
MVI-ADM
'C' Programmable

'C' Programmable Application
Development Module

August 6, 2021

DEVELOPER'S GUIDE

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,
compliments or complaints about our products, documentation, or support, please write or call us.

ProSoft Technology, Inc.
+1 (661) 716-5100
+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
support@prosoft-technology.com

Copyright © 2021 ProSoft Technology, Inc. All rights reserved.

MVI-ADM Developer's Guide

August 6, 2021

ProSoft Technology
®
, ProLinx

®
, inRAx

®
, ProTalk

®
, and RadioLinx

®
 are Registered Trademarks of ProSoft

Technology, Inc. All other brand or product names are or may be trademarks of, and are used to identify products
and services of, their respective owners.

In an effort to conserve paper, ProSoft Technology no longer includes printed manuals with our product shipments.
User Manuals, Datasheets, Sample Ladder Files, and Configuration Files are provided at:
www.prosoft-technology.com.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of
these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate
and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or
use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. Information in this document including illustrations, specifications and
dimensions may contain technical inaccuracies or typographical errors. ProSoft Technology makes no warranty or
representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or
errors at any time without notice. If you have any suggestions for improvements or amendments or have found errors
in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including
photocopying, without express written permission of ProSoft Technology. All pertinent state, regional, and local safety
regulations must be observed when installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform repairs to components. When
devices are used for applications with technical safety requirements, the relevant instructions must be followed.
Failure to use ProSoft Technology software or approved software with our hardware products may result in injury,
harm, or improper operating results. Failure to observe this information can result in injury or equipment damage.

© 2021 ProSoft Technology. All rights reserved.

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.

North America: +1.661.716.5100

Asia Pacific: +603.7724.2080

Europe, Middle East, Africa: +33 (0) 5.3436.87.20

Latin America: +1.281.298.9109

http://www.prosoft-technology.com/

Important Installation Instructions

Power, Input, and Output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods, Article 501-4 (b)
of the National Electrical Code, NFPA 70 for installation in the U.S., or as specified in Section 18-1J2 of the Canadian
Electrical Code for installations in Canada, and in accordance with the authority having jurisdiction. The following
warnings must be heeded:

A WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR
CLASS I, DIV. 2;

B WARNING - EXPLOSION HAZARD - WHEN IN HAZARDOUS LOCATIONS, TURN OFF POWER BEFORE
REPLACING OR WIRING MODULES

C WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

D THIS DEVICE SHALL BE POWERED BY CLASS 2 OUTPUTS ONLY.

MVI (Multi Vendor Interface) Modules

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

AVERTISSEMENT - RISQUE D'EXPLOSION - AVANT DE DÉCONNECTER L'ÉQUIPEMENT, COUPER LE
COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DÉSIGNÉ NON DANGEREUX.

Warnings

North America Warnings

A Warning - Explosion Hazard - Substitution of components may impair suitability for Class I, Division 2.
B Warning - Explosion Hazard - When in Hazardous Locations, turn off power before replacing or rewiring

modules.
Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is
known to be nonhazardous.

C Suitable for use in Class I, division 2 Groups A, B, C and D Hazardous Locations or Non-Hazardous Locations.

ATEX Warnings and Conditions of Safe Usage:

Power, Input, and Output (I/O) wiring must be in accordance with the authority having jurisdiction

A Warning - Explosion Hazard - When in hazardous locations, turn off power before replacing or wiring modules.
B Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is

known to be non-hazardous.
C These products are intended to be mounted in an IP54 enclosure. The devices shall provide external means to

prevent the rated voltage being exceeded by transient disturbances of more than 40%. This device must be used
only with ATEX certified backplanes.

D DO NOT OPEN WHEN ENERGIZED.

Electrical Ratings

 Backplane Current Load: 800 mA @ 5 V DC; 3mA @ 24V DC
 Operating Temperature: 0 to 60°C (32 to 140°F)
 Storage Temperature: -40 to 85°C (-40 to 185°F)
 Shock: 30g Operational; 50g non-operational; Vibration: 5 g from 10 to 150 Hz
 Relative Humidity 5% to 95% (non-condensing)
 All phase conductor sizes must be at least 1.3 mm(squared) and all earth ground conductors must be at least

4mm(squared).

Warning: This module is not hot-swappable! Always remove power from the rack before inserting or removing this
module, or damage may result to the module, the processor, or other connected devices.

Battery Life Advisory

The MVI46, MVI56, MVI56E, MVI69, and MVI71 modules use a rechargeable Lithium Vanadium Pentoxide battery to
backup the real-time clock and CMOS. The battery should last for the life of the module. The module must be
powered for approximately twenty hours before the battery becomes fully charged. After it is fully charged, the battery
provides backup power for the CMOS setup and the real-time clock for approximately 21 days. When the battery is
fully discharged, the module will revert to the default BIOS and clock settings.

Note: The battery is not user replaceable.

For professional users in the European Union

If you wish to discard electrical and electronic equipment (EEE), please contact your dealer
or supplier for further information.

Warning – Cancer and Reproductive Harm – www.P65Warnings.ca.gov

Agency Approvals & Certifications

Please visit our website: www.prosoft-technology.com

MVI-ADM ♦ 'C' Programmable Contents
'C' Programmable Application Development Module Developer's Guide

Page 5 of 342 ProSoft Technology, Inc.

Contents

Your Feedback Please .. 2
Content Disclaimer .. 2
Important Installation Instructions ... 3
MVI (Multi Vendor Interface) Modules .. 3
Warnings ... 3
Battery Life Advisory ... 4

1 Introduction 13

1.1 Operating System .. 13

2 Preparing the MVI-ADM Module 15

2.1 Package Contents ... 16
2.2 Recommended Compact Flash (CF) Cards .. 17
2.3 Jumper Locations and Settings ... 18

2.3.1 Setup Jumper .. 18
2.3.2 Port 1 and Port 2 Jumpers .. 18

2.4 Cable Connections .. 19
2.4.1 RS-232 Configuration/Debug Port .. 19
2.4.2 RS-232 Application Port(s) ... 19
2.4.3 RS-422 .. 22
2.4.4 RS-485 Application Port(s) .. 22
2.4.5 DB9 to RJ45 Adaptor (Cable 14) .. 23

3 Understanding the MVI-ADM API 25

3.1 API Libraries .. 26
3.1.1 Calling Convention .. 26
3.1.2 Header File .. 26
3.1.3 Sample Code ... 26
3.1.4 Multi-threading Considerations ... 27

3.2 Development Tools ... 28
3.3 Theory of Operation .. 29

3.3.1 ADM API .. 29
3.4 ADM Functional Blocks ... 30

3.4.1 Database ... 30
3.4.2 Backplane Communications .. 30
3.4.3 Serial Communications ... 53
3.4.4 Main_app.c .. 53
3.4.5 Debugprt.c ... 54
3.4.6 MVIcfg.c... 54
3.4.7 Commdrv.c .. 56
3.4.8 Using Compact Flash Disks .. 58

3.5 ADM API Architecture ... 59
3.6 ADM API Files ... 60

3.6.1 ADM Interface Structure .. 60
3.7 Backplane API Files .. 64

3.7.1 Backplane API Architecture... 64

Contents MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 6 of 342 ProSoft Technology, Inc.

