Open.

Return Value

MVI_SUCCESS APl was closed successfully
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;
MVIcip_Close (handle);

See Also
MVIcip_Open (page 249)

After the CIP API has been opened, this function should always be called before
exiting the application.

Page 250 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

CIP Object Registration

MVIcip_RegisterAssemblyObj

Syntax

int MVIcip_RegisterAssemblyObj(MVIHANDLE handle, MVIHANDLE *objHandle, DWORD
reg_param, MVICALLBACK (*connect_proc)(), MVICALLBACK (*service_proc)(),
MVICALLBACK (*rxdata_proc)(Q));

Parameters

handle handle returned by previous call to MVIcip_Open

objHandle pointer to variable of type MVIHANDLE. On successful return,
this variable will contain a value which identifies this object.

reg_param value that will be passed back to the application as a parameter
in the connect_proc and service_proc callback functions.

connect_proc pointer to callback function to handle connection requests

service_proc pointer to callback function to handle service requests

rxdata_proc pointer to callback function to receive data from an open
connection

Description

This function is used by an application to register all instances of the Assembly
Object with the CIP API. The object must be registered before a connection can
be established with it.

handle must be a valid handle returned from MVIcip_Open.

reg_param is a value that will be passed back to the application as a parameter
in the connect_proc and service_proc callback functions. The application may
use this to store an index or pointer. It is not used by the CIP API.

connect_proc is a pointer to a callback function to handle connection requests to
the registered object. This function will be called by the backplane device driver
when a Class 1 scheduled connection request for the object is received. It will
also be called when an established connection is closed.

service_proc is a pointer to a callback function which handles service requests to
the registered object. This function will be called by the backplane device driver
when an unscheduled message is received for the object.

rxdata_proc is a pointer to a callback function which handles data received on an
open connection. If rxdata_proc is NULL, then the CIP API buffers the received
data and the application must retrieve the data using the
MVIcip_ReadConnected() function. If rxdata_proc is not NULL, then the
rxdata_proc callback routine must copy the received data to a local buffer.

ProSoft Technology, Inc. Page 251 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Return Value

MVI_SUCCESS object was registered successfully
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM connect_proc or service_proc is NULL
MVI_ERR_ALREADY_REGISTERED object has already been registered
Example

MV IHANDLE handle;

MV IHANDLE objHandle;

MY_STRUCT mystruct;

int rc;

MVICALLBACK MyConnectProc (MVIHANDLE, MVICIPCONNSTRUC *);

MVICALLBACK MyServiceProc(MVIHANDLE, MVICIPSERVSTRUC *);

// Register all instances of the assembly object

rc = MVIcip_RegisterAssemblyObj(handle, &objHandle,

(DWORD)&mystruct, MyConnectProc, MyServiceProc, NULL);

if (rc = MVI_SUCCESS) printf("Unable to register assembly object\n');

See Also
MVIcip_UnregisterAssemblyObj (page 253)

connect_proc (page 257)

service_proc (page 261)

Page 252 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIcip_UnregisterAssemblyObj

Syntax
int MVIcip_UnregisterAssemblyObj(MVIHANDLE handle, MVIHANDLE objHandle);

Parameters

handle handle returned by previous call to MVIcip_Open
objHandle handle for object to be unregistered
Description

This function is used by an application to unregister all instances of the Assembly
Object with the CIP API. Any current connections for the object specified by
objHandle will be terminated.

handle must be a valid handle returned from MVicip_Open.
objHandle must be a handle returned from
MViIcip_RegisterAssemblyObj.

Return Value

MVI_SUCCESS object was unregistered successfully
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM objHandle is invalid

Example

MVIHANDLE handle;

MVIHANDLE objHandle;

// Unregister all instances of the object
MVIcip_UnregisterAssemblyObj(handle, objHandle);

See Also
MVIcip_RegisterAssemblyObj (page 251)

ProSoft Technology, Inc. Page 253 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

CIP Connected Data Transfer

MVIcip_WriteConnected

Syntax

int MVIcip_WriteConnected(MVIHANDLE handle, MVIHANDLE connHandle, BYTE *dataBuf,
WORD offset,WORD dataSize);

Parameters

handle handle returned by previous call to MVIcip_Open
connHandle handle of open connection

dataBuf pointer to data to be written

offset offset of byte to begin writing

dataSize number of bytes of data to write

Description

This function is used by an application to update data being sent on the open
connection specified by connHandle.

Handle must be a valid handle returned from MVIcip_Open.
ConnHandle must be a handle passed by the connect_proc callback function.
Offset is the offset into the connected data buffer to begin writing.
DataBuf is a pointer to a buffer containing the data to be written.
DataSize is the number of bytes of data to be written.

Note: For Assembly Instance 1, the first 4 bytes of the 5550 input image table
are overwritten with "FF" (hex) when the connection is not open or broken.

Return Value

MVI_SUCCESS data was updated successfully
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM connHandle or dataSize is invalid

Example

MVIHANDLE handle;

MVIHANDLE connHandle;

BYTE buffer[128];

// Write 128 bytes to the connected data buffer
MVIcip_WriteConnected(handle, connHandle, buffer, 0, 128);

See Also
MVIcip_ReadConnected (page 255)

Page 254 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIcip_ReadConnected

Syntax

int MVIcip_ReadConnected(MVIHANDLE handle, MVIHANDLE connHandle, BYTE *dataBuf,
WORD offset, WORD dataSize);

Parameters

handle handle returned by previous call to MVIcip_Open
connHandle handle of open connection

dataBuf pointer to buffer to receive data

offset offset of byte to begin reading

dataSize number of bytes to read

Description

This function is used by an application read data being received on the open
connection specified by connHandle.

handle must be a valid handle returned from MVIcip_Open. connHandle must be
a handle passed by the connect_proc callback function. offset is the offset into

the connected data buffer to begin reading. dataBuf is a pointer to a buffer to
receive the data. dataSize is the number of bytes of data to be read.

Notes: When a connection has been established with a ControlLogix 5550
controller, the first 4 bytes of received data are processor status and are
automatically set by the 5550. The first byte of data appears at offset 4 in the
receive data buffer.

A Run/Idle status word is appended when the communication format is one of
the "Data-xxx" types. This status word is not used for "Input Data-xxx" types or
status connections. Only the least significant bit of the word is used. All other
bits are reset to 0. When set to 1 (run), the bit signals the module to activate its
I/0. When reset to 0, it signals the module to deactivate I/O (idle state).

The Run/Idle bit can be set only when the processor is in Run mode.
The bit is reset when the 5550 processor:

goes into a major fault state

is in program mode

is in test mode

The MVIcip_ReadConnected function can only be used if the rxdata_proc
callback function pointer was set to NULL in the call to
MVlcp_RegisterAssemblyObject().

ProSoft Technology, Inc. Page 255 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Return Value

MVI_SUCCESS data was read successfully
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM connHandle or dataSize is invalid
MVI_ERR_INVALID an rxdata_proc callback has been registered
Example

MVIHANDLE handle;

MVIHANDLE connHandle;

BYTE buffer[128];

// Read 128 bytes from the connected data buffer
MVIcip_ReadConnected(handle, connHandle, buffer, 0, 128);

See Also
MVIicip_WriteConnected (page 254)

Page 256 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

CIP Callback Functions

Note: The functions in this section are not part of the CIP API, but must be
implemented by the application. The CIP API calls the connect_proc or
service_proc functions when connection or service requests are received for
the registered object. The optional rxdata_proc function is called when data is
received on a connection. The optional fatalfault_proc function is called when
the backplane device driver detects a fatal fault condition. The optional
resetrequest_proc function is called when a reset request is received by the
backplane device driver.

Special care must be taken when coding the callback functions, because these
functions are called directly from the backplane device driver. in particular, no
assumptions can be made about the segment registers DS or SS. Therefore, the
compiler options or directives used must disable stack probes and reload DS. For
convenience, the macro MVICALLBACK has been defined to include the
__loadds compiler directive, which forces the data segment register to be
reloaded upon entry to the callback function.

Stack probes (or stack checking) must be disabled using compiler command line
arguments or pragmas. Stack checking is off by default for the Borland compiler.

In general, the callback routines should be as short as possible, especially
rxdata_proc. Do not call any library functions from the rxdata_proc callback
routine. Stack size is limited, so keep stack variables to a minimum.

connect_proc

Syntax
MVICALLBACK connect_proc(MVIHANDLE objHandle, MVICIPCONNSTRUC *sConn);

Parameters

objHandle handle of registered object instance

sConn pointer to structure of type MVICIPCONNSTRUCT
Description

connect_proc is a callback function which is passed to the CIP APl in the
MVIcip_RegisterAssemblyObj call. The CIP API calls the connect_proc function
when a Class 1 scheduled connection request is made for the registered object
instance specified by objHandle.

sConn is a pointer to a structure of type MVICIPCONNSTRUCT. this structure is
shown below:

typedef struct tagMVICIPCONNSTRUC
{

MVIHANDLE connHandle; // unique value which identifies this connection
DWORD reg_param; // value passed via MVIcip_Register AssemblyObj

ProSoft Technology, Inc. Page 257 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

WORD reason; // specifies reason for callback

WORD instance; // instance specified in open

WORD producerCP; // producer connection point specified in open
WORD consumerCP; // consumer connection point specified in open
DWORD *10TApi; // pointer to originator to target packet interval
DWORD *ITOApi; // pointer to target to originator packet interval
DWORD I0DeviceSn; // Serial number of the originator

WORD i0OVendorld; // Vendor Id of the originator

WORD rxDataSize; // size in bytes of receive data

WORD txDataSize; // size in bytes of transmit data

BYTE *configData; // pointer to configuration data sent in open
WORD configSize; // size of configuration data sent in open

WORD *extendederr; // an extended error code if an error occurs
} MVICIPCONNSTRUC;

connHandle identifies this connection. This value must be passed to the

MViIcip_SendConnected and MVIcip_ReadConnected functions.

reg_param is the value that was passed to MVIcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

reason specifies whether the connection is being opened or closed. A value of
MVI_CIP_CONN_OPEN indicates the connection is being opened,
MVI_CIP_CONN_OPEN_COMPLETE indicates the connection has been
successfully opened, and MVI_CIP_CONN_CLOSE indicates the connection is
being closed. If reason is MVI_CIP_CONN_CLOSE, the following parameters are
unused: producerCP, consumerCP, api, rxDataSize, and txDataSize.

instance is the instance number that is passed in the forward open.

(Note: This corresponds to the Configuration Instance on the RSLogix 5000
generic profile.)

producerCP is the producer connection point from the open request.

(Note: This corresponds to the Input Instance on the RSLogix 5000 generic
profile.)

consumerCP is the consumer connection point from the open request.

(Note: This corresponds to the Output Instance on the RSLogix 5000 generic
profile.)

IOTApi is a pointer to the originator-to-target actual packet interval for this
connection, expressed in microseconds. This is the rate at which connection data
packets will be received from the originator. This value is initialized according to
the requested packet interval from the open request. The application may choose
to reject the connection if the value is not within a predetermined range. If the
connection is rejected, return MVI_CIP_FAILURE and set extendederr to
MVI_CIP_EX BAD_RPI. Note: The minimum RPI value supported by the MVI56
module is 600us.

Page 258 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

ITOApiI is a pointer to the target-to-originator actual packet interval for this
connection, expressed in microseconds. This is the rate at which connection data
packets will be transmitted by the module. This value is initialized according to
the requested packet interval from the open request. The application may choose
to increase this value if necessary.

IODeviceSn is the serial number of the originating device, and iOVendorld is the
vendor ID. The combination of vendor ID and serial number is guaranteed to be

unique, and may be used to identify the source of the connection request. This is
important when connection requests may be originated by multiple devices.

rxDataSize is the size in bytes of the data to be received on this connection.
txDataSize is the size in bytes of the data to be sent on this connection.

configData is a pointer to a buffer containing any configuration data that was sent
with the open request. configSize is the size in bytes of the configuration data.

extendederr is a pointer to a word which may be set by the callback function to
an extended error code if the connection open request is refused.