3.8 Serial API Files ... 66
3.8.1 Serial API Architecture .. 66

3.9 Side-Connect API Files ... 67
3.9.1 Side-Connect API Architecture ... 67
3.9.2 Data Transfer .. 67

4 Setting Up Your Development Environment 69

4.1 Setting Up Your Compiler ... 70
4.1.1 Configuring Digital Mars C++ 8.49.. 70
4.1.2 Configuring Borland C++5.02 ... 80

4.2 Setting Up WINIMAGE ... 87
4.3 Installing and Configuring the Module .. 88

4.3.1 Using Side-Connect (Requires Side-Connect Adapter) (MVI71) 88

5 Programming the Module 91

5.1 ROM Disk Configuration ... 92
5.1.1 CONFIG.SYS File ... 92
5.1.2 Command Interpreter .. 94
5.1.3 Sample ROM Disk Image ... 95

5.2 Creating a ROM Disk Image ... 97
5.2.1 WINIMAGE: Windows Disk Image Builder ... 97

5.3 MVIUPDAT ... 99
5.4 MVI System BIOS Setup .. 101
5.5 Debugging Strategies ... 102

6 Creating Ladder Logic 103

6.1 MVI46 Ladder Logic .. 104
6.1.1 Main Routine ... 104

6.2 MVI56 Ladder Logic .. 105
6.2.1 Main Routine ... 105
6.2.2 Read Routine .. 105

6.3 MVI69 Ladder Logic .. 106
6.3.1 Main Routine ... 106
6.3.2 Read Routine .. 107
6.3.3 Write Routine .. 108

6.4 MVI71 Ladder Logic .. 109
6.4.1 Sample Ladder Logic .. 109

6.5 MVI94 Ladder Logic .. 115
6.5.1 Main Routine ... 115
6.5.2 ADM .. 116

7 Application Development Function Library - ADM API 119

7.1 ADM API Functions .. 120
7.2 ADM API Initialization Functions... 123

ADM_Open .. 123
ADM_Close ... 124

7.3 ADM API Debug Port Functions ... 125
ADM_ProcessDebug ... 125

MVI-ADM ♦ 'C' Programmable Contents
'C' Programmable Application Development Module Developer's Guide

Page 7 of 342 ProSoft Technology, Inc.

ADM_DAWriteSendCtl ... 126
ADM_DAWriteRecvCtl ... 127
ADM_DAWriteSendData.. 128
ADM_DAWriteRecvData .. 129
ADM_ConPrint ... 130
ADM_CheckDBPort ... 131

7.4 ADM API Database Functions .. 132
ADM_DBOpen ... 132
ADM_DBClose ... 133
ADM_DBZero ... 134
ADM_DBGetBit .. 135
ADM_DBSetBit .. 136
ADM_DBClearBit ... 137
ADM_DBGetByte ... 138
ADM_DBSetByte ... 139
ADM_DBGetWord .. 140
ADM_DBSetWord .. 141
ADM_DBGetLong .. 142
ADM_DBSetLong ... 143
ADM_DBGetFloat .. 144
ADM_DBSetFloat ... 145
ADM_DBGetDFloat .. 146
ADM_DBSetDFloat .. 147
ADM_DBGetBuff .. 148
ADM_DBSetBuff .. 149
ADM_DBGetRegs .. 150
ADM_DBSetRegs .. 151
ADM_DBGetString ... 152
ADM_DBSetString ... 153
ADM_DBSwapWord .. 154
ADM_DBSwapDWord .. 155
ADM_GetDBCptr ... 156
ADM_GetDBIptr ... 157
ADM_GetDBInt .. 158
ADM_DBChanged ... 159
ADM_DBBitChanged ... 160
ADM_DBOR_Byte ... 161
ADM_DBNOR_Byte ... 162
ADM_DBAND_Byte ... 163
ADM_DBNAND_Byte... 164
ADM_DBXOR_Byte ... 165
ADM_DBXNOR_Byte .. 166

7.5 ADM API Clock Functions ... 167
ADM_StartTimer .. 167
ADM_CheckTimer .. 168

7.6 ADM API Backplane Functions ... 169
ADM_BtOpen ... 169
ADM_BtClose .. 170
ADM_BtNext .. 171
ADM_ReadBtCfg ... 172
ADM_BtFunc .. 173
ADM_SetStatus ... 174
ADM_SetBtStatus .. 175

7.7 ADM LED Functions .. 176

Contents MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 8 of 342 ProSoft Technology, Inc.

ADM_SetLed ... 176
7.8 ADM API Flash Functions ... 177

ADM_FileGetString ... 177
ADM_FileGetInt ... 178
ADM_FileGetChar ... 179
ADM_GetVal.. 180
ADM_GetChar ... 181
ADM_GetStr .. 182
ADM_SkipToNext .. 183
ADM_Getc ... 184

7.9 ADM API Miscellaneous Functions... 185
ADM_GetVersionInfo .. 185
ADM_SetConsolePort ... 186
ADM_SetConsoleSpeed ... 187

7.10 ADM Side-Connect Functions .. 188
ADM_ScOpen ... 188
ADM_ScClose ... 189
ADM_ReadScFile .. 190
ADM_ReadScCfg .. 191
ADM_ScScan .. 192

7.11 ADM API RAM Functions ... 193
ADM_EEPROM_ReadConfiguration ... 193
ADM_RAM_Find_Section ... 194
ADM_RAM_GetString ... 195
ADM_RAM_GetInt ... 196
ADM_RAM_GetLong ... 197
ADM_RAM_GetFloat ... 198
ADM_RAM_GetDouble ... 199
ADM_RAM_GetChar ... 200

8 Backplane API Functions 201

8.1 Backplane API Initialization Functions .. 203
MVIbp_Open ... 203
MVIbp_Close ... 204

8.2 Backplane API Configuration Functions ... 206
MVIbp_GetIOConfig .. 206
MVIbp_SetIOConfig .. 208

8.3 Backplane API Synchronization Functions ... 210
MVIbp_WaitForInputScan ... 210
MVIbp_WaitForOutputScan .. 212

8.4 Backplane API Direct I/O Access ... 214
MVIbp_ReadOutputImage ... 214
MVIbp_WriteInputImage .. 215

8.5 Backplane API Messaging Functions ... 216
MVIbp_ReceiveMessage .. 216
MVIbp_SendMessage ... 218

8.6 Backplane API Miscellaneous Functions .. 220
MVIbp_GetVersionInfo .. 220
MVIbp_GetModuleInfo .. 221
MVIbp_ErrorString ... 222
MVIbp_SetUserLED .. 223
MVIbp_SetModuleStatus ... 224

MVI-ADM ♦ 'C' Programmable Contents
'C' Programmable Application Development Module Developer's Guide

Page 9 of 342 ProSoft Technology, Inc.

MVIbp_GetConsoleMode .. 225
MVIbp_GetSetupMode .. 226
MVIbp_GetProcessorStatus .. 227
MVIbp_Sleep ... 228
MVIbp_SetConsoleMode ... 229

8.7 Platform Specific Functions ... 230
MVIbp_ReadModuleFile (MVI46) .. 230
MVIbp_WriteModuleFile (MVI46) ... 231
MVIbp_SetModuleInterrupt (MVI46) .. 232

9 Serial Port Library Functions 233

9.1 Serial Port API Initialization Functions .. 235
MVIsp_Open .. 235
MVIsp_OpenAlt .. 237
MVIsp_Close .. 239

9.2 Serial Port API Configuration Functions .. 240
MVIsp_Config .. 240
MVIsp_SetHandshaking .. 242

9.3 Serial Port API Status Functions ... 243
MVIsp_SetRTS .. 243
MVIsp_GetRTS .. 244
MVIsp_SetDTR .. 245
MVIsp_GetDTR .. 246
MVIsp_GetCTS .. 247
MVIsp_GetDSR ... 248
MVIsp_GetDCD ... 249
MVIsp_GetLineStatus .. 250

9.4 Serial Port API Communications ... 251
MVIsp_Putch .. 251
MVIsp_Getch ... 252
MVIsp_Puts .. 253
MVIsp_PutData .. 255
MVIsp_Gets ... 257
MVIsp_GetData ... 259
MVIsp_GetCountUnsent .. 261
MVIsp_GetCountUnread ... 262
MVIsp_PurgeDataUnsent .. 263
MVIsp_PurgeDataUnread .. 264

9.5 Serial Port API Miscellaneous Functions .. 265
MVIsp_GetVersionInfo ... 265

10 CIP Messaging Library Functions 267

10.1 CIP Messaging API Files... 268
10.2 CIP API Architecture ... 269

10.2.1 Backplane Device Driver ... 269
10.3 CIP API Initialization Functions ... 270

MVIcip_Open ... 270
MVIcip_Close ... 271

10.4 CIP Object Registration ... 272
MVIcip_RegisterAssemblyObj ... 272
MVIcip_UnregisterAssemblyObj .. 274

Contents MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 10 of 342 ProSoft Technology, Inc.