Return Value

The connect_proc routine must return one of the following values if reason is
MVI_CIP_CONN_OPEN:

Note: If reason is MVI_CIP_CONN_OPEN_COMPLETE or
MVI_CIP_CONN_CLOSE, the return value must be MVI_SUCCESS.

MVI_SUCCESS connection is accepted

MVI_CIP_BAD_INSTANCE instance is invalid

MVI_CIP_NO_RESOURCE unable to support connection due to resource limitations
MVI_CIP_FAILURE connection is rejected - extendederr may be set

Extended Error Codes

If the open request is rejected, extendederr can be set to one of the following
values:

MVI_CIP_EX_CONNECTION_USED The requested connection is already in use.
MVI_CIP_EX_BAD_RPI The requested packet interval cannot be supported.

MVI_CIP_EX BAD_SIZE The requested connection sizes do not match the
allowed sizes.

Example

MV IHANDLE Handle;

MVICALLBACK connect_proc(MVIHANDLE objHandle, MVICIPCONNSTRUCT
*sConn)

{

// Check reason for callback

switch(sConn->reason)

{
case MVI_CIP_CONN_OPEN:

ProSoft Technology, Inc. Page 259 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

// A new connection request is being made. Validate the // parameters and
determine whether to allow the // connection.

// Return MVI_SUCCESS if the connection is to be

// established,

// or one of the extended error codes if not. Refer to the sample
// code for more details.

return(MV1_SUCCESS) ;

case MVI_CIP_CONN_OPEN_COMPLETE:

// The connection has been successfully opened. If

// necessary,

// call MVicip_WriteConnected to initialize transmit data.
return(MV1_SUCCESS) ;

case MVI_CIP_CONN_CLOSE:

// This connection has been closed - inform the application
return(MVI1_SUCCESS) ;

}

}

See Also
MVIcip_RegisterAssemblyObj (page 251)

MVIcip_SendConnected
MVIcip_ReadConnected (page 255)

Page 260 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

service_proc

Syntax
MVICALLBACK service_proc(MVIHANDLE objHandle, MVICIPSERVSTRUC *sServ);

Parameters

objHandle handle of registered object

sServ pointer to structure of type MVICIPSERVSTRUC
Description

service_proc is a callback function which is passed to the CIP API in the
MViIcip_RegisterAssemblyObj call. The CIP API calls the service_proc function
when an unscheduled message is received for the registered object specified by
objHandle.

Note that the object ID, Instance Number, is overwritten by the instance
parameter of the structure below.

sServ is a pointer to a structure of type MVICIPSERVSTRUC. This structure is
shown below:

typedef struct tagMVICIPSERVSTRUC

{
DWORD reg_param; // value passed via MVIcip_RegisterAssemblyObj

WORD instance; // instance number of object being accessed

BYTE serviceCode; // service being requested

WORD attribute; // attribute being accessed

BYTE **msgBuf; // pointer to pointer to message data

WORD offset; // member offset

WORD *msgSize; // pointer to size in bytes of message data

WORD *extendederr; // an extended error code if an error occurs

} MVICIPSERVSTRUC;

reg_param is the value that was passed to MVIcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

instance specifies the instance of the object being accessed.

serviceCode specifies the service being requested. attribute specifies the
attribute being accessed.

msgBuf is a pointer to a pointer to a buffer containing the data from the message.
This pointer should be updated by the callback routine to point to the buffer
containing the message response upon return.

offset is the offset of the member being accessed.
msgSize points to the size in bytes of the data pointed to by msgBuf.

The application should update this with the size of the response data before
returning.

ProSoft Technology, Inc. Page 261 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

extendederr is a pointer to a word which can be set by the callback function to an
extended error code if the service request is refused.

Return Value
The service_proc routine must return one of the following values:

MVI_SUCCESS message processed successfully
MVI_CIP_BAD_INSTANCE invalid class instance
MVI_CIP_BAD_SERVICE invalid service code
MVI_CIP_BAD_ATTR invalid attribute
MVI_CIP_ATTR_NOT_SETTABLE attribute is not settable
MVI_CIP_PARTIAL_DATA data size invalid
MVI_CIP_BAD_ATTR _DATA attribute data is invalid
MVI_CIP_FAILURE generic failure code

Example

MVIHANDLE Handle;

MVICALLBACK service_proc (MVIHANDLE objHandle, MVICIPSERVSTRUC
*sServ)

{

// Select which instance is being accessed.

// The application defines how each instance is defined.
switch(sServ->instance)

{

case 1: // Instance 1

// Check serviceCode and attribute; perform

// requested service if appropriate

break;

case 2: // Instance 2

// Check serviceCode and attribute; perform

// requested service if appropriate

break;

default:

return(MVI_CIP_BAD_INSTANCE); // Invalid instance

b

¥

See Also
MVIcip_RegisterAssemblyObj (page 251)

Page 262 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

rxdata_proc

Syntax
int rxdata_proc(MVIHANDLE objHandle, MVICIPRECVSTRUC *sRecv);

Parameters

objHandle handle of registered object

sRecv pointer to structure of type MVICIPRECVSTRUC
Description

rxdata_proc is an optional callback function which may be passed to the CIP API
in the MVIcip_RegisterAssemblyObj call. If the rxdata_proc callback has been
registered, the CIP API calls it when Class 1 scheduled data is received for the
registered object specified by objHandle.

sRecv is a pointer to a structure of type MVICIPRECVSTRUC. this structure is
shown below:

typedef struct tagMVICIPRECVSTRUC

{
DWORD reg_param; // value passed via MVIcip_Register AssemblyObj

MVIHANDLE connHandle; // unique value which identifies this connection
BYTE*" rxData; // pointer to buffer of received data

WORD dataSize; // size of received data in bytes

} MVICIPRECVSTRUC;

reg_param is the value that was passed to MVIcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

connHandle is the connection identifier passed to the connect_proc callback
when this connection was opened.

rxData is a pointer to a buffer containing the received data. dataSize is the size of
the received data in bytes.

Note: Use of the rxdata_proc callback is not recommended. Registering this
callback increases CPU overhead and reduces overall performance, especially
for relatively small RPI values. It is recommended that this callback only be
used when the RPI is set to 10ms or greater.

This routine is called directly from an interrupt service routine in the backplane
device driver. It should not perform any operating system calls and should
execute as quickly as possible (200us maximum). Its only function should be
to copy the data to a local buffer. The data must not be processed in the
callback routine, or backplane communications may be disrupted.

Return Value
The rxdata_proc routine must return MVI_SUCCESS.

ProSoft Technology, Inc. Page 263 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Example

MVIHANDLE Handle;

int _loadds rxdata_proc(MVIHANDLE objHandle, MVICIPRECVSTRUC *sRecv)
{

// Copy the data to our local buffer.

memcpy(RxDataBuf, sRecv->rxData, sRecv->dataSize);

// Indicate that new data has been received

RxDataCnt++;

return(MV1_SUCCESS);

}

See Also
MVIcip_RegisterAssemblyObj (page 251)

Page 264 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

fatalfault_proc

Syntax
MVICALLBACK fatalfault_proc();

Parameters
None

Description

fatalfault_proc is an optional callback function which may be passed to the CIP
APl in the MVIcip_RegisterFatalFaultRtn call. If the fatalfault_proc callback has
been registered, it will be called if the backplane device driver detects a fatal fault
condition. This allows the application an opportunity to take appropriate actions.

Return Value
The fatalfault_proc routine must return MVI_SUCCESS.

Example

MVIHANDLE Handle;

MVICALLBACK fatalfault_proc(void)

{

// Take whatever action is appropriate for the application:
// - Set local 1/0 to safe state

// - Log error

// - Attempt recovery (for example, restart module)
return(MVI1_SUCCESS) ;

}

See Also
MVIcip_RegisterFatalFaultRtn; (page 268)

ProSoft Technology, Inc. Page 265 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

flashupdate_proc

Syntax
MVICALLBACK flashupdate_proc();

Parameters
None

Description

flashupdate_proc is an optional callback function which may be passed to the
CIP APl in the MVIcip_RegisterFlashUpdateRtn call. If the flashupdate_proc
callback has been registered, it will be called if the backplane device driver
receives a flash update command. This allows the application an opportunity to
take appropriate actions before it is stopped.

Return Value
The flashupdate_proc routine must return MVI_SUCCESS.

Example

MVIHANDLE Handle;
MVICALLBACK flashupdate_proc(void)

{

// Take whatever action is appropriate for the application:
// - Set local 1/0 to safe state

// - Trigger an orderly shutdown

return(MVI1_SUCCESS) ;

}

See Also
MVIcip_RegisterFlashUpdateRtn (page 270)

Page 266 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

resetrequest_proc

Syntax
MVICALLBACK resetrequest_proc();

Parameters
None

Description

resetrequest_proc is an optional callback function which may be passed to the
CIP API in the MVIcip_RegisterResetReqRtn call. If the resetrequest_proc
callback has been registered, it will be called if the backplane device driver
receives a module reset request (Identity Object reset service). This allows the
application an opportunity to take appropriate actions to prepare for the reset, or
to refuse the reset.

Return Value

MVI_SUCCESS the module will reset upon return from the callback
MVI_ERR_INVALID the module will not be reset and will continue normal operation
Example

MVIHANDLE Handle;

MVICALLBACK resetrequest_proc(void)

{

// Take whatever action is appropriate for the application:
// - Set local 1/0 to safe state

// - Perform orderly shutdown

// - Reset special hardware

// - Refuse the reset

return(MVI1_SUCCESS); // allow the reset

}

ProSoft Technology, Inc. Page 267 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

CIP Special Callback Registration

MVIcip_RegisterFatalFaultRtn

Syntax

int MVIcip_RegisterFatalFaultRtn(MVIHANDLE handle, MVICALLBACK
(fatalfault_proc)());

Parameters

handle handle returned by previous call to MVIcip_Open
fatalfault_proc pointer to fatal fault callback routine
Description

This function is used by an application to register a fatal fault callback routine.
Once registered, the backplane device driver will call fatalfault_proc if a fatal fault
condition is detected.

handle must be a valid handle returned from MVicip_Open.
fatalfault_proc must be a pointer to a fatal fault callback function.

A fatal fault condition will result in the module being taken offline; that is, all
backplane communications will halt. The application may register a fatal fault
callback in order to perform recovery, safe-state, or diagnostic actions.

Return Value

MVI_SUCCESS routine was registered successfully
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;
// Register a fatal fault handler
MVIcip_RegisterFatalFaultRtn(handle, fatalfault_proc);

See Also
fatalfault_proc (page 265)

Page 268 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIcip_RegisterResetReqRtn

Syntax

int MVIcip_RegisterResetReqRtn(MVIHANDLE handle, MVICALLBACK
(*resetrequest_proc)());

Parameters

handle handle returned by previous call to MVIcip_Open
resetrequest_proc pointer to reset request callback routine
Description

This function is used by an application to register a reset request callback
routine. Once registered, the backplane device driver will call resetrequest_proc
if a module reset request is received.

handle must be a valid handle returned from MVIcip_Open.
resetrequest_proc must be a pointer to a reset request callback function.

If the application does not register a reset request handler, receipt of a module
reset request will result in a software reset (that is, reboot) of the module. The
application may register a reset request callback in order to perform an orderly
shutdown, reset special hardware, or to deny the reset request.

Return Value

MVI_SUCCESS routine was registered successfully
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;
// Register a reset request handler
MVIcip_RegisterResetReqRtn(handle, resetrequest_proc);

See Also
resetrequest_proc (page 267)

ProSoft Technology, Inc. Page 269 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

MVIcip_RegisterFlashUpdateRtn

Syntax

int MVIcip_RegisterFlashUpdateRtn(MVIHANDLE handle, MVICALLBACK
(*flashupdate_proc)());

Parameters

handle handle returned by previous call to MVIcip_Open
flashupdate_proc pointer to flash update callback routine
Description

This function is used by an application to register a flash update callback routine.
Once registered, the backplane device driver will call flashupdate_proc if a flash
update command is received. (A flash update command updates the module's
firmware. It is generated by a firmware update utility such as Control Flash.)

handle must be a valid handle returned from MVIcip_Open.
flashupdate_proc must be a pointer to a flash update callback function.

The application may register a flash update callback in order to perform an
orderly shutdown. Once a flash update command is received, the backplane
device driver will close all open connections, and will refuse any new connections
until the update has completed. After calling the flash update callback (if
registered), the backplane device driver will restart the module in flash update
mode (no application will be loaded).

After the flash update has completed, the module will be restarted in normal
mode.

Return Value

MVI_SUCCESS Routine was registered successfully
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;
// Register a flash update handler
MVIcip_RegisterFlashUpdateRtn(handle, flashupdate_proc);

See Also
flashupdate_proc (page 266)

Page 270 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

CIP Miscellaneous Functions

MVicip_GetldObject

Syntax
int MVIcip_GetldObject(MVIHANDLE handle, MVICIPIDOBJ *idobject);

Parameters

handle handle returned from MVIcip_Open call

Description
MViIcip_GetldObject retrieves the identity object for the module.

handle must be a valid handle returned from MVicip_Open.

idobject is a pointer to a structure of type MVICIPIDOBJ. The members of this
structure will be updated with the module identity data.

The MVICIPIDOBJ structure is defined below:

typedef struct tagMVICIPIDOBJ

{

WORD VendorlID; // Vendor 1D number

WORD DeviceType; // General product type

WORD ProductCode; // Vendor-specific product identifier
BYTE MajorRevision; // Major revision level

BYTE MinorRevision; // Minor revision level

DWORD SerialNo; // Module serial number

BYTE Name[32]; // Text module name (null-terminated)
} MVICIPIDOBJ;

Return Value:

MVI_SUCCESS ID object was retrieved successfully
MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

MVICIPIDOBJ idobject;

MVIcip_GetldObject(handle, &idobject);

printf(""Module Name: %s Serial Number: %lu\n', idobject.Name,
idobject._SerialNo);

ProSoft Technology, Inc. Page 271 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

MVIcip_GetVersioninfo

Syntax
int MVIcip_GetVersionInfo(MVIHANDLE handle, VICIPVERSIONINFO *verinfo);

Parameters

handle handle returned by previous call to MVIicip_Open

verinfo pointer to structure of type MVICIPVERSIONINFO
Description

MVlcip_GetVersionlnfo retrieves the current version of the API library and the
backplane device driver. The information is returned in the structure verinfo.

handle must be a valid handle returned from MVIcip_Open.
The MVICIPVERSIONINFO structure is defined as follows:

typedef struct tagMVICIPVERSIONINFO

{

WORD APISeries; /*APl series */

WORD APIRevision; /7* APl revision */

WORD BPDDSeries; /* Backplane device driver series */
WORD BPDDRevision; /* Backplane device driver revision */
3} MVICIPVERSIONINFO;

Return Value

MVI_SUCCESS version information was read successfully
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE Handle;

MVICIPVERSIONINFO verinfo;

/* print version of APl library */

MVIcip_GetVersionlnfo(Handle,&verinfo);

printf('Library Series %d, Rev %d\n", verinfo.APISeries, verinfo._APIRevision);
printf("'Driver Series %d, Rev %d\n', verinfo.BPDDSeries,
verinfo.BPDDRevision);

Page 272 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVicip_SetUserLED

Syntax
int MVIcip_SetUserLED(MVIHANDLE handle, int lednum, int ledstate);

Parameters

handle handle returned by previous call to MVIcip_Open

lednum specifies which of the user LED indicators is being addressed
ledstate specifies state for LED indicator

Description

MVilcip_SetUserLED allows an application to turn the user LED indicators on and
off.

handle must be a valid handle returned from MVIicip_Open.

lednum must be setto MVI_LED USER1 or MVI_LED_USER2 to select User
LED 1 or User LED 2, respectively.

ledstate must be setto MVI_LED _STATE_ON or MVI_LED_STATE_OFF to turn
the indicator On or Off, respectively.

Return Value

MVI_SUCCESS the input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM lednum or ledstate is invalid.
Example

MVIHANDLE Handle;

/* Turn User LED 1 on and User LED 2 off */
MVIcip_SetUserLED(Handle, MVI_LED USER1, MVI_LED_STATE_ON);
MVIcip_SetUserLED(Handle, MVI_LED USER2, MVI_LED_STATE_OFF);

ProSoft Technology, Inc. Page 273 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

MVIicip_SetModuleStatus

Syntax
int MVIcip_SetModuleStatus(MVIHANDLE handle, int status);

Parameters

handle handle returned by previous call to MVIcip_Open

status module status, OK or Faulted

Description

MViIcip_SetModuleStatus allows an application set the status of the module to
OK or Faulted.

handle must be a valid handle returned from MVIcip_Open.

status must be set to MVI_MODULE_STATUS_OK or
MVI_MODULE_STATUS_FAULTED. If the status is Ok, the module status LED
indicator will be set to Green. If the status is Faulted, the status indicator will be
set to Red.

Return Value

MVI_SUCCESS the input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM lednum or ledstate is invalid.
Example

MVIHANDLE Handle;
/* Set the Status indicator to Red */
MVIcip_SetModuleStatus(Handle, MVI_MODULE_STATUS_FAULTED);

Page 274 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVicip_ErrorString

Syntax

int MVIcip_ErrorString(int errcode, char *buf);

Parameters
errcode error code returned from an API function
buf pointer to user buffer to receive message
Description

MVlcip_ErrorString returns a text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value

MVI_SUCCESS message returned in buf
MVI_ERR_BADPARAM unknown error code
Example

char buf[80];

int rc;

/* print error message */
MVIcip_ErrorString(rc, buf);
printf(""Error: %s"™, buf);

ProSoft Technology, Inc. Page 275 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

MVicip_GetSetupMode

Syntax
int MVIcip_GetSetupMode(MVIHANDLE handle, int *mode);

Parameters

handle handle returned by previous call to MVIcip_Open

mode pointer to an integer that is set to 1 if the Setup Jumper is
installed, or 0 if the Setup Jumper is not installed.

Description

This function queries the state of the Setup Jumper.
handle must be a valid handle returned from MVIcip_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the module is in Setup Mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup Mode.

It may be useful for an application to detect Setup Mode and perform special
configuration or diagnostic functions.

Return Value

MVI_SUCCESS no errors were encountered
MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int mode;

MVIcip_GetSetupMode(handle, é&mode);

it (mode)

// Setup Jumper is installed - perform configuration/diagnostic
else

// Not in Setup Mode - normal operation

Page 276 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Messaging Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVicip_GetConsoleMode

Syntax
int MVIcip_GetConsoleMode(MVIHANDLE handle, int *mode, int *baud);

Parameters

Handle handle returned by previous call to MVIcip_Open

mode pointer to an integer that is set to 1 if the console is enabled, or
0 if the console is disabled.

baud pointer to an integer that is set to the console baud rate index if
the console is enabled.

Description

This function queries the state of the console.

handle must be a valid handle returned from MVIcip_Open. mode is a pointer to
an integer. When this function returns, mode will be set to 1 if the console is
enabled, or 0 if the console is disabled. baud is a pointer to an integer. When this
function returns, baud will be set to the console's baud index value if the console
is enabled. The baud index values are shown in table (4). baud is not set if the
console is disabled.

It may be useful for an application to detect that the console is enabled and allow
user interaction.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;

int mode;

MVIcip_GetConsoleMode(handle, &mode);

it (mode)

// Console is enabled - allow user interaction

else

// Console is not available - normal operation

ProSoft Technology, Inc. Page 277 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable CIP Messaging Library Functions
Application Development Module

MVicip_Sleep

Syntax
int MVIcip_Sleep(MVIHANDLE handle, WORD msdelay);

Parameters

handle handle returned by previous call to MVIcip_Open
msdelay time in milliseconds to suspend taskdelay);
Description

MViIcip_Sleep suspends the calling thread for at least msdelay milliseconds. The
actual delay may be several milliseconds longer than msdelay, due to system
overhead and the system timer granularity (5ms).

Return Value

MVI_SUCCESS success
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;

int timeout=200;

// Simple timeout loop

while(timeout--)

{

// Poll for data, etc.

// Break if condition is met (no timeout)
// Else sleep a bit and try again
MVicip_Sleep (handle, 10);}

Page 278 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions

MVI-ADM e 'C' Programmable
Application Development Module

11 Side-Connect API Library Functions

In This Chapter

P INtializationcoooiiiiii 279
» PLC Message Handlingcoooiiiiiiiiiiiiieeeiieeee e 280
> Side-connect API Initialization Functionsc............ 281
> Side-connect API PLC Data Table Access Functions.......... 283
» Side-connect API Synchronization Functions 291
» Side-connect API PLC Message Handling Functions 292
> Side-connect API Block Transfer Functions..............c.c....... 296
» Side-connect API PLC Status and Control Functions 2908
» Side-connect API Miscellaneous Functionscc.c....... 304

This section provides detailed programming information for each of the API
library functions. he calling convention for each API function is shown in C

format.

Important: Side-Connect API Functions apply to MVI71 only and are not

supported by other modules. T

The API library routines are categorized according to functionality as follows:

11.1 Initialization
MVIsc_Open
MVlsc_Close

11.1.1 PLC Data Table Access
MVlIsc_GetPLCFilelnfo

MVlisc_ReadPLC

MVlisc_WritePLC

MVisc_ RMWPLC

11.1.2 Synchronization
MVlisc_WaitForEos

ProSoft Technology, Inc.
December 12, 2006

Page 279 of 318

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

11.2 PLC Message Handling
MVlisc_PLCMsgRead
MVlisc_PLCMsgWrite
MVlisc_PLCMsgWait

11.2.1 Block Transfer
MVlisc_PLCBTRead
MVisc_PLCBTWrite

11.2.2 PLC Status and Control
MVlisc_GetPLCStatus

MVlIsc_GetPLCClock

MVIsc_SyncPLCClock

MVisc_ClearFault

MVlisc_SetPLCMode

11.2.3 Miscellaneous
MVlsc_GetVersioninfo
MVlsc_ErrorStr
MVlsc_GetlLastPcccError
MVIsc_BCD2BIN

MViIsc_BIN2BCD

Page 280 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Side-connect API Initialization Functions

MVIsc_Open

Syntax
int MVIsc_Open(HANDLE *handle);

Parameters

handle Pointer to variable of type handle

Description

MVIsc_Open acquires access to the APl and sets handle to a unique ID that the
application uses in subsequent functions. This function must be called before any
of the other API functions can be used.

IMPORTANT: After the API has been opened, MVlIsc_Close should always be
called before exiting the application.

Return Value

MVISC_SUCCESS Side-connect API was opened successfully
MVISC_ERR_REOPEN Side-connect API is already open
MVISC_ERR_PLCTIMEOUT No response from PLC detected. Check side-connect.

Example

HANDLE Handle;

it (MVisc_Open(&Handle) != MVISC_SUCCESS) {
printf("'Open failed!\n");

}

ProSoft Technology, Inc. Page 281 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

MVisc_Close

Syntax
int MVIsc_Close(HANDLE handle);

Parameters

Handle Handle returned by previous call to MVIsc_Open

Description
This function is used by an application to release control of the API.

handle must be a valid handle returned from MVIsc_Open.

IMPORTANT: After the API has been opened, this function should always be
called before exiting the application.

Return Value

MVISC_SUCCESS API was closed successfully
MVISC_ERR_NOACCESS handle does not have access
Example

HANDLE Handle;
MVIsc_Close(Handle);

Page 282 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Side-connect API PLC Data Table Access Functions

MVIsc_GetPLCFilelnfo

Syntax
int MVIsc_GetPLCFilelnfo(HANDLE handle, WORD fileno, MVISCFILEINFO *Ffileinfo);

Parameters

handle Handle returned by previous call to MVIsc_Open

fileno Number of file for which information will be retrieved

fileinfo Pointer to MVISCFILEINFO structure to receive file information
Description

This function obtains information about a PLC-5 data file.

handle must be a valid handle returned from MVIsc_Open. fileno identifies the
PLC-5 file number for which the information is to be retrieved.