10.5 CIPConnect
®
 Data Transfer .. 275

MVIcip_WriteConnected .. 275
MVIcip_ReadConnected ... 276

10.6 CIP Callback Functions .. 278
connect_proc ... 278
service_proc .. 282
rxdata_proc.. 284
fatalfault_proc .. 286
flashupdate_proc ... 287
resetrequest_proc ... 288

10.7 CIP Special Callback Registration .. 289
MVIcip_RegisterFatalFaultRtn .. 289
MVIcip_RegisterResetReqRtn .. 290
MVIcip_RegisterFlashUpdateRtn .. 291

10.8 CIP Miscellaneous Functions ... 292
MVIcip_GetIdObject .. 292
MVIcip_GetVersionInfo ... 293
MVIcip_SetUserLED ... 294
MVIcip_SetModuleStatus .. 295
MVIcip_ErrorString .. 296
MVIcip_GetSetupMode ... 297
MVIcip_GetConsoleMode ... 298
MVIcip_Sleep .. 299

11 Side-Connect API Library Functions 301

11.1 Initialization ... 302
11.1.1 PLC Data Table Access .. 302
11.1.2 Synchronization .. 302

11.2 PLC Message Handling .. 303
11.2.1 Block Transfer ... 303
11.2.2 PLC Status and Control .. 303
11.2.3 Miscellaneous ... 303

11.3 Side-connect API Initialization Functions ... 304
MVIsc_Open .. 304
MVIsc_Close ... 305

11.4 Side-connect API PLC Data Table Access Functions .. 306
MVIsc_GetPLCFileInfo .. 306
MVIsc_WritePLC ... 308
MVIsc_ReadPLC ... 310
MVIsc_RMWPLC .. 312

11.5 Side-connect API Synchronization Functions ... 314
MVIsc_WaitForEos .. 314

11.6 Side-connect API PLC Message Handling Functions .. 315
MVIsc_PLCMsgRead .. 315
MVIsc_PLCMsgWrite .. 316
MVIsc_PLCMsgWait ... 317

11.7 Side-connect API Block Transfer Functions ... 318
MVIsc_PLCBTRead .. 318
MVIsc_PLCBTWrite .. 319

11.8 Side-connect API PLC Status and Control Functions .. 320
MVIsc_GetPLCStatus ... 320
MVIsc_GetPLCClock ... 322

MVI-ADM ♦ 'C' Programmable Contents
'C' Programmable Application Development Module Developer's Guide

Page 11 of 342 ProSoft Technology, Inc.

MVIsc_SyncPLCClock ... 323
MVIsc_ClearFault .. 324
MVIsc_SetPLCMode.. 325

11.9 Side-connect API Miscellaneous Functions .. 326
MVIsc_GetVersionInfo ... 326
MVIsc_ErrorStr .. 327
MVIsc_GetLastPcccError... 328
MVIsc_BCD2BIN ... 329
MVIsc_BIN2BCD ... 330

12 DOS 6 XL Reference Manual 331

13 Support, Service & Warranty 333

13.1 Contacting Technical Support ... 333
13.2 Warranty Information ... 334

Glossary of Terms 335

Index 339

Contents MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 12 of 342 ProSoft Technology, Inc.

MVI-ADM ♦ 'C' Programmable Introduction
'C' Programmable Application Development Module Developer's Guide

Page 13 of 342 ProSoft Technology, Inc.

1 Introduction

In This Chapter

 Operating System .. 13

This document provides information needed for development of application
programs for the MVI ADM Serial Communication Module. The MVI suite of
modules is designed to allow devices with a serial port to be accessed by a PLC.
The modules and their corresponding platforms are as follows:

 MVI46: 1746 (SLC)
 MVI56: 1756 (ControlLogix)
 MVI69: 1769 (CompactLogix)
 MVI71: 1771 (PLC)
 MVI94: 1794 (Flex)

The modules are programmable to accommodate devices with unique serial
protocols.

Included in this document is information about the available software API libraries
and tools, module configuration and programming information, and example code
for both the module and the PLC. This document assumes the reader is familiar
with software development in the 16-bit DOS environment using the 'C'
programming language. This document also assumes that the reader is familiar
with Rockwell Automation programmable controllers and the PLC platform.

1.1 Operating System

The MVI module includes General Software Embedded DOS 6-XL. This
operating system provides DOS compatibility along with real-time multi-tasking
functionality. The operating system is stored in Flash ROM and is loaded by the
BIOS when the module boots.

DOS compatibility allows user applications to be developed using standard DOS
tools, such as Digital Mars C++ and Borland compilers. User programs may be
executed automatically by loading them from either the CONFIG.SYS file or an
AUTOEXEC.BAT file.

Note: DOS programs that try to access the video or keyboard hardware directly will not function
correctly on the MVI module. Only programs that use the standard DOS and BIOS functions to
perform console I/O are compatible.

Refer to the General Software Embedded DOS 6-XL Developer’s
Guide (page 331) for more information. Download at:
www.prosoft-technology.com.

Introduction MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 14 of 342 ProSoft Technology, Inc.

MVI-ADM ♦ 'C' Programmable Preparing the MVI-ADM Module
'C' Programmable Application Development Module Developer's Guide

Page 15 of 342 ProSoft Technology, Inc.

2 Preparing the MVI-ADM Module

In This Chapter

 Package Contents ... 16

 Recommended Compact Flash (CF) Cards .. 17

 Jumper Locations and Settings ... 18

 Cable Connections .. 19

Preparing the MVI-ADM Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 16 of 342 ProSoft Technology, Inc.

2.1 Package Contents

Your MVI-ADM package includes:

 MVI-ADM Module
 Null Modem Cable
 Config/Debug Port to DB-9 adapter

MVI-ADM ♦ 'C' Programmable Preparing the MVI-ADM Module
'C' Programmable Application Development Module Developer's Guide

Page 17 of 342 ProSoft Technology, Inc.

2.2 Recommended Compact Flash (CF) Cards

What Compact Flash card does ProSoft recommend using?

Some ProSoft products contain a "Personality Module", or Compact Flash card.
ProSoft recommends using an industrial grade Compact Flash card for best
performance and durability. The following cards have been tested with ProSoft’s
modules, and are the only cards recommended for use. These cards can be
ordered through ProSoft, or can be purchased by the customer.

Approved ST-Micro cards:

 32M = SMC032AFC6E
 64M = SMC064AFF6E
 128M = SMC128AFF6E

Approved Silicon Systems cards:

 256M = SSD-C25MI-3012
 512M = SSD-C51MI-3012
 2G = SSD-C02GI-3012
 4G = SSD-C04GI-3012

Preparing the MVI-ADM Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 18 of 342 ProSoft Technology, Inc.

2.3 Jumper Locations and Settings

Each module has three jumpers:

 Setup
 Port 1
 Port 2 (Not available on MVI94)

2.3.1 Setup Jumper

The Setup jumper, located at the bottom of the module, should have the two pins
jumpered when programming the module. After programming is complete, the
jumper should be removed.

2.3.2 Port 1 and Port 2 Jumpers

These jumpers, located at the bottom of the module, configure the port settings
to RS-232, RS-422, or RS-485. By default, the jumpers for both ports are set to
RS-232. These jumpers must be set properly before using the module.

MVI-ADM ♦ 'C' Programmable Preparing the MVI-ADM Module
'C' Programmable Application Development Module Developer's Guide

Page 19 of 342 ProSoft Technology, Inc.

2.4 Cable Connections

The application ports on the MVI-ADM module support RS-232, RS-422, and RS-
485 interfaces. Please inspect the module to ensure that the jumpers are set
correctly to correspond with the type of interface you are using.

Note: When using RS-232 with radio modem applications, some radios or modems require
hardware handshaking (control and monitoring of modem signal lines). Enable this in the
configuration of the module by setting the UseCTS parameter to 1.

2.4.1 RS-232 Configuration/Debug Port

This port is physically an RJ45 connection. An RJ45 to DB-9 adapter cable is
included with the module. This port permits a PC based terminal emulation
program to view configuration and status data in the module and to control the
module. The cable for communications on this port is shown in the following
diagram:

2.4.2 RS-232 Application Port(s)

When the RS-232 interface is selected, the use of hardware handshaking
(control and monitoring of modem signal lines) is user definable. If no hardware
handshaking will be used, here are the cable pinouts to connect to the port.