The file type, length in words, and number of elements in the file are returned in
the MVISCFILEINFO structure pointed to by fileinfo. The MVISCFILEINFO
structure is defined as shown:

typedef struct tagMVISCFILEINFO

{
WORD filetype; // File type

WORD num_elements; // File size expressed in elements

DWORD num_words; // File size expressed in words

} MVISCFILEINFO;

The file type is identified by filetype. The possible values for filetype are shown in
Table 2.

PLC-5 Data File Types

Data Type Definition Value Description
MVISC_PLCTYPE_O 0 Output
MVISC_PLCTYPE_I 1 Input
MVISC_PLCTYPE_S 2 Status
MVISC_PLCTYPE_B 3 Bit (binary)
MVISC_PLCTYPE_T 4 Timer
MVISC_PLCTYPE_C 5 Counter
MVISC_PLCTYPE_R 6 Control
MVISC_PLCTYPE_N 7 Integer
MVISC _PLCTYPE_F 8 Floating-point
MVISC_PLCTYPE_PD 9 PID
MVISC_PLCTYPE_BT 10 Block Transfer
MVISC_PLCTYPE_MG 11 Message
ProSoft Technology, Inc. Page 283 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Data Type Definition Value Description
MVISC_PLCTYPE_SC 12 SFC Status
MVISC_PLCTYPE_ST 13 ASCII String
MVISC_PLCTYPE_A 14 ASCII Display
MVISC_PLCTYPE_D 15 BCD Display
MVISC_PLCTYPE_NOEXIST 9998 File does not exist
MVISC_PLCTYPE_UNKNOWN 9999 Unknown data type

Return Value

MVISC_SUCCESS No errors were encountered
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_PCCCFAIL PCCC error occurred
Example

HANDLE Handle;

MVISCFILEINFO Fileinfo;

int rc;

/* Query the PLC to check file number 7. In this example, */
/* file 7 is expected to be an Integer file. If it is not, */
/* a configuration error message is displayed. */

rc = MVlsc_GetPLCFilelnfo(Handle, 7, &fileinfo);

if (rc = MVISC_SUCCESS)

printf("'ERROR: MVIsc_GetPLCFilelnfo failed™);

if (Fileinfo.filetype = MVISC_PLCTYPE_N)
printf(""Configuration Error: File 7 is not Integer or does not exist");
else

printf(""File Size is %d elements and %ld words",
fileinfo.num_elements, fileinfo.num_words);

Page 284 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsc_WritePLC

Syntax

int MVIsc_WritePLC(HANDLE handle, void *buf, WORD fileno, WORD elemno, WORD
subelemno, WORD size, WORD datatype, int fsync);

Parameters

handle Handle returned by previous call to MVIsc_Open

buf Pointer to user data buffer which contains data to be written to
the PLC-5

fileno PLC-5 data table file number

elemno PLC-5 data table element number

subelemno PLC-5 data table subelement number

size Number of data items of type datatype to be written

datatype Type of data item being written

fsync Synchronization flag. Must be set to MVISC_SYNC_ACCESS
or MVISC_ASYNC_ACCESS.

Description

MVIsc_WritePLC writes size data items of type datatype from buf to the PLC-5
data table file specified by fileno. elemno specifies the element number of the
data table file to begin writing. subelemno is used to address structured data. It
specifies the offset to a particular data item within a multi-word data structure,
such as a PID structure. For simple data files such as integer or float, subelemno
must be set to zero; otherwise, no data will be written an
MVISC_ERR_XFERFAIL will be returned. subelemno is specified as the word
offset within the data structure.

Note: For convenience, sub-element definitions for each of the data items
within the various PLC-5 data structures are provided in the API include file
MVISCAPI.H.

fsync specifies whether the access is synchronous or asynchronous with respect
to the PLC-5 ladder scan. When set to MVISC_SYNC_ACCESS, the transfer will
take place at the end of the next ladder scan. When set to
MVISC_ASYNC_ACCESS, the transfer will take place immediately. This flag
only has effect when the PLC-5 is in Run mode. Online handle must be a valid
handle returned from MVIsc_Open.

Notes: datatype specifies the type of data item being written, which may be
different from the data file type. For example, to access the SP value of a PID
structure within a PD file, the data type should be specified as
MVISC_DTYP_FLOAT. In this example, subelemno must be set to the word
offset of the desired member within the PID structure, which in this case is
defined as MVISC_SUBEL_PD_SP. Valid values for datatype are

MVISC DTYP_WORD and MVISC _DTYP_FLOAT. An attempt to write past

ProSoft Technology, Inc. Page 285 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

the end of a data table file will result in a return code of
MVISC_ERR_XFERFAIL or MVISC_ERR_PCCCFAIL. If the PLC is in RUN
mode when this write is attempted, PLC-5 data will be corrupted and the PLC-
5 will be faulted. Care should be taken not to exceed the boundaries of the
PLC-5 data tables. See MVIsc_GetPLCFilelnfo to determine valid data table
boundaries.

Return Value

MVISC_SUCCESS The data was written successfully
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM Parameter contains invalid value
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_XFERFAIL PLC-5 returned an error
MVISC_ERR_PCCCFAIL PCCC error occurred
Example

HANDLE Handle;

short N;

float SP;

int rc;

/* Write 1 integer to element 4 of integer file 7 (N7:4), asynchronously */
rc = MVlsc_WritePLC(Handle, &N, 7, 4, 0, 1, MVISC_DTYP_WORD,
MVISC_ASYNC_ACCESS);

if (rc = MVISC_SUCCESS)

printf(""ERROR: MVIsc_WritePLC failed");

/* Write to the set point value of PID element 3 of PD file 9 (PD9:3.SP),
synchronously */

rc = MVIscWritePLC(Handle, &SP, 9, 3, MVISC_SUBEL_PD SP, 1, MVISC_DTYP_FLOAT,
MVISC_SYNC_ACCESS) ;

if (rc = MVISC_SUCCESS)

printf(""ERROR: MVIsc_WritePLC failed");

Page 286 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVisc_ReadPLC

Syntax

int MVIsc_ReadPLC(HANDLE handle, void *buf, WORD fileno, WORD elemno, WORD
subelemno, WORD size, WORD datatype, int fsync);

Parameters

handle Handle returned by previous call to MVIsc_Open

buf Pointer to user data buffer to receive the data to be read from
the PLC-5

fileno PLC-5 data table file number

elemno PLC-5 data table element number

subelemno PLC-5 data table subelement number

size Number of data items of type datatype to be read

datatype Type of data item being written

fsync Synchronization flag. Must be set to MVISC_SYNC_ACCESS
or MVISC_ASYNC_ACCESS.

Description

MVIsc_ReadPLC reads size data items of type datatype from the PLC-5 data
table file specified by fileno to the user-supplied buffer buf. elemno specifies the
element number of the data table file to begin read. buf must be large enough to
contain the data to be read. subelemno is used to address structured data. It
specifies the offset to a particular data item within a multi-word data structure,
such as a PID structure. For simple data files such as integer or float, subelemno
must be set to zero; otherwise, no data will be read and MVISC_ERR_XFERFAIL
will be returned. subelemno is specified as the word offset within the data
structure.

Note: For convenience, sub-element definitions for each of the data items
within the various PLC-5 data structures are provided in the API include file
MVISCAPI.H.

fsync specifies whether the access is synchronous or asynchronous with respect
to the PLC-5 ladder scan. When set to MVISC_SYNC_ACCESS, the transfer will
take place at the end of the next ladder scan. When set to
MVISC_ASYNC_ACCESS, the transfer will take place immediately. This flag
only has effect when the PLC-5 is in Run mode.

handle must be a valid handle returned from MVIsc_Open.

Notes: datatype specifies the type of data item being read, which may be
different from the data file type. For example, to access the SP value of a PID
structure within a PD file, the data type should be specified as
MVISC_DTYP_FLOAT. In this example, subelemno must be set to the word
offset of the desired member within the PID structure, which in this case is

ProSoft Technology, Inc. Page 287 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

defined as MVISC_SUBEL _PD_SP. Valid values for datatype are
MVISC_DTYP_WORD and MVISC_DTYP_FLOAT.

An attempt to read past the end of a data table file will result in a return code of
MVISC_ERR_XFERFAIL or MVISC_ERR_PCCCFAIL. If the PLC is in RUN
mode when this read is attempted, the PLC-5 will be faulted. Care should be
taken not to exceed the boundaries of the PLC-5 data tables. See
MVIsc_GetPLCFilelnfo to determine valid data table boundaries.

Return Value

MVISC_SUCCESS The data was read successfully
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM Parameter contains invalid value
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_XFERFAIL PLC-5 returned an error
MVISC_ERR_PCCCFAIL PCCC error occurred
Example

HANDLE Handle;

float f[3];

WORD scantime;

short acc;

int rc;

/* Read 3 floating-point values starting at element 5 of float file 8 (F8:5 -
F8:7), asynchronously */

rc = MVIsc_ReadPLC(Handle, f, 8, 5, 0, 3, MVISC_DTYP_FLOAT, MVISC_ASYNC_ACCESS);
if (rc = MVISC_SUCCESS)

printfF("ERROR: MVIsc_ReadPLC failed™);

/* Read the last program scan time from the status file (S2:8), synchronously
*/

rc = MVIscReadPLC(Handle, &scantime, 2, 8, 0, 1, MVISC_DTYP_WORD,
MVISC_SYNC_ACCESS);

if (rc = MVISC_SUCCESS)

printfF("ERROR: MVIsc_ReadPLC failed™);

/* Read the accumulated value from timer 2 of timer file 4 (T4:2.ACC),
synchronously */

rc = MVIscReadPLC(Handle, &acc, 4, 2, MVISC_SUBEL_T_ACC, 1,

MVISC_DTYP_WORD, MVISC_SYNC_ACCESS);

if (rc = MVISC_SUCCESS)

printfF(""ERROR: MVIsc_ReadPLC failed™);

Page 288 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVisc_RMWPLC

Syntax

int MVIsc_RMWPLC(HANDLE handle, WORD and_mask, WORD or_mask, WORD fileno, WORD
elemno, WORD subelemno);

Parameters

handle Handle returned by previous call to MVIsc_Open
and_mask Bits to be preserved in the data item
or_mask Bits to be set in the data item

fileno

PLC-5 data table file number

elemno PLC-5 data table element number
subelemno PLC-5 data table subelement number
Description

MVisc_ RMWPLC reads a word from a PLC-5 data table, modifies some of the
bits, and then writes it back.

handle must be a valid handle returned from MVIsc_Open. and_mask specifies
the bits to be preserved in the data word. A '1' bit preserves the corresponding bit
in the data word; a '0' bit forces the corresponding bit to zero. or_mask specifies
the bits to be set in the data word. A '1' bit forces the corresponding bit in the
data word to 1; a '0' bit leaves the corresponding bit unchanged. The or_mask is
applied after the and_mask.

fileno and elemno specify the data table file number and element number of the
data word to be modified. subelemno is used to address structured data. It
specifies the offset to a particular data word within a multi-word data structure,
such as a PID structure. For simple data files such as integer, subelemno must
be set to zero; otherwise, no data will be written and MVISC_ERR_XFERFAIL
will be returned. subelemno is specified as the word offset within the data
structure.

Note: For convenience, sub-element definitions for each of the data items
within the various PLC-5 data structures are provided in the API include file
MVISCAPI.H.

Notes: An attempt to access past the end of a data table file will result in a
return code of MVISC_ERR_XFERFAIL or MVISC_ERR_PCCCFAIL. If the
PLC is in RUN mode when this access is attempted, PLC-5 data will be
corrupted and the PLC-5 will be faulted. Care should be taken not to exceed
the boundaries of the PLC-5 data tables. See MVIsc_GetPLCFilelnfo to
determine valid data table boundaries.