Preparing the MVI-ADM Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 20 of 342 ProSoft Technology, Inc.

RS-232: Modem Connection (Hardware Handshaking Required)

This type of connection is required between the module and a modem or other
communication device.

The "Use CTS Line" parameter for the port configuration should be set to 'Y' for
most modem applications.

RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module
requires hardware handshaking (control and monitoring of modem signal lines).

MVI-ADM ♦ 'C' Programmable Preparing the MVI-ADM Module
'C' Programmable Application Development Module Developer's Guide

Page 21 of 342 ProSoft Technology, Inc.

RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field
device communication port.

Note: For most null modem connections where hardware handshaking is not required, the Use
CTS Line parameter should be set to N and no jumper will be required between Pins 7 (RTS) and 8
(CTS) on the connector. If the port is configured with the Use CTS Line set to Y, then a jumper is
required between the RTS and the CTS lines on the port connection.

Preparing the MVI-ADM Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 22 of 342 ProSoft Technology, Inc.

2.4.3 RS-422

The RS-422 interface requires a single four or five wire cable. The Common
connection is optional, depending on the RS-422 network devices used. The
cable required for this interface is shown below:

2.4.4 RS-485 Application Port(s)

The RS-485 interface requires a single two or three wire cable. The Common
connection is optional, depending on the RS-485 network devices used. The
cable required for this interface is shown below:

Note: Terminating resistors are generally not required on the RS-485 network, unless you are
experiencing communication problems that can be attributed to signal echoes or reflections. In
these cases, installing a 120-ohm terminating resistor between pins 1 and 8 on the module
connector end of the RS-485 line may improve communication quality.

RS-485 and RS-422 Tip

If communication in the RS-422 or RS-485 mode does not work at first, despite
all attempts, try switching termination polarities. Some manufacturers interpret +
and -, or A and B, polarities differently.

MVI-ADM ♦ 'C' Programmable Preparing the MVI-ADM Module
'C' Programmable Application Development Module Developer's Guide

Page 23 of 342 ProSoft Technology, Inc.

2.4.5 DB9 to RJ45 Adaptor (Cable 14)

Preparing the MVI-ADM Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 24 of 342 ProSoft Technology, Inc.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 25 of 342 ProSoft Technology, Inc.

3 Understanding the MVI-ADM API

In This Chapter

 API Libraries .. 26

 Development Tools ... 28

 Theory of Operation .. 29

 ADM Functional Blocks ... 30

 ADM API Architecture.. 59

 ADM API Files ... 60

 Backplane API Files .. 64

 Serial API Files .. 66

 Side-Connect API Files ... 67

The MVI ADM API Suite allows software developers to access the PLC
backplane and serial ports without needing detailed knowledge of the module’s
hardware design. The MVI ADM API Suite consists of three distinct components:
the Serial Port API, the MVI Backplane/CIP API and the ADM API.

 The MVI Backplane API provides access to the processor
 The Serial Port API provides access to the serial ports
 The ADM API provides functions designed to ease development.
 In addition to the MVI Backplane API, MVI71 also provides the MVI Side-

Connect API as an alternative interface.

Applications for the MVI ADM module may be developed using industry-standard
DOS programming tools and the appropriate API components.

This section provides general information pertaining to application development
for the MVI ADM module.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 26 of 342 ProSoft Technology, Inc.

3.1 API Libraries

Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars C++ or Borland development
tools.

Note: The following compiler versions are intended to be compatible with the MVI module API:
 Digital Mars C++ 8.49
 Borland C++ V5.02
More compilers will be added to the list as the API is tested for compatibility with them.

3.1.1 Calling Convention

The API library functions are specified using the 'C' programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

3.1.2 Header File

A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard 'C' format.

3.1.3 Sample Code

A sample application is provided to illustrate the usage of the API functions. Full
source for the sample application is provided. The sample application may be
compiled using Digital Mars C++ or Borland C++.

Important: The sample code and libraries in the 1756-MVI-Samples folder are not compatible with,
and are not supported for, the Digital Mars compiler.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 27 of 342 ProSoft Technology, Inc.

3.1.4 Multi-threading Considerations

The DOS 6-XL operating system supports the development of multi-threaded
applications.

Note: The multi-threading library kernel.lib in the DOS folder (www.prosoft-technology.com) is
compiler-specific to Borland C++ 5.02. It is not compatible with Digital Mars C++ 8.49. ProSoft
Technology, Inc. does not support multi-threading with Digital Mars C++ 8.49.

Note: The ADM DOS 6-XL operating system has a system tick of 5 milliseconds. Therefore, thread
scheduling and timer servicing occur at 5ms intervals. Refer to the DOS 6-XL Developer’s Guide
found at: www.prosoft-technology.com

Multi-threading is also supported by the API.

 DOS and cipapi libraries have been tested and are thread-safe for use in
multi-threaded applications.

 MVIbp and MVIsp libraries are safe to use in multi-threaded applications with
the following precautions: If you call the same MVIbp or MVIsp function from
multiple threads, you will need to protect it, to prevent task switches during
the function's execution. The same is true for different MVIbp or MVIsp
functions that share the same resources (for example, two different functions
that access the same read or write buffer).

WARNING: ADM and ADMNET libraries are not thread-safe. ProSoft Technology, Inc. does not
support the use of ADM and ADMNET libraries in multi-threaded applications.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 28 of 342 ProSoft Technology, Inc.

3.2 Development Tools

An application that is developed for the MVI ADM module must be executed from
the module’s Flash ROM disk. Tools are provided with the API to build the disk
image and download it to the module’s Config/Debug port.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 29 of 342 ProSoft Technology, Inc.

3.3 Theory of Operation

3.3.1 ADM API

The ADM API is one component of the MVI ADM API Suite. The ADM API
provides a simple module level interface that is portable between members of the
MVI Family. This is useful when developing an application that implements a
serial protocol for a particular device, such as a scale or bar code reader. After
an application has been developed, it can be be used on any of the MVI family
modules.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 30 of 342 ProSoft Technology, Inc.

3.4 ADM Functional Blocks

3.4.1 Database

The database functions of the ADM API allow the creation of a database in
memory to store data to be accessed via the backplane interface and the
application ports. The database consists of word registers that can be accessed
as bits, bytes, words, longs, floats or doubles. Functions are provided for reading
and writing the data in the various data types. The database serves as a holding
area for exchanging data with the processor on the backplane, and with a foreign
device attached to the application port. Data transferred into the module from the
processor can be requested via the serial port. Conversely, data written into the
module database by the foreign device can be transferred to the processor over
the backplane.

3.4.2 Backplane Communications

MVI46 Backplane Data Transfer

The MVI46-ADM module communicates directly over the backplane. All data for
the module is contained in the module's M1 file. Data is moved between the
module and the SLC processor across the backplane using the module's M-files.
The SLC scan rate and the communication load on the module determine the
update frequency of the M-files. The COP instruction can be used to move data
between user data files and the module's M1 file.

The following illustration shows the data transfer method used to move data
between the SLC processor, the MVI46-ADM module and the foreign network.

All data transferred between the module and the processor over the backplane is
through the M0 and M1 files. Ladder logic must be written in the SLC processor
to interface the M-file data with data defined in the user-defined data files in the
SLC.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 31 of 342 ProSoft Technology, Inc.

All data used by the module is stored in its internal database. The following
illustration shows the layout of the database:

User data contained in this database is continuously read from the M1 file. The
configuration data is only updated in the M1 file after each configuration request
by the module to the SLC. All data in the M1 file is available to devices on the
foreign networks. This permits data to be transferred from these devices to the
SLC using the user data area. Additionally, remote devices can alter the
module's configuration, read the status data and issue control commands. Block
identification codes define specific functions to the module.

The block identification codes used by the module are listed below:

Block Range Descriptions

9000 Configuration request from module

9001 Configuration ready from controller

9997 Write configuration to controller

9998 Warm-boot control block

9999 Cold-boot control block

Each block has a defined structure depending on the data content and the
function of the data transfer as defined in the following topics.