ProSoft Technology, Inc. Page 289 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Return Value

MVISC_SUCCESS The data was written successfully
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM Parameter contains invalid value
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_XFERFAIL PLC-5 returned an error
MVISC_ERR_PCCCFAIL PCCC error occurred
Example

HANDLE Handle;

short N;

float SP;

int rc;

/* Clear bit 4 and set bit 1 of N7:5 */

rc = MVlsc_RMWPLC(Handle, OxFFEF, 0x0002, 7, 5, 0);
if (rc = MVISC_SUCCESS)

printf(""ERROR: MVIsc_RMWPLC failed™);

Page 290 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Side-connect API Synchronization Functions

MVlIsc_WaitForEos

Syntax
int MVIsc_WaitForEos(HANDLE handle, WORD timeout);

Parameters

handle Handle returned by previous call to MVIsc_Open

timeout Maximum number of milliseconds to wait

Description

MVIsc_WaitForEos allows an application to synchronize with the PLC-5's ladder
scan.

This function will return when the PLC-5 reaches the end of the ladder scan.

handle must be a valid handle returned from MVIsc_Open.

Return Value

MVISC_SUCCESS The PLC-5 has reached the end of the ladder scan.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT The timeout expired before an end of scan occurred.

Example

HANDLE Handle;
/* Wait here until EOS, 5 second timeout */
rc = MVIlsc_WaitForEos(Handle, 5000);

ProSoft Technology, Inc. Page 291 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Side-connect API PLC Message Handling Functions

The PLC-5 may use the message (MSG) instruction to read or write data to the
MVI. A message handler must be registered using the MVIsc_PLCMsgRead or
MVlisc_PLCMsgWrite functions. The MSG instruction in the PLC-5 ladder
program must be setup for communication port 3A. The command type must be
set to PLC-3 Word Range Read or PLC-3 Word Range Write. The destination
data table address must be set to "00" through "31", for message number 0-31.

MVIsc_PLCMsgRead

Syntax

int MVIsc_PLCMsgRead(HANDLE handle, void *buf, WORD datatype, WORD size, BYTE
msgnum, WORD timeout);

Parameters

handle Handle returned by previous call to MVIsc_Open

buf Pointer to user buffer containing data to be read by the PLC-5

datatype Type of data (MVISC_DTYP_WORD or MVISC_DTYP_FLOAT)

size Number of items of type datatype to be transferred. The total
size cannot exceed 240 bytes.

msgnum PLC-5 message number (0-31)

timeout Maximum number of milliseconds to wait for message-read

Description

MVlIsc_PLCMsgRead handles a PLC-5 message-read instruction. This function
should be called before the PLC-5 issues the message-read instruction.

handle must be a valid handle returned from MVIsc_Open. timeout indicates the
number of milliseconds to wait for the message-read instruction from the PLC-5.
A value of zero will cause the function to register the message handler and return
immediately, without waiting for the message-read instruction. In this case, the
MVIsc_PLCMsgWait function must be used to determine if the instruction has
been completed.

Return Value

MVISC_SUCCESS The command completed without error. (Note: If timeout was
set to zero, this does not mean that the message-read
instruction has completed, but only that the message handler
was successfully registered. See MVIsc_PLCMsgWait.)

MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT The timeout expired before the message read instruction
occurred.
Page 292 of 318 ProSoft Technology, Inc.

December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

Example

HANDLE Handle;
float flt_array[8];
/* Setup message-read handler for msg 19, wait 5 seconds */

rc = MVlsc_PLCMsgRead(Handle, flt_array, MVISC_DTYP_FLOAT, 8, 19, 5000);
if (rc = MVISC_SUCCESS)

printf(""ERROR: MVIsc_PLCMsgRead failed™);

ProSoft Technology, Inc. Page 293 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

MVIsc_PLCMsgWrite

Syntax

int MVIsc_PLCMsgWrite(HANDLE handle, void *buf, WORD datatype, WORD size, BYTE
msgnum, WORD timeout);

Parameters

handle Handle returned by previous call to MVIsc_Open

buf Pointer to user buffer to receive data written by PLC-5

datatype Type of data (MVISC_DTYP_WORD or MVISC_DTYP_FLOAT)

size Number of items of type datatype to be transferred. The total
size cannot exceed 240 bytes.

msgnum PLC-5 message number (0-31)

timeout Maximum number of milliseconds to wait for message-write

Description

MVlIsc_PLCMsgRead handles a PLC-5 message-write instruction. This function
should be called before the PLC-5 issues the message-write instruction.

handle must be a valid handle returned from MVIsc_Open. timeout indicates the
number of milliseconds to wait for the message-write instruction from the PLC-5.
A value of zero will cause the function to register the message handler and return
immediately, without waiting for the message-write instruction. In this case, the
MVlIsc_PLCMsgWait function must be used to determine if the instruction has
been completed.

Return Value

MVISC_SUCCESS The command completed without error. (Note: If timeout was
set to zero, this does not mean that the message-write
instruction has completed, but only that the message handler
was successfully registered. See MVIsc_PLCMsgWait.)

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_PLCTIMEOUT The timeout expired before the message-write instruction
occurred.

Example

HANDLE Handle;

int N;

/* Setup message-write handler for msg 2, wait 5 seconds */

rc = MVIsc_PLCMsgWrite(Handle, &N, MVISC_DTYP_WORD, 1, 2, 5000);
if (rc = MVISC_SUCCESS)

printf("'ERROR: MVIsc_PLCMsgWrite failed™);

Page 294 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsc_PLCMsgWait

Syntax
int MVIsc_PLCMsgWait(HANDLE handle, BYTE msgnum, BYTE msgtype, WORD timeout);

Parameters

handle Handle returned by previous call to MVIsc_Open

msgnum PLC-5 message number (0-31)

msgtype Message type (read or write)

timeout Maximum number of milliseconds to wait for message
instruction

Description

MVlisc_PLCMsgWait returns the current status of the message handler specified

by msgnum.

handle must be a valid handle returned from MVIsc_Open. msgtype must be set
to MVISC_MSGTYP_READ to specify a read message, or
MVISC_MSGTYP_WRITE to specify a write message. If timeout is set to zero,
the current status of the specified message handler is returned immediately. If
timeout is not zero, the function will return when the message instruction has
been completed, or when timeout milliseconds have expired.

Return Value

MVISC_SUCCESS The message-read or message-write instruction has completed
successfully.

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_BADPARAM No message handler has been registered for msgnum.

MVISC _ERR_PLCTIMEOUT The timeout expired before the message instruction occurred.

MVISC_ERR_PENDING The message instruction has not yet occurred. (Note: This

result code is only returned if timeout is set to zero.)

Example

HANDLE Handle;

/* Wait here until message handler 1 has completed, timeout=10 seconds */
rc = MVlsc_PLCMsgWait(Handle, 1, MVISC_MSGTYP_READ, 10000);

if (rc = MVISC_SUCCESS)

printf(""ERROR: MVIsc_PLCMsgWait failed™);

ProSoft Technology, Inc. Page 295 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Side-connect API Block Transfer Functions

MVisc_PLCBTRead

Syntax

int MVIsc_PLCBTRead(HANDLE handle, WORD *buf, BYTE rack, BYTE group, BYTE slot,
BYTE size);

Parameters

handle Handle returned by previous call to MVIsc_Open
buf Pointer to buffer to receive data from I/O module
rack Rack number of the 1/0O module to be read
group I/O group number of the 1/0 module

slot Slot number within the 1/0O group

size Number of words to read

Description

MVlIsc_PLCBTRead requests the PLC-5 to perform a block transfer read from an
intelligent 1/0 module.

handle must be a valid handle returned from MVIsc_Open.
buf must point to a buffer of at least size words in size.

Return Value

MVISC_SUCCESS The block transfer was completed successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM Parameter contains invalid value
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_XFERFAIL PLC-5 returned an error
MVISC_ERR_PCCCFAIL PCCC error occurred

Example

HANDLE Handle;

WORD buf[8];

int rc;

/* Read 8 words of data from 1/0 module in rack 1, 1/0 group 1, slot 2 */
rc = MVlsc_PLCBTRead(Handle, buf, 1, 1, 2, 8);

if (rc = MVISC_SUCCESS)

printfF("ERROR: MVIsc_PLCBTRead failed™);

Page 296 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVisc_PLCBTWrite

Syntax

int MVIsc_PLCBTWrite(HANDLE handle, WORD *buf, BYTE rack, BYTE group, BYTE slot,
BYTE size);

Parameters

handle Handle returned by previous call to MVIsc_Open
buf Pointer to buffer of data to be written to I/O module
rack Rack number of the 1/0 module to be written
group I/0 group number of the 1/0 module

slot Slot number within the 1/0 group

size Number of words to write

Description

MVlisc_PLCBTWrite requests the PLC-5 to perform a block transfer write to an
intelligent I/O module.

handle must be a valid handle returned from MVIsc_Open.

buf must point to a buffer of at least size words in size.

Return Value

MVISC_SUCCESS The block transfer was completed successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM Parameter contains invalid value
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_XFERFAIL PLC-5 returned an error
MVISC_ERR_PCCCFAIL PCCC error occurred

Example

HANDLE Handle;

WORD buf[8];

int rc;

/* Write 8 words of data to 1/0 module in rack 1, 1/0 group 1, slot 2 */
rc = MVIsc_PLCBTWrite(Handle, buf, 1, 1, 2, 8);

if (rc = MVISC_SUCCESS)

printf("'ERROR: MVIsc_PLCBTWrite failed™);

ProSoft Technology, Inc. Page 297 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable
Application Development Module

Side-Connect API Library Functions

Side-connect API PLC Status and Control Functions

MVisc_GetPLCStatus

Syntax

int MVIsc_GetPLCStatus(HANDLE handle, WORD *status, WORD *majfault);

Parameters

handle Handle returned by previous call to MVIsc_Open
status Pointer to variable to receive PLC-5 status word
majfault Pointer to variable to receive PLC-5 major fault word
Description

This function is used by an application to retrieve the PLC-5 status and major

fault words.

handle must be a valid handle returned from MVIsc_Open. Table 3 and Table 4
below define the bits of the status and major fault words, respectively. For
programming convenience and clarity, a definition is provided for each bit in the

APl include file MVISCAPI.H.

PLC-5 Status Word

Bit Definition Description

0 MVISC_PLCSTS_RAM_BAD RAM bad

1 MVISC_PLCSTS_RUN_MODE Run mode

2 MVISC_PLCSTS_TEST_MODE Test mode

3 MVISC_PLCSTS_PROG_MODE Program mode

4 MVISC_PLCSTS_BURN_EEPROM Burning EEPROM

5 MVISC_PLCSTS_DWNLD_MODE Download mode

6 MVISC_PLCSTS_EDITS_ENAB Edits enabled

7 MVISC_PLCSTS REM_MODE Remote modes

8 MVISC _PLCSTS FRC_ENAB Forces enabled

9 MVISC_PLCSTS_FRC_PRES Forces present

10 MVISC_PLCSTS_EEPROM_SUCC Successful EEPROM burn

11 MVISC_PLCSTS_ONLINE_EDIT Online editing

12 MVISC_PLCSTS_DEBUG_MODE Debug mode

13 MVISC_PLCSTS_PROG_CKSM User program checksum done

14 MVISC_PLCSTS_LAST_SCAN Last scan of ladder/SFC step

15 MVISC _PLCSTS_FIRST_SCAN First scan of ladder/SFC step
Page 298 of 318 ProSoft Technology, Inc.

December 12, 2006

Side-Connect API Library Functions

MVI-ADM e 'C' Programmable
Application Development Module

PLC-5 Major Fault Word

Bit Definition Description

0 MVISC_PLCFLT_PROG_MEM_BAD Bad user program memory

1 MVISC_PLCFLT_BAD_ OPRN_ADDR lllegal operand address

2 MVISC_PLCFLT_PROG_ERROR Programming error

3 MVISC_PLCFLT_SFC_ERROR Function chart error

4 MVISC_PLCFLT_DUP_LABELS Duplicate labels found

5 MVISC_PLCFLT_PWR_FAIL Power loss fault

6 MVISC_PLCFLT_PERIPHERAL Peripheral fault (Chan 3)

7 MVISC_PLCFLT_USER_JSR User jsr to fault routine

8 MVISC_PLCFLT_WATCHSOG Watchdog fault

9 MVISC_PLCFLT_BAD_CONFIG System illegally configured

10 MVISC_PLCFLT_HWFAIL Hardware fault

11 MVISC_PLCFLT_NOMCP MCP file does not exist or is not
ladder/SFC

12 MVISC_PLCFLT_NOPII Pl program does not exist or is not
ladder

13 MVISC_PLCFLT_NOSTI STI program does not exist or is not
ladder

14 MVISC_PLCFLT_NOFLT Fault program does not exist or is not
ladder

15 MVISC_PLCFLT_NOFAULTED Faulted program does not exist or is not

ladder

Return Value

MVISC_SUCCESS

Status was retrieved successfully

MVISC_ERR_NOACCESS

handle does not have access

Example

HANDLE Handle;
WORD plcstat;
WORD mfault;