Normal Data Transfer

This version of the module provides for direct access to the data in the module.
All data related to the module is stored in the module’s M1 file. To read data from
the module, use the COP instruction to copy data from the module’s M1 file to a
user data file. To write data to the module, use the COP instruction to copy data
from a user file to the module’s M1 file. Registers 0 to 4999 should be used for
user data. All other registers are reserved for other module functions.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 32 of 342 ProSoft Technology, Inc.

Configuration Data Transfer Block (9000)

When the module performs a restart operation, it will request configuration
information from the SLC processor. This data is transferred to the module in a
specially formatted write block in the M0 file. The module will poll for this
information by placing the value 9000 in word 0 of the M0 file. The ladder logic
must construct the requested block in order to configure the module. The format
of the block for configuration is given in the following section.

Module Configuration Data Block (9001)

This block sends configuration information from the processor to the module. The
data is transferred in a block with an identification code of 9001. The structure of
the block is displayed below:

M0 Offset Description Length

0 9001 1

1 to 6 Backplane Set Up 6

7 to 15 Port 1 Configuration 9

16 to 24 Port 2 Configuration 9

If there are any errors in the configuration, the bit associated with the error will be
set in one of the two configuration error words. The error must be corrected
before the module starts operating.

Special Function Blocks

Special Function blocks are special blocks used to control the module or request
special data from the module. The current version of the software supports three
special function blocks: write configuration, warm boot and cold boot.

Write Configuration Block (9997)

This block is sent from the processor, and causes the module to write its current
configuration back to the processor. This function is used when the module’s
configuration has been altered remotely using database write operations. The
write block contains a value of 9997 in the first word. The module will respond
with a block containing the module configuration data. Ladder logic must handle
the receipt of the block. The block transferred from the module is as follows:

M0 Offset Description Length

0 9997 1

1 to 6 Backplane Set Up 6

7 to 15 Port 1 Configuration 9

16 to 24 Port 2 Configuration 9

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 33 of 342 ProSoft Technology, Inc.

Ladder logic must process this block of information and place the data received
in the correct data files in the . The processor requests this block of information
using the following write block:

M1 Offset Description Length

7800 9997 1

Warm Boot Block (9998)

This block is sent from the SLC processor to the module when the module is
required to perform a warm-boot (software reset) operation. This block is
commonly sent to the module any time configuration data modifications are made
in the configuration data area. This will cause the module to read the new
configuration information and to restart. The following table describes the format
of the control block.

M1 Offset Description Length

7800 9998 1

Cold Boot Block (9999)

This block is sent from the SLC processor to the module when the module is
required to perform the cold boot (hardware reset) operation. This block is sent to
the module when a hardware problem is detected by the ladder logic that
requires a hardware reset. The following table describes the format of the control
block.

M1 Offset Description Length

7800 9999 1

MVI56 Backplane Data Transfer

The MVI56-ADM module communicates directly over the backplane. Data is
paged between the module and the ControlLogix processor across the backplane
using the module's input and output images. The update frequency of the images
is determined by the scheduled scan rate defined by the user for the module, and
by the communication load on the module. Typical updates are in the range of 2
to 10 milliseconds.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module is set to 250 words. This large data area permits fast
throughput of data between the module and the processor.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module is set to 248 words. This
large data area permits fast throughput of data from the processor to the module.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 34 of 342 ProSoft Technology, Inc.

The following illustration shows the data transfer method used to move data
between the ControlLogix processor, the MVI56-ADM module and the foreign
device.

All data transferred between the module and the processor over the backplane is
through the input and output images. Ladder logic must be written in the
ControlLogix processor to interface the input and output image data with data
defined in the Controller Tags.

All data used by the module is stored in its internal database. The following
illustration shows the layout of the database:

Module’s Internal Database Structure

5000 registers for user data 0

Register Data

4999

2000 words of configuration and
status data

5000

Status and Config

6999

Data contained in this database is paged through the input and output images by
coordination of the ControlLogix ladder logic and the MVI56-ADM module's
program. Up to 248 words of data can be transferred from the module to the
processor at a time. Up to 247 words of data can be transferred from the
processor to the module. Each image has a defined structure depending on the
data content and the function of the data transfer.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 35 of 342 ProSoft Technology, Inc.

Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module’s
internal database in registers 0 to 4999 and the status data. These data are
transferred through read (input image) and write (output image) blocks. The
structure and function of each block is discussed in the following topics.

Block Request from the Processor to the Module

These blocks of data transfer information from the processor to the module. The
following table describes the structure of the output image.

Offset Description Length

0 Write Block ID 1

1 to 200 Write Data 200

201 to 247 Spare 47

The Write Block ID is an index value used to determine the location in the
module’s database where the data will be placed. Each transfer can move up to
200 words (block offsets 1 to 200) of data.

Block Response from the Module to the Processor

These blocks of data transfer information from the module to the ControlLogix
processor. The following table describes the structure of the input image.

Offset Description Length

0 Reserved 1

1 Write Block ID 1

2 to 201 Read Data 200

202 Program Scan Counter 1

203 to 204 Product Code 2

205 to 206 Product Version 2

207 to 208 Operating System 2

209 to 210 Run Number 2

211 to 212 Not Used 2

213 to 219 Port 1 Error Status 7

220 to 226 Port 2 Error Status 7

227 to 232 Data Transfer Status 6

233 Port 1 Current Error/Index 1

234 Port 1 Last Error/Index 1

235 Port 2 Current Error/Index 1

236 Port 2 Last Error/Index 1

237 to 248 Spare 12

249 Read Block ID 1

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 36 of 342 ProSoft Technology, Inc.

The Read Block ID is an index value used to determine the location of where the
data will be placed in the ControlLogix processor controller tag array of module
read data. Each transfer can move up to 200 words (block offsets 2 to 201) of
data. In addition to moving user data, the block also contains status data for the
module. This last set of data is transferred with each new block of data and is
used for high-speed data movement.

The Write Block ID associated with the block requests data from the ControlLogix
processor. Under normal program operation, the module sequentially sends read
blocks and requests write blocks. For example, if the application uses three read
and two write blocks, the sequence will be as follows:

R1W1R2W2R3W1R1W2R2W1R3W2R1W1

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the network or operator
control through the module’s Configuration/Debug port.

Module Configuration Data Transfer Block (9000)

When the module performs a restart operation, it will request configuration
information from the ControlLogix processor. This data is transferred to the
module in specially formatted write blocks (output image). The module will poll for
each block by setting the required write block number in a read block (input
image).

This block sends general configuration information from the processor to the
module. The data is transferred in a block with an identification code of 9000.
The structure of the block is shown in the following table.

Offset Description Length

0 9000 1

1 to 6 Backplane Set Up 6

7 to 15 Port 1 Configuration 9

16 to 24 Port 2 Configuration 9

25 to 247 Spare 223

The read block used to request the configuration has the following structure:

Offset Description Length

0 Reserved 1

1 9000 1

2 Module Configuration Errors 1

3 Port 1 Configuration Errors 1

4 Port 2 Configuration Errors 1

5 to 248 Spare 244

249 -2 or -3 1

If there are any errors in the configuration, the bit associated with the error will be
set in one of the three configuration error words. The error must be corrected
before the module starts operating.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 37 of 342 ProSoft Technology, Inc.

MVI69 Backplane Data Transfer

The MVI69-ADM module communicates directly over the backplane. Data is
paged between the module and the CompactLogix processor across the
backplane using the module's input and output images. The update frequency of
the images is determined by the scheduled scan rate defined by the user for the
module and the communication load on the module. Typical updates are in the
range of 2 to 10 milliseconds.

You can configure the size of the blocks using the Block Transfer Size parameter
in the configuration file. You can configure blocks of 60, 120, or 240 words of
data depending on the number of words allowed for your own application.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module may be set to 62, 122, or 242 words depending on
the block transfer size parameter set in the configuration file.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module may be set to 61, 121, or 241
words depending on the block transfer size parameter set in the configuration
file.