MVIsc_GetPLCStatus(Handle, &plcstat, &mfault);

if (plcstat & MVISC_PLCSTS_RUN_MODE)

printfF(""PLC is in Run Mode');

ProSoft Technology, Inc.
December 12, 2006

Page 299 of 318

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

MVIsc_GetPLCClock

Syntax
int MVIsc_GetPLCClock(HANDLE handle, MVISCCLOCK *clock);

Parameters

handle Handle returned by previous call to MVIsc_Open
clock Pointer to structure of type MVISCCLOCK
Description

MVlsc_GetPLCClock retrieves the current date and time from the PLC-5 clock.
The information is returned in the structure pointed to by clock.

handle must be a valid handle returned from MVIsc_Open. The MVISCCLOCK
structure is defined as follows:

typedef struct tagMVISCCLOCK
{

WORD year;

WORD month;

WORD day;

WORD hour;

WORD minute;

WORD second;

} MVISCCLOCK;

Return Value

MVISC_SUCCESS The clock information was read successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

Example

HANDLE Handle;

MVISCCLOCK clock;

/* print time and date from PLC */

MVIsc_GetPLCClock(Handle, &clock);

printf("Time: %d:%02d Date: %d/%d/%d",

clock.hour, clock.minute, clock.month, clock.day, clock.year);

Page 300 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsc_SyncPLCClock

Syntax
int MVIsc_SyncPLCClock(HANDLE handle);

Parameters

handle Handle returned by previous call to MVIsc_Open
Description

MVIsc_SyncPLCClock sets the PLC-5 date and time to the MVI's current date
and time.

Return Value

MVISC_SUCCESS The PLC-5 clock was set successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

Example

HANDLE Handle;
/* Synchronize PLC-5 clock with MVI clock */
MVIsc_SyncPLCClock(Handle);

ProSoft Technology, Inc. Page 301 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

MVIsc_ClearFault

Syntax
int MVIsc_ClearFault(HANDLE handle, BYTE fault_flag);

Parameters

handle Handle returned by previous call to MVIsc_Open
fault_flag Bit flag specifying which faults to clear (major and minor)
Description

MVlsc_ClearFault clears the PLC-5 fault words in the status file as specified by
the bits set in fault_flag. The following bit definitions are valid for fault_flag:

Flag Description
MVISC_CLRFLT_MAJOR Major fault words are cleared (S:11-S:14)
MVISC_CLRFLT_MINOR Minor fault words are cleared (S:10, S:17)

These flags may be logically OR'ed together to clear both major and minor faults.

Return Value

MVISC_SUCCESS The fault was cleared successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

Example

HANDLE Handle;
/* Clear major and minor faults */
MVisc_ClearFault(Handle, MVISC_CLRFLT_MAJOR|MVISC_CLRFLT_MINOR);

Page 302 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVisc_SetPLCMode

Syntax
int MVIsc_SetPLCMode(HANDLE handle, BYTE mode);

Parameters

handle Handle returned by previous call to MVIsc_Open
mode PLC-5 mode to set

Description

MVisc_SetPLCMode sets the PLC-5 mode. The PLC-5 keyswitch must be in the
Remote position for this function to succeed. The valid mode definitions are
shown below:

Mode Description

MVISC_PLCMODE_RUN Run mode
MVISC_PLCMODE_PROG Program mode
MVISC_PLCMODE_TEST Test mode

Return Value

MVISC_SUCCESS The fault was cleared successfully.
MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

MVISC_ERR_PCCCFAIL The PLC-5 denied the request. Check the keyswitch position.
Example

HANDLE Handle;
/* Put the PLC-5 in Run mode */
MVIsc_SetPLCMode(Handle, MVISC_PLCMODE_RUN);

ProSoft Technology, Inc. Page 303 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Side-connect API Miscellaneous Functions

MVIsc_GetVersioninfo

Syntax
int MVIsc_GetVersionInfo(HANDLE handle, MVISCVERSIONINFO *verinfo);

Parameters

handle Handle returned by previous call to MVIsc_Open
verinfo Pointer to structure of type MVISCVERSIONINFO
Description

MVlsc_GetVersionlnfo retrieves the current version of the API library. The
version information is returned in the structure verinfo.

handle must be a valid handle returned from MVIsc_Open. The
MVISCVERSIONINFO structure is defined as follows:

typedef struct tagMVISCVERSIONINFO

{

WORD APISeries; /* APl Series */
WORD APIRevision; /* APl Revision */
} MVISCVERSIONINFO;

Return Value

MVISC_SUCCESS The version information was read successfully.
MVISC_ERR_NOACCESS handle does not have access
Example

HANDLE Handle;

MVISCVERSIONINFO verinfo;

/* print version of APl library */

MVIsc_GetVersionInfo(Handle,&verinfo);

printf('Library Series %d, Rev %d\n", verinfo.APISeries, verinfo._APIRevision);

Page 304 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVIsc_ErrorStr

Syntax

int MVIsc_ErrorStr(int errcode, char *buf);

Parameters
errcode Error code returned from an API function
buf Pointer to user buffer to receive message
Description

MVlsc_ErrorStr returns the text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value

MVISC_SUCCESS Message returned in buf
MVISC_ERR_BADPARAM Unknown error code
Example

char buf[80];

int rc;

/* print error message */
MVIsc_ErrorStr(rc, buf);
printf(""Error: %s"™, buf);

ProSoft Technology, Inc. Page 305 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

MVIsc_GetLastPcccError

Syntax
int MVIsc_GetLastPcccError(HANDLE handle, BYTE *status, BYTE *extstatus);

Parameters

handle Handle returned by previous call to MVIsc_Open
status Pointer to byte to receive PCCC status code

extstatus Pointer to byte to receive PCCC extended status code
Description

MVlsc_GetLastPcccError retrieves the status and extended status from the last
PCCC error response received from the PLC-5. This function should only be
called after a previous function call has returned MVISC_ERR_PCCCFAIL.

If status is equal to OxFO, then extstatus contains an extended error code.

Return Value

MVISC_SUCCESS status and extstatus have been retrieved
MVISC_ERR_NOACCESS handle does not have access
Example

HANDLE Handle;

int rc;

BYTE status, extstatus;

/* assume rc is set to the return code from a function such */
/* as MVIsc_PLCBTRead */

if (rc == MVISC_ERR_PCCCFAIL) /* debug the PCCC failure */

{

MVIsc_GetLastPcccError(Handle, &status, &extstatus);
printf(""\nStatus: %x Extended Status: %x\n", status, extstatus);

}

Page 306 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-Connect API Library Functions MVI-ADM e 'C' Programmable
Application Development Module

MVisc_BCD2BIN

Syntax
WORD MVIsc_BCD2BIN(WORD bcd);

Parameters
bcd BCD value to be converted into binary

Description

MVlisc_BCD2BIN converts a 4-digit BCD value to binary. The BCD value must be
within the range 0 to 9999.

Return Value
Binary representation of BCD value.

Example

WORD bcd, bin;
/* Convert the value in bcd to binary */
bin = MVIsc_BCD2BIN(bcd);

ProSoft Technology, Inc. Page 307 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Side-Connect API Library Functions
Application Development Module

MVisc_BIN2BCD

Syntax
WORD MVIsc_BIN2BCD(WORD bin);

Parameters

bin Binary value to be converted into BCD

Description

MVIsc_BIN2BCD converts a binary value to BCD. The value must be within the
range 0 to 9999 decimal.

Return Value
BCD representation of binary value.

Example

WORD bcd;

WORD bin;

/* Convert the value in binary to BCD */
bcd = MVIsc_BIN2BCD(bin);

Page 308 of 318 ProSoft Technology, Inc.
December 12, 2006

MVI-ADM e 'C' Programmable

DOS 6 XL Reference Manual
Application Development Module

12 DOS 6 XL Reference Manual

The DOS 6 XL Reference Manual makes reference to compilers other than
Digital Mars C++ or Borland Compilers. The MVI-ADM and ADMNET modules
only support Digital Mars C++ and Borland C/C++ Compiler Version 5.02.

References to other compilers should be ignored.

ProSoft Technology, Inc. Page 309 of 318

December 12, 2006

MVI-ADM ¢ 'C' Programmable DOS 6 XL Reference Manual
Application Development Module

Page 310 of 318 ProSoft Technology, Inc.
December 12, 2006

Support, Service & Warranty MVI-ADM e 'C' Programmable
Application Development Module

Support, Service & Warranty

ProSoft Technology, Inc. survives on its ability to provide meaningful support to
its customers. Should any questions or problems arise, please feel free to
contact us at:

Internet Web Site: http://www.prosoft-technology.com/support

E-mail address: support@prosoft-technology.com

Phone +1(661) 716-5100
+1(661) 716-5101 (Fax)
Postal Mail ProSoft Technology, Inc.

1675 Chester Avenue, Fourth Floor
Bakersfield, CA 93301

Before calling for support, please prepare yourself for the call. In order to provide
the best and quickest support possible, we will most likely ask for the following
information:

1 Product Version Number
2 System architecture
3 Module configuration and contents of configuration file
4 Module Operation
o Configuration/Debug status information
o0 LED patterns
5 Information about the processor and user data files as viewed through the
processor configuration software and LED patterns on the processor
6 Details about the serial devices interfaced
An after-hours answering system allows pager access to one of our qualified
technical and/or application support engineers at any time to answer the
questions that are important to you.

Module Service and Repair

The MVI-ADM device is an electronic product, designed and manufactured to
function under somewhat adverse conditions. As with any product, through age,
misapplication, or any one of many possible problems the device may require
repair.

When purchased from ProSoft Technology, Inc., the device has a 1 year parts
and labor warranty (3 years for RadioLinx) according to the limits specified in the
warranty. Replacement and/or returns should be directed to the distributor from
whom the product was purchased. If you must return the device for repair, obtain
an RMA (Returned Material Authorization) number from ProSoft Technology, Inc.
Please call the factory for this number, and print the number prominently on the
outside of the shipping carton used to return the device.

ProSoft Technology, Inc. Page 311 of 318
December 12, 2006

http://www.prosoft-technology.com/support
mailto:support@prosoft-technology.com

MVI-ADM ¢ 'C' Programmable Support, Service & Warranty
Application Development Module

General Warranty Policy — Terms and Conditions

ProSoft Technology, Inc. (hereinafter referred to as ProSoft) warrants that the
Product shall conform to and perform in accordance with published technical
specifications and the accompanying written materials, and shall be free of
defects in materials and workmanship, for the period of time herein indicated,
such warranty period commencing upon receipt of the Product. Limited warranty
service may be obtained by delivering the Product to ProSoft in accordance with
our product return procedures and providing proof of purchase and receipt date.
Customer agrees to insure the Product or assume the risk of loss or damage in
transit, to prepay shipping charges to ProSoft, and to use the original shipping
container or equivalent. Contact ProSoft Customer Service for more information.

This warranty is limited to the repair and/or replacement, at ProSoft's election, of
defective or non-conforming Product, and ProSoft shall not be responsible for the
failure of the Product to perform specified functions, or any other non-
conformance caused by or attributable to: (a) any misuse, misapplication,
accidental damage, abnormal or unusually heavy use, neglect, abuse, alteration
(b) failure of Customer to adhere to ProSoft’s specifications or instructions, (c)
any associated or complementary equipment, software, or user-created
programming including, but not limited to, programs developed with any
IEC1131-3 programming languages, "C" for example, and not furnished by
ProSoft, (d) improper installation, unauthorized repair or modification (e)
improper testing, or causes external to the product such as, but not limited to,
excessive heat or humidity, power failure, power surges or natural disaster,
compatibility with other hardware and software products introduced after the time
of purchase, or products or accessories not manufactured by ProSoft; all of
which components, software and products are provided as-is. In no event will
ProSoft be held liable for any direct or indirect, incidental consequential damage,
loss of data, or other malady arising from the purchase or use of ProSoft
products.