The following illustration shows the data transfer method used to move data
between the CompactLogix processor and the MVI69-ADM module.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 38 of 342 ProSoft Technology, Inc.

All data transferred between the module and the processor over the backplane is
through the input and output images. Ladder logic must be written in the
CompactLogix processor to interface the input and output image data with data
defined in the Controller Tags. All data used by the module is stored in its internal
database. The following illustration shows the layout of the database:

Module’s Internal Database Structure

5000 registers for user data 0

Register Data

4999

3000 words of configuration and
status data

5000

Status and Config

7999

Data contained in this database is paged through the input and output images by
coordination of the CompactLogix ladder logic and the MVI69-ADM module's
program. Up to 242 words of data can be transferred from the module to the
processor at a time. Up to 241 words of data can be transferred from the
processor to the module. The read and write block identification codes in each
data block determine the function to be performed or the content of the data
block. The block identification codes used by the module are listed below:

Block Range Descriptions

-1 Status Block

0 Status Block

1 to 999 Read or write data

9998 Warm-boot control block

9999 Cold-boot control block

Each image has a defined structure depending on the data content and the
function of the data transfer.

Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module’s
internal database in registers 0 to 4999 and the status data. These data are
transferred through read (input image) and write (output image) blocks. The
structure and function of each block is discussed in the following topics:

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 39 of 342 ProSoft Technology, Inc.

Block Request from the Processor to the Module

These blocks of data transfer information from the processor to the module. The
structure of the output image used to transfer this data is shown below:

Offset Description Length

0 Write Block ID 1

1 to n Write Data n

n=60, 120, or 240 depending on the Block Transfer Size parameter (refer to the configuration file).

The Write Block ID is an index value used to determine the location in the
module’s database where the data will be placed.

Block Response from the Module to the Processor

These blocks of data transfer information from the module to the CompactLogix
processor. The structure of the input image used to transfer this data is shown
below:

Offset Description Length

0 Read Block ID 1

1 Write Block ID 1

2 to (n+1) Read Data n

n=60, 120, or 240 depending on the Block Transfer Size parameter (refer to the configuration file).

The Read Block ID is an index value used to determine the location of where the
data will be placed in the CompactLogix processor controller tag array of module
read data. The number of data words per transfer depends on the configured
Block Transfer Size parameter in the configuration file (possible values are 60,
120, or 240).

The Write Block ID associated with the block requests data from the
CompactLogix processor. Under normal program operation, the module
sequentially sends read blocks and requests write blocks. For example, if the
application uses three read and two write blocks, the sequence will be as follows:

R1W1R2W2R3W1R1W2R2W1R3W2R1W1

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the network or operator
control through the module’s Configuration/Debug port.

The following example shows a typical backplane communication application.

If the backplane parameters are configured as follows:

Read Register Start: 0

Read Register Count: 480

Write Register Start: 480

Write Register Count: 480

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 40 of 342 ProSoft Technology, Inc.

The backplane communication would be configured as follows:

Database address 0 to 479 will be continuously transferred from the module to
the processor. Database address 480 to 959 will continuously be transferred
from the processor to the module.

The Block Transfer Size parameter basically configures how the Read Data and
Write Data areas are broken down into data blocks (60, 120, or 240).

If Block Transfer Size = 60:

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 41 of 342 ProSoft Technology, Inc.

If Block Transfer Size = 120:

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 42 of 342 ProSoft Technology, Inc.

If Block Transfer Size = 240:

Warm Boot Block (9998)

This block is sent from the processor to the module (output image) when the
module is required to perform a warm-boot (software reset) operation. The
following table describes the format of the control block.

Offset Description Length

0 9998 1

1 to n Spare n

n=60, 120, or 240 depending on the Block Transfer Size parameter (refer to the configuration file).

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 43 of 342 ProSoft Technology, Inc.

MVI71 Backplane Data Transfer

The MVI71-ADM module communicates directly over the backplane. Data is
paged between the module and the PLC processor across the backplane using
the module's input and output images or directly to the processor using the side-
connect interface (requires a side-connect adapter). The update frequency of the
images is determined by the scheduled scan rate defined by the user for the
module and the communication load on the module. Typical updates are in the
range of 2 to 10 milliseconds.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module is set to 64 words. This large data area permits fast
throughput of data between the module and the processor.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module is set to 64 words. This large
data area permits fast throughput of data from the processor to the module.

The following illustration shows the data transfer method used to move data
between the PLC processor, the MVI71-ADM module and the foreign device.

Block Transfer

The following illustration shows the data transfer operations used when using the
side-connect interface (requires the side-connect adapter):

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 44 of 342 ProSoft Technology, Inc.

Side-Connect

When the side connect interface is used, data is transferred directly between the
processor and the module. The module's program interfaces directly to the set of
user data files established in the PLC to pass all data between the two devices.
No ladder logic is required for data transfer, only the establishment of the data
files.

All data transferred between the module and the processor over the backplane is
through the input and output images. Ladder logic must be written in the PLC
processor to interface the input and output image data with data defined in the
Controller Tags. All data used by the module is stored in its internal database.

Module’s Internal Database Structure

5000 registers for user data 0

Register Data

4999

3000 words of configuration and
status data

5000

Status and Config

7999

Data contained in this database is paged through the input and output images by
coordination of the PLC ladder logic and the MVI71-ADM module's program. Up
to 60 words of data can be transferred from the module to the processor at a
time. Up to 60 words of data can be transferred from the processor to the
module. Each image has a defined structure depending on the data content and
the function of the data transfer.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 45 of 342 ProSoft Technology, Inc.

Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module’s
internal database in registers 0 to 4999 and the status data. These data are
transferred through read (input image) and write (output image) blocks. The
structure and function of each block is discussed in the following topics.

Block Request from the Processor to the Module

These blocks of data transfer information from the PLC processor to the module.
The following table describes the structure of the output image.

Offset Description Length

0 Write Block ID 1

1 to 60 Write Data 60

61 to 63 Spare 3

The Write Block ID is an index value used to determine the location in the
module’s database where the data will be placed. Each transfer can move up to
60 words (block offsets 1 to 60) of data.

Block Response from the Module to the Processor

These blocks of data transfer information from the module to the PLC processor.
The following table describes the structure of the input image.

Offset Description Length

0 Read Block ID 1

1 Write Block ID 1

2 to 61 Read Data 60

62 to 63 Spare 2

The Read Block ID is an index value used to determine the location of where the
data will be placed in the PLC processor user data table. Each transfer can move
up to 60 words (block offsets 2 to 61) of data.

The Write Block ID associated with the block requests data from the PLC
processor. Under normal program operation, the module sequentially sends read
blocks and requests write blocks. For example, if the application uses three read
and two write blocks, the sequence will be as follows:

R1W1R2W2R3W1R1W2R2W1R3W2R1W1

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the foreign network or
operator control through the module’s Configuration/Debug port.

If the ladder logic does not send a BTW instruction to the module quickly enough,
it is possible for the MVI71-ADM module to send a new BTR instruction
requesting the same write block ID.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 46 of 342 ProSoft Technology, Inc.

Module Configuration Data Transfer Block (9000)

When the module performs a restart operation, it will request configuration
information from the PLC processor. This data is transferred to the module in
specially formatted write blocks (output image). The module will poll for each
block by setting the required write block number in a read block (input image).
The module will request all command blocks, according to the number of
commands configured by the user for each Master port.

This block sends general configuration information from the processor to the
module. The data is transferred in a block with an identification code of 9000.
The structure of the block is displayed in the following table.

Write Block

Offset Description Length

0 9000 1

1 to 6 Backplane Setup 6

7 to 31 Port 1 Configuration 25

32 to 56 Port 2 Configuration 25

57 to 63 Spare 7

The read block used to request the configuration has the following structure:

Read Block

Offset Description Length

0 -2 1

1 9000 1

2 Module Configuration Errors 1

3 Port 1 Configuration Errors 1

4 Port 2 Configuration Errors 1

5 to 63 Spare 59

If there are any errors in the configuration, the bit associated with the error will be
set in one of the three configuration error words. The error must be corrected
before the module starts operating.

Special Function Blocks

Special Function blocks are special blocks used to control the module or request
special data from the module. The current version of the software supports three
special function blocks: write configuration, warm boot and cold boot.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 47 of 342 ProSoft Technology, Inc.

Write Configuration Block (-9000)

This block is sent from the PLC processor, and causes the module to write its
current configuration back to the processor. This function is used when the
module’s configuration has been altered remotely using database write
operations. The write block contains a value of -9000 in the first word. The
module will respond with blocks containing the module configuration data. Ladder
logic must handle the receipt of these blocks. The blocks transferred from the
module are as follows:

Block -9000, General Configuration Data:

Offset Description Length

0 -9000 1

1 -9000 1

2 to 7 Backplane Setup 6

8 to 32 Port 1 Configuration 25

33 to 57 Port 2 Configuration 25

58 to 63 Spare 6

Blocks -6000 to -6003 and -6100 to 6103, Master Command List Data for ports 1
and 2, respectively:

Offset Description Length

0 -6000 to 6016 and -6100 to 6116 1

1 -6000 to 6016 and -6100 to 6116 1

2 to 11 Command Definition 10

12 to 21 Command Definition 10

22 to 31 Command Definition 10

32 to 41 Command Definition 10

42 to 51 Command Definition 10

52 to 61 Command Definition 10

62 to 63 Spare 2

Each of these blocks must be handled by the ladder logic for proper module
operation. The processor can request the module’s configuration by sending a
configuration read request block, block code 9997, to the module. The format of
this request block is as follows:

Offset Description Length

0 9997 1

1 to 63 Spare 63

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 48 of 342 ProSoft Technology, Inc.

When the module receives this command block, it transfers the module’s current
configuration to the processor. If the block transfer interface is used, the blocks
defined in the previous tables (-9000 and -6000 series blocks) will be sent from
the module. If the side-connect interface is used, the user data files will be
updated directly by the module.

Warm Boot Block (9998)

This block is sent from the PLC processor to the module (output image) when the
module is required to perform a warm-boot (software reset) operation. This block
is commonly sent to the module any time configuration data modifications are
made in the controller tags data area. This will cause the module to read the new
configuration information and to restart. The following table describes the format
of the control block.

Offset Description Length

0 9998 1

1 to 63 Spare 63

Cold Boot Block (9999)

This block is sent from the PLC processor to the module (output image) when the
module is required to perform the cold boot (hardware reset) operation. This
block is sent to the module when a hardware problem is detected by the ladder
logic that requires a hardware reset. The following table describes the format of
the control block.

Offset Description Length

0 9999 1

1 to 63 Spare 63

MVI94 Backplane Data Transfer

Central to the functionality of the module is the database. This database is used
as the interface between remote foreign slave devices or foreign master devices
and the Flex I/O bus. The size, content and structure of the database are
completely user defined.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 49 of 342 ProSoft Technology, Inc.

The Flex I/O bus reads data from and write data to the database using the
backplane interface. The module interfaces data contained in remote foreign
slave devices to the database when using the MVI94-ADM as a master. User
commands are issued out of the master port from a command list. These
commands gather or control data in the foreign slave devices. When configured
as a slave, control information from the foreign master and data from the
processor are exchanged over the backplane. The following illustration shows
the relationships discussed above:

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 50 of 342 ProSoft Technology, Inc.

Data Transfer

Data is transferred over the backplane using the module’s input and output
images. The module is configured with an eight-word input image and a seven-
word output image. The module and the Flex processor use these images to
page data and commands. The input image is set (written) by the module and is
read by the Flex processor. The output image is set (written) by the Flex
processor and read by the module. The following illustration shows this
relationship.

The module’s program is responsible for setting the block identification code
used to identify the data block written and the block identification code of the
block it wants to read from the processor. User configuration information
determines the read (Read Start Register) and write (Write Start Register)
locations in the database and the amount of data transferred (Read Register
Count and Write Register Count).

Each read and write operation transfers a six-word data area. The write operation
contains a two-word header that defines the block identification code of the write
data and the block identification code of the read block requested. These
identification codes are in the range of 0 to 666. A value of zero indicates that the
block contains no data and should be ignored. The first valid block identification
code is one and refers to the first block of six words to be read or written.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 51 of 342 ProSoft Technology, Inc.

The module and the processor constantly monitor input and output images. How
does either one know when a new block of data is available? Recognizing a
change in the header information of the image (word 0) solves the problem. For
example, when the module recognizes a different value in the first word of the
output image, new read data is available. When the processor recognizes a new
value in the first word of the input image, new write data is available. This
technique requires the storage of the previously processed data block
identification code. The following illustration shows the normal sequence of
events for data transfer:

1 During program initialization, the write and read block identification codes are
set to one. The last block read variable is set to zero.

2 The program copies the first six-word block of the database starting at the
user defined Write Start Register to the input image (words 2 to 7). It then
sets the current read block code in word 1 of the input image. To "trigger" the
write operation, the program places the current write block code into word 0
of the input image.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 52 of 342 ProSoft Technology, Inc.

The Flex processor recognizes a new value in word 0 of the input image
(based on the last_write_block_code not equal to write_block_code) in its
ladder logic. The ladder logic computes the offset into the file based on the
following formula:
write_file_offset = (write_block_code - 1) * 6
The new data contained in the input image (words 2 to 7) is copied to the
offset in the processor’s user data file. The last_write_block_code storage
register in the processor is updated with the new write_block_code.

Note: If the data area transferred from the module exceeds the size of a single user file in the Flex
processor, logic will be required to handle multiple files.

3 The ladder logic next examines the value of the read_block_code and
computes the offset into the read data file as follows:

read_file_offset = (read_block_code - 1) * 6
The required 6-word, read data is copied to the module’s output image
(words 1 to 6). To "trigger" the transfer operation, the ladder logic moves the
read_block_code into word 0 of the output image.

4 The module’s program recognizes the new read_block_code. It transfers the
data to the correct offset in the database using the following function:

offset = Read_Start_Register + (read_block_code - 1) * 6
The module sets the last_read_block_code to the value of read_block_code.

5 The module now selects the next read and write blocks. The data for the write
operation is placed in the input image and the read_block_code is set. The
module "triggers" the transfer operation by setting the new write_block_code
in word 0 of the input image. The sequence continues at step 3.

The discussion above is for normal data transfer operation. The following table
lists the block identification codes used by the module.

Block Identification Codes

Type Number Description

R/W 1 to 666 Data blocks used to transfer data from the module to the
backplane and from the backplane to the module. The module's
input/output images are used for the data transfers.

R 9998 Warm boot the module. When the module receives this block, it
will reset all program values using the configuration data.

R 9999 Cold boot the module. When the module receives this block, it
will perform a hardware restart.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 53 of 342 ProSoft Technology, Inc.

Data is transferred between the processor and the module using the block
identification codes of 1 to 666. The other block codes control the module from
the processors ladder logic. They are implemented when the ladder logic needs
to control the module. In order to use one of the blocks, the ladder logic inserts
the data and code in the output image of the module. The data should be set
before the code is placed in the block. This operation should be performed after
the receipt of a new write block from the module. Each set of codes is described
in the following topics.

Warm Boot Block (9998)

This block does not contain any data. When the processor places a value of
9998 in word 0 of the output image, the module will perform a warm-start. This
involves clearing the configuration and all program status data. Finally, the
program will load in the configuration information from the Flash ROM and begin
running. There is no positive response to this message other than the status data
being set to zero and the block polling starting over.

Cold Boot Block (9999)

This block does not contain any data. When the processor places a value of
9999 in word 0 of the output image, the module will perform a hardware restart.
This will cause the module to reboot and reload the program. There is no positive
response to this message other than the status data being set to zero and the
block polling starting over.

3.4.3 Serial Communications

The developer must provide the serial communication driver code. The serial API
has many useful functions to facilitate writing a driver. A sample communication
driver is included in the example programs.