ProSoft’s software or electronic products are designed and manufactured to
function under adverse environmental conditions as described in the hardware
specifications for this product. As with any product, however, through age,
misapplication, or any one of many possible problems, the device may require
repair.

ProSoft warrants its products to be free from defects in material and
workmanship and shall conform to and perform in accordance with published
technical specifications and the accompanying written materials for up to one
year (12 months) from the date of original purchase (3 years for RadioLinx
products) from ProSoft. If you need to return the device for repair, obtain an RMA
(Returned Material Authorization) number from ProSoft Technology, Inc. in
accordance with the RMA instructions below. Please call the factory for this
number, and print the number prominently on the outside of the shipping carton
used to return the device.

If the product is received within the warranty period ProSoft will repair or replace
the defective product at our option and cost.

Page 312 of 318 ProSoft Technology, Inc.
December 12, 2006

Support, Service & Warranty MVI-ADM e 'C' Programmable
Application Development Module

Warranty Procedure: Upon return of the hardware product ProSoft will, at its
option, repair or replace the product at no additional charge, freight prepaid,
except as set forth below. Repair parts and replacement product will be furnished
on an exchange basis and will be either reconditioned or new. All replaced
product and parts become the property of ProSoft. If ProSoft determines that the
Product is not under warranty, it will, at the Customer's option, repair the Product
using then current ProSoft standard rates for parts and labor, and return the
product freight collect.

Limitation of Liability

EXCEPT AS EXPRESSLY PROVIDED HEREIN, PROSOFT MAKES NO
WARRANT OF ANY KIND, EXPRESSED OR IMPLIED, WITH RESPECT TO
ANY EQUIPMENT, PARTS OR SERVICES PROVIDED PURSUANT TO THIS
AGREEMENT, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. NEITHER PROSOFT OR ITS DEALER SHALL BE LIABLE FOR
ANY OTHER DAMAGES, INCLUDING BUT NOT LIMITED TO DIRECT,
INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES,
WHETHER IN AN ACTION IN CONTRACT OR TORT (INCLUDING
NEGLIGENCE AND STRICT LIABILITY), SUCH AS, BUT NOT LIMITED TO,
LOSS OF ANTICIPATED PROFITS OR BENEFITS RESULTING FROM, OR
ARISING OUT OF, OR IN CONNECTION WITH THE USE OR FURNISHING OF
EQUIPMENT, PARTS OR SERVICES HEREUNDER OR THE PERFORMANCE,
USE OR INABILITY TO USE THE SAME, EVEN IF ProSoft OR ITS DEALER'S
TOTAL LIABILITY EXCEED THE PRICE PAID FOR THE PRODUCT.

Where directed by State Law, some of the above exclusions or limitations may
not be applicable in some states. This warranty provides specific legal rights;
other rights that vary from state to state may also exist. This warranty shall not be
applicable to the extent that any provisions of this warranty are prohibited by any
Federal, State or Municipal Law that cannot be preempted. Contact ProSoft
Customer Service at +1 (661) 716-5100 for more information.

RMA Procedures

In the event that repairs are required for any reason, contact ProSoft Technical
Support at +1 661.716.5100. A Technical Support Engineer will ask you to
perform several tests in an attempt to diagnose the problem. Simply calling and
asking for a RMA without following our diagnostic instructions or suggestions will
lead to the return request being denied. If, after these tests are completed, the
modaule is found to be defective, we will provide the necessary RMA number with
instructions on returning the module for repair.

ProSoft Technology, Inc. Page 313 of 318
December 12, 2006

MVI-ADM ¢ 'C' Programmable Support, Service & Warranty
Application Development Module

Page 314 of 318 ProSoft Technology, Inc.
December 12, 2006

Index

MVI-ADM e 'C' Programmable
Application Development Module

Index

A

ADM -« 96

ADM API « 19

ADM API Architecture « 45

ADM API Backplane Functions « 148
ADM API Clock Functions * 146
ADM API Database Functions « 111
ADM API Debug Port Functions « 104
ADM API Files « 47

ADM API Flash Functions * 156
ADM API Functions « 99

ADM API Initialization Functions 102
ADM API Miscellaneous Functions * 164
ADM API RAM Functions * 172
ADM Functional Blocks « 19

ADM Interface Structure ¢ 48

ADM LED Functions * 155

ADM Side-Connect Functions * 167
ADM_BtClose « 148, 149
ADM_BtFunc « 152

ADM_BtNext 150

ADM_BtOpen -« 148, 149, 150, 151, 152
ADM_CheckDBPort * 110
ADM_CheckTimer « 146, 147
ADM_Close « 102, 103
ADM_ConPrint « 109
ADM_DAWriteRecvCtl « 105, 106
ADM_DAWriteRecvData « 107, 108
ADM_DAWriteSendCtl « 105, 106
ADM_DAWriteSendData * 107, 108
ADM_DBAND_Byte * 142
ADM_DBBitChanged * 139
ADM_DBChanged « 138
ADM_DBClearBit * 115, 116
ADM_DBClose * 111, 112
ADM_DBGetBit * 114
ADM_DBGetBuff « 127, 128
ADM_DBGetByte * 117, 118
ADM_DBGetDFloat * 125, 126
ADM_DBGetFloat « 123, 124
ADM_DBGetlLong * 121, 122
ADM_DBGetRegs * 129, 130
ADM_DBGetString » 131, 132
ADM_DBGetWord « 119, 120
ADM_DBNAND_Byte « 143
ADM_DBNOR_Byte * 141

ADM _DBOpen - 111, 112, 113
ADM_DBOR_Byte « 140
ADM_DBSetBit * 115, 116
ADM_DBSetBuff « 127, 128
ADM_DBSetByte * 117, 118
ADM_DBSetDFloat « 125, 126

ADM_DBSetFloat « 123, 124
ADM_DBSetlong * 121, 122
ADM_DBSetRegs * 129, 130
ADM_DBSetString » 131, 132
ADM_DBSetWord * 119, 120
ADM_DBSwapDWord * 134
ADM_DBSwapWord * 133
ADM_DBXNOR_Byte * 145
ADM_DBXOR_Byte « 144
ADM_DBZero * 113
ADM_EEPROM_ReadConfiguration « 172
ADM_FileGetChar « 156, 157, 158
ADM_FileGetInt » 156, 157, 158
ADM_FileGetString « 156, 157, 158
ADM_Getc « 159, 160, 161, 163
ADM_GetChar « 159, 160, 161, 163
ADM_GetDBCptr « 135
ADM_GetDBInt « 137
ADM_GetDBlptr « 136
ADM_GetStr » 159, 160, 161, 163
ADM_GetVal « 159, 160, 161, 163
ADM_GetVersionInfo « 164
ADM_Open * 102, 103
ADM_ProcessDebug « 104
ADM_RAM_Find_Section « 173
ADM_RAM_GetChar « 179
ADM_RAM_GetDouble « 178
ADM_RAM_GetFloat « 177
ADM_RAM_Getint » 175
ADM_RAM_GetlLong * 176
ADM_RAM_GetString » 174
ADM_ReadBtCfg * 151
ADM_ReadScCfg « 170
ADM_ReadScFile « 169
ADM_ScClose * 167, 168
ADM_ScOpen * 167, 169, 170, 171
ADM_ScScan « 171
ADM_SetBtStatus * 153, 154
ADM_SetConsolePort * 165, 166
ADM_SetConsoleSpeed * 165, 166
ADM_SetlLed * 155
ADM_SetStatus * 153, 154
ADM_SkipToNext « 162
ADM_StartTimer « 146, 147
API Libraries « 17
Application Development Function Library
ADM API « 99

B

Backplane API Architecture « 51

Backplane API Configuration Functions ¢ 185

Backplane API Direct I/O Access * 193

Backplane API Files « 51

Backplane API Functions « 181

Backplane API Initialization Functions « 183

Backplane APl Messaging Functions « 195

Backplane API Miscellaneous Functions ¢
199

ProSoft Technology, Inc.
December 12, 2006

Page 315 of 318

MVI-ADM ¢ 'C' Programmable
Application Development Module

Index

Backplane API Synchronization Functions ¢
189

Backplane Communications « 19

Backplane Device Driver » 247

Block Identification Codes * 40

Block Transfer « 280

Block Transfer Interface 90

Block Transfer Routine « 91

Boot « 95

Building an Existing Borland C++ 5.02 ADM
Project « 65

Building an Existing Digital Mars C++ 8.49
ADM Project « 56

C

Cable Connections * 11

Calling Convention « 18

CIP API Architecture « 247

CIP API Initialization Functions « 249

CIP Callback Functions « 257

CIP Connected Data Transfer « 254

CIP Messaging API Files « 247

CIP Messaging Library Functions « 247

CIP Miscellaneous Functions « 271

CIP Object Registration « 251

CIP Special Callback Registration * 268

Cold Boot « 22, 37

Cold Boot (Block 9999) « 41

Command Control Blocks * 21, 35

Command Interpreter « 79, 80

Commdrv.c * 43

CONFIG.SYS File « 78

Configuration Data Transfer « 21, 25, 34

Configuring Borland C++5.02 « 65

Configuring Digital Mars C++ 8.49 + 55

connect_proc « 252, 257

Creating a New Borland C++ 5.02 ADM
Project 67

Creating a New Digital Mars C++ 8.49 ADM
Project « 57

Creating a ROM Disk Image « 81

Creating Ladder Logic « 87

D

Data Transfer « 38, 52, 54

Database * 19

Debugging Strategies * 86

Debugprt.c * 41

Definitions « 9

Development Tools * 18

Direct I/O Access ¢ 52

Disabling the RSLinx Driver for the Com Port
on the PC + 12

DOS 6 XL Reference Manual * 10, 309

Downloading a ROM Disk Image + 83

Downloading the Sample Program « 55, 65

E

Example Code Files * 46

F

fatalfault_proc * 265, 268
flashupdate_proc * 266, 270

H

Hardware « 44
Header File « 18

Initialization « 279

Installation « 83

Installing and Configuring the Module « 72
Introduction « 9

J

Jumper Locations and Settings * 11

M

Main Routine « 87, 88, 91, 96
Main_app.c * 41

Messaging « 52

Messaging Protocol « 53
Miscellaneous * 280

Module Configuration data « 26, 35
Module Configuration Data « 21
Multithreading Considerations * 18
MVI Flash Update « 83

MVI System BIOS Setup ¢ 85

MVI146 « 42, 78

MV146 Backplane Data Transfer « 19
MVI46 Ladder Logic * 87

MVI156 « 42, 79

MVI156 Backplane Data Transfer » 22
MV156 Ladder Logic « 87

MVI69 » 42, 79

MVI169 Backplane Data Transfer « 26
MVI69 Ladder Logic « 88

MVI71 + 43,79

MVI71 Backplane Data Transfer « 32
MVI71 Ladder Logic * 90

MVI194 - 43, 79

MVI194 Backplane Data Transfer « 37
MV194 Ladder Logic * 96
MVIbp_Close * 183, 184
MVIbp_ErrorStr « 201
MVIbp_GetConsoleMode « 204
MVIbp_GetlOConfig « 185, 188
MVIbp_GetModulelnfo « 200
MVIbp_GetProcessorStatus « 206
MVIbp_GetSetupMode * 205

Page 316 of 318

ProSoft Technology, Inc.
December 12, 2006

Index

MVI-ADM e 'C' Programmable
Application Development Module

MVIbp_GetVersioninfo « 199
MVIbp_Open « 183, 184
MVIbp_ReadModuleFile (MV146) « 209
MVIbp_ReadOutputlmage * 52, 193, 194
MVIbp_ReceiveMessage * 195, 198
MVIbp_SendMessage * 196, 197
MVIbp_SetConsoleMode * 208
MVIbp_SetlOConfig « 52, 53, 186, 187, 193,
194, 196, 198
MVIbp_SetModulelnterrupt (MV146) « 211
MVIbp_SetModuleStatus * 203
MVIbp_SetUserLED + 202
MVIbp_Sleep « 207
MVIbp_WaitForlnputScan ¢ 189, 192
MVIbp_WaitForOutputScan « 190, 191
MVIbp_Writelnputimage « 52, 193, 194
MVIbp_WriteModuleFile (MVI46) « 210
MVicfg.c « 42
MViIcip_Close « 249, 250
MViIcip_ErrorString * 275
MViIcip_GetConsoleMode * 277
MViIcip_GetldObject « 271
MViIcip_GetSetupMode * 276
MViIcip_GetVersioninfo « 272
MViIcip_Open « 249, 250
MVIcip_ReadConnected * 254, 255, 260
MVIcip_RegisterAssemblyObj « 251, 253,
260, 262, 264
MViIcip_RegisterFatalFaultRtn « 265, 268
MVIcip_RegisterFlashUpdateRtn « 266, 270
MVIcip_RegisterResetReqRtn « 269
MVIcip_SetModuleStatus * 274
MViIcip_SetUserLED « 273
MViIcip_Sleep « 278
MViIcip_UnregisterAssemblyObj « 252, 253
MVIcip_WriteConnected « 254, 256
MVisc_BCD2BIN - 307
MVisc_BIN2BCD - 308
MVIsc_ClearFault « 302
MVisc_Close « 282
MVIisc_ErrorStr » 305
MVlsc_GetLastPcccError « 306
MVisc_GetPLCClock « 300
MVIisc_GetPLCFilelnfo « 283
MVisc_GetPLCStatus « 298
MVIsc_GetVersioninfo « 304
MVIsc_Open -« 281
MVIsc_PLCBTRead * 296
MVIsc_PLCBTWrite « 297
MVIsc_PLCMsgRead ¢ 292
MVisc_PLCMsgWait » 295
MVIisc_PLCMsgWrite « 294
MVIisc_ReadPLC - 287
MVIsc_ RMWPLC - 289
MVIsc_SetPLCMode « 303
MVIsc_SyncPLCClock « 301
MVlsc_WaitForEos « 291
MVIsc_WritePLC « 285
MVisp_Close « 216, 219
MVIsp_Config * 220

MVIisp_Getch « 232, 233, 239, 241, 243
MVIsp_GetCountUnread « 243
MVIsp_GetCountUnsent » 242
MVisp_GetCTS » 227
MVIsp_GetData * 240, 243
MVIsp_GetDCD - 229
MVIisp_GetDSR « 228
MVisp_GetDTR « 225, 226
MVIisp_GetLineStatus « 230
MVisp_GetRTS » 223, 224
MVisp_Gets * 233, 235, 238, 241, 243
MVIisp_GetVersioninfo « 246
MVIsp_Open « 215, 218, 219, 221
MVIsp_OpenAlt » 217
MVIsp_PurgeDataUnread « 244, 245
MVIsp_PurgeDataUnsent « 244, 245
MVIsp_Putch « 231, 233, 235, 237, 242
MVIsp_PutData 232, 235, 236, 239, 241,
242
MVisp_Puts « 232, 234, 237, 239, 242
MVisp_SetDTR « 225, 226
MVIsp_SetHandshaking * 222
MVIisp_SetRTS » 223, 224

N

Normal Data Transfer « 21, 24, 28, 33

O

Operating System « 10

P

Package Contents * 11

Platform Specific Functions « 209
PLC Data Table Access * 279
PLC Message Handling * 280
PLC Status and Control « 280
PLC-5 Data File Types * 283
PLC-5 Major Fault Word « 299
PLC-5 Status Word « 298

Please Read This Notice « 2

Port 1 and Port 2 Jumpers * 11
Preparing the MVI-ADM Module * 11
Programming the Module « 77

R

Read Block « 24, 28, 34

Read Routine * 87, 88

resetrequest_proc « 267, 269

ROM Disk Configuration « 77

RS-232 « 14

RS-232 -- Modem Connection « 14

RS-232 -- Null Modem Connection
(Hardware Handshaking) » 15

RS-232 -- Null Modem Connection (No
Hardware Handshaking) « 15

ProSoft Technology, Inc.
December 12, 2006

Page 317 of 318

MVI-ADM ¢ 'C' Programmable
Application Development Module

Index

RS-232 Configuration/Debug Port « 12
RS-422 « 16

RS-485 -« 16

RS-485 and RS-422 Tip « 16

RS-485 Programming Note * 44
rxdata_proc « 263

S

Sample Code * 18

Sample Ladder Logic « 90

Sample ROM Disk Image « 80

Serial API Architecture « 53

Serial API Files « 53

Serial Communications * 41

Serial Port APl Communications * 231

Serial Port API Configuration Functions * 220

Serial Port API Initialization Functions * 215

Serial Port API Miscellaneous Functions ¢
246

Serial Port API Status Functions * 223

Serial Port Library Functions « 213

service_proc ¢« 252, 261

Setting Up WINIMAGE -« 72

Setting Up Your Compiler * 55

Setting Up Your Development Environment ¢
55

Setup Jumper ¢ 11

Side-Connect API Architecture * 54

Side-connect API Block Transfer Functions ¢
296

Side-Connect API Files * 54

Side-connect API Initialization Functions
281

Side-Connect API Library Functions « 279

Side-connect API Miscellaneous Functions ¢
304

Side-connect API PLC Data Table Access
Functions « 283

Side-connect APl PLC Message Handling
Functions « 292

Side-connect APl PLC Status and Control
Functions « 298

Side-connect API Synchronization Functions
* 291

Side-Connect Interface * 95

Software * 45

Support, Service & Warranty « 311

Synchronization « 279

T

Theory of Operation * 19

U

Understanding the MVI-ADM API « 17

Using Compact Flash Disks « 45

Using Side-Connect (Requires Side-Connect
Adapter) (MVI71) « 73

Using the MVI Flash Update Utility « 84

W

Warm Boot * 22, 31, 36
Warm Boot (Block 9998) « 40
WINIMAGE

Windows Disk Image Builder « 81
Write Block ¢ 25, 31, 34
Write Configuration « 22, 35
Write Routine * 89

Y

Your Feedback Please * 2

Page 318 of 318

ProSoft Technology, Inc.
December 12, 2006

	Introduction
	Definitions
	Operating System

	Preparing the MVI-ADM Module
	Package Contents
	Jumper Locations and Settings
	Setup Jumper
	Port 1 and Port 2 Jumpers

	Cable Connections
	RS-232 Configuration/Debug Port
	Disabling the RSLinx Driver for the Com Port on the PC

	RS-232
	RS-232 -- Modem Connection
	RS-232 -- Null Modem Connection (Hardware Handshaking)
	RS-232 -- Null Modem Connection (No Hardware Handshaking)

	RS-422
	RS-485
	RS-485 and RS-422 Tip

	Understanding the MVI-ADM API
	API Libraries
	Calling Convention
	Header File
	Sample Code
	Multithreading Considerations

	Development Tools
	Theory of Operation
	ADM API

	ADM Functional Blocks
	Database
	Backplane Communications
	MVI46 Backplane Data Transfer
	Normal Data Transfer
	Configuration Data Transfer
	Module Configuration Data
	Command Control Blocks
	Write Configuration
	Warm Boot
	Cold Boot

	MVI56 Backplane Data Transfer
	Normal Data Transfer
	Read Block
	Write Block
	Configuration Data Transfer
	Module Configuration data

	MVI69 Backplane Data Transfer
	Normal Data Transfer
	Read Block
	Write Block
	Warm Boot

	MVI71 Backplane Data Transfer
	Normal Data Transfer
	Read Block
	Write Block
	Configuration Data Transfer
	Module Configuration data
	Command Control Blocks
	Write Configuration
	Warm Boot
	Cold Boot

	MVI94 Backplane Data Transfer
	Data Transfer
	Block Identification Codes
	Warm Boot (Block 9998)
	Cold Boot (Block 9999)

	Serial Communications
	Main_app.c
	Debugprt.c
	MVIcfg.c
	MVI46
	MVI56
	MVI69
	MVI71
	MVI94

	Commdrv.c
	RS-485 Programming Note
	Hardware
	Software

	Using Compact Flash Disks

	ADM API Architecture
	Example Code Files
	ADM API Files
	ADM Interface Structure

	Backplane API Files
	Backplane API Architecture
	Data Transfer
	Direct I/O Access
	Messaging
	Messaging Protocol

	Serial API Files
	Serial API Architecture

	Side-Connect API Files
	Side-Connect API Architecture
	Data Transfer

	Setting Up Your Development Environment
	Setting Up Your Compiler
	Configuring Digital Mars C++ 8.49
	Downloading the Sample Program
	Building an Existing Digital Mars C++ 8.49 ADM Project
	Creating a New Digital Mars C++ 8.49 ADM Project

	Configuring Borland C++5.02
	Downloading the Sample Program
	Building an Existing Borland C++ 5.02 ADM Project
	Creating a New Borland C++ 5.02 ADM Project

	Setting Up WINIMAGE
	Installing and Configuring the Module
	Using Side-Connect (Requires Side-Connect Adapter) (MVI71)

	Programming the Module
	ROM Disk Configuration
	CONFIG.SYS File
	MVI46
	MVI56
	MVI69
	MVI71
	MVI94

	Command Interpreter
	Sample ROM Disk Image

	Creating a ROM Disk Image
	WINIMAGE: Windows Disk Image Builder

	Downloading a ROM Disk Image
	MVI Flash Update
	Installation
	Using the MVI Flash Update Utility

	MVI System BIOS Setup
	Debugging Strategies

	Creating Ladder Logic
	MVI46 Ladder Logic
	Main Routine

	MVI56 Ladder Logic
	Main Routine
	Read Routine

	MVI69 Ladder Logic
	Main Routine
	Read Routine
	Write Routine

	MVI71 Ladder Logic
	Sample Ladder Logic
	Block Transfer Interface
	Main Routine
	Block Transfer Routine
	Side-Connect Interface
	Boot

	MVI94 Ladder Logic
	Main Routine
	ADM

	Application Development Function Library: ADM API
	ADM API Functions
	ADM API Initialization Functions
	ADM API Debug Port Functions
	ADM API Database Functions
	ADM API Clock Functions
	ADM API Backplane Functions
	ADM LED Functions
	ADM API Flash Functions
	ADM API Miscellaneous Functions
	ADM Side-Connect Functions
	ADM API RAM Functions

	Backplane API Functions
	Backplane API Initialization Functions
	Backplane API Configuration Functions
	Backplane API Synchronization Functions
	Backplane API Direct I/O Access
	Backplane API Messaging Functions
	Backplane API Miscellaneous Functions
	Platform Specific Functions

	Serial Port Library Functions
	Serial Port API Initialization Functions
	Serial Port API Configuration Functions
	Serial Port API Status Functions
	Serial Port API Communications
	Serial Port API Miscellaneous Functions

	CIP Messaging Library Functions
	CIP Messaging API Files
	CIP API Architecture
	Backplane Device Driver

	CIP API Initialization Functions
	CIP Object Registration
	CIP Connected Data Transfer
	CIP Callback Functions
	CIP Special Callback Registration
	CIP Miscellaneous Functions

	Side-Connect API Library Functions
	Initialization
	PLC Data Table Access
	Synchronization

	PLC Message Handling
	Block Transfer
	PLC Status and Control
	Miscellaneous

	Side-connect API Initialization Functions
	Side-connect API PLC Data Table Access Functions
	PLC-5 Data File Types

	Side-connect API Synchronization Functions
	Side-connect API PLC Message Handling Functions
	Side-connect API Block Transfer Functions
	Side-connect API PLC Status and Control Functions
	PLC-5 Status Word
	PLC-5 Major Fault Word

	Side-connect API Miscellaneous Functions

	DOS 6 XL Reference Manual
	Support, Service & Warranty
	Index