3.4.4 Main_app.c

The application starts by opening the ADM API, initializing variables, structure
members and pointers to structures. Next, the database is created and initialized
to 0. The backplane driver is then opened and startup() is called. The function

startup(), loads the module configuration, initializes the com. ports and finishes
by showing the application version information. Now the main loop is entered.
The processing that occurs in the loop cycles through the backplane transfer
logic, the com. driver, and the debug menu logic. If the application is quit by the
user, shutdown() is called. The function shutdown() closes the com. ports, closes
the backplane driver, closes the database and closes the ADM API.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 54 of 342 ProSoft Technology, Inc.

3.4.5 Debugprt.c

The debug port code shows how a sub-menu can be added to the main menu.
When "X" (Auxiliary menu) is selected, the function pointed to by user_menu_ptr

in the interface structure: that is, interface.user_menu_ptr = DebugMenu;. The

function name is DebugMenu() but it can be named anything the developer

wishes. Code can be added for additional menu items within DebugMenu() by
adding additional case statements. It is recommended that if long strings must be
sent to the debug port, that the output buffering is used. An example of this is the
"?" case. The string is placed into the buffer (interface_ptr->buff) using

sprintf. interface_ptr->buff_ch is the pointer to the first character of the string

and should be set to 0. interface_ptr->buff_len must be set to the number of
characters placed into the buffer. The writing of the characters is handled when

ADM_ProcessDebug() is called.

Example:

sprintf(interface_ptr->buff,"\nAUXILLIARY MENU\n\

 ?=Display Menu\n\

 1=Selection 1\n\

 2=Selection 2\n\

 M=Main Menu\n\n");

interface_ptr->buff_ch = 0;

interface_ptr->buff_len = strlen(interface_ptr->buff);

3.4.6 MVIcfg.c

The configuration section of the example code is intended to qualify the module
configuration after it is transferred to the module. The logic must be modified to
match any changes to the configuration data structure.

MVI46

For the MVI46, the function ProcessCfg() checks the data values transferred
from the configuration file in the SLC processor. If configuration values are added
to the configuration structure in the SLC, then logic to perform boundary checking

on the added data must be added to ProcessCfg().

MVI56

In the case of the MVI56, the function ProcessCfg() checks the data values
transferred from the configuration data tags in the ControlLogix processor. If data
tags are added to the configuration structure in the ControlLogix, then logic to

perform boundary checking on the added data must be added to ProcessCfg().

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 55 of 342 ProSoft Technology, Inc.

MVI69

The MVI69 stores its configuration in EEPROM, downloaded via the debug port.

The EEPROM has 129 KB of configuration space. The function ReadCfg()
parses the file and qualifies the configuration data. The configuration file uses
headings in square brackets to define the sections. Each item is parsed using the
ADM RAM file functions. The file is searched for a configuration item. If a match
is found, the value is saved into a variable. Boundary checking is then performed
on the data. An example of a configuration item search follows:

ptr= ADM_RAM_find_Section (adm_handle, "[Port]");

ports[0].stopbits = ADM_RAM_GetInt(adm_handle, "[Port]");

 switch(ports[0].stopbits)

 {

case 1:

ports[0].stopbits = STOPBITS1;

case 2:

ports[0].stopbits = STOPBITS2;

break;

default:

ports[0].CfgErr |= 0x0100;

ports[0].stopbits = STOPBITS1;

 }

Here the file is being parsed for "Stop Bits" under the heading of [Port]. Refer to
the example code for a sample configuration file.

Because a pointer to a function is used by the ADM API to access this function,
the name can be anything the developer wishes. However, the function must
take the same arguments and the same return value.

MVI71

In the case of the MVI71, the function ProcessCfg() checks the data values
transferred from the configuration file in the PLC processor. If configuration
values are added to the configuration structure in the PLC, then the logic to
perform boundary checking on the added data must be added to ProcessCfg().

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 56 of 342 ProSoft Technology, Inc.

MVI94

The MVI94 stores its configuration in flash memory, downloaded via the debug
port. The function ReadCfg() parses the file and qualifies the configuration data.
The configuration file uses headings in square brackets to define the sections.
Each item is parsed using the ADM flash file functions. The file is searched for a
configuration item. If a match is found, the value is saved into a variable.
Boundary checking is then performed on the data. An example of a configuration
item search follows:

ports[0].stopbits = ADM_FileGetInt("[Port]", "Stop Bits");

 switch(ports[0].stopbits)

 {

case 1:

ports[0].stopbits = STOPBITS1;

case 2:

ports[0].stopbits = STOPBITS2;

break;

default:

ports[0].CfgErr |= 0x0100;

ports[0].stopbits = STOPBITS1;

 }

Here the file is being parsed for "Stop Bits" under the heading of [Port]. Refer to
the example code for a sample configuration file.

Because a pointer to a function is used by the ADM API to access this function,
the name can be anything the developer wishes. However, the function must
take the same arguments and the same return value.

3.4.7 Commdrv.c

The communication driver demonstrates how a simple driver might be written.
The driver is an ASCII slave that echoes the characters it receives back to the
host. The end of a new string is detected when an LF is received. The
communication driver is called for each application port on the module. The
following illustration shows information on the communication driver state
machine.

The state machine is entered at state -1. It waits there until data is detected in
the receive buffer. When data is present, the state machine advances to state 1.
It will remain in state 1 receiving data from the buffer until a line feed (LF) is
found. At this time the state advances to 2. The string will be saved to the
database and the state changes to 2000.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 57 of 342 ProSoft Technology, Inc.

State 2000 contains a sub-state machine for handling the sending of the
response. State 2000:2 sets RTS on. The state now changes to 2000:3. The
driver now waits for the RTS timeout period to expire. When it does, it checks for
CTS to be asserted. If CTS detection is disabled or CTS is detected, RTS is set
to off (CTS enabled only) and the state advances to 2000:4. Otherwise it is an
error and RTS is set to off and returns to state -1. The response is now placed in
the transmit buffer. The state is advanced to 2000:5 where it waits for the
response to be sent. If the response times out, RTS is set to off and the state
returns to -1. If the response is sent before timeout, the state changes to 2000:6
where it waits for the RTS timer to expire. When the timer expires, RTS is set to
off and the state returns to -1 where it is ready for the next packet.

RS-485 Programming Note

Hardware

The serial port has two driver chips, one for RS-232 and one for RS-422/485.
The Request To Send (RTS) line is used for hardware handshaking in RS-232
and to control the transmitter in RS-422/485.

In RS-485, only one node can transmit at a time. All nodes should default to
listening (RTS off) unless transmitting. If a node has its RTS line asserted, then
all other communication is blocked. An analogy for this is a 2-way radio system
where only one person can speak at a time. If someone holds the talk button,
then they cannot hear others transmitting.

In order to have orderly communication, a node must make sure no other nodes
are transmitting before beginning a transmission. The node needing to transmit
will assert the RTS line then transmit the message. The RTS line must be de-
asserted as soon as the last character is transmitted. Turning RTS on late or off
early will cause the beginning or end of the message to be clipped resulting in a
communication error. In some applications it may be necessary to delay between
RTS transitions and the message. In this case RTS would be asserted, wait for
delay time, transmit message, wait for delay time, and de-assert RTS.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 58 of 342 ProSoft Technology, Inc.

Software

The following is a code sample designed to illustrate the steps required to
transmit in RS-485. Depending on the application, it may be necessary to handle
other processes during this transmit sequence and to not block. This is simplified
to demonstrate the steps required.

int length = 10; // send 10 characters

int CharsLeft;

BYTE buffer[10];

// Set RTS on

MVIsp_SetRTS(COM2, ON);

// Optional delay here (depends on application)

// Transmit message

MVIsp_PutData(COM2, buffer, &length, TIMEOUT_ASAP);

// Check to see that message is done

MVIsp_GetCountUnsent(COM2, &CharsLeft);

// Keep checking until all characters sent

while(CharsLeft)

{

MVIsp_GetCountUnsent(COM2, &CharsLeft);

}

// Optional delay here (depends on application)

// Set RTS off

MVIsp_SetRTS(COM2, OFF);

3.4.8 Using Compact Flash Disks

In order to use Compact Flash disks, you must enable Compact Flash in BIOS
Setup. Once enabled, the Compact Flash Disk should appear as a DOS C: drive.
Use standard 'C' file access functions to read and write to the Compact Flash
disk.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 59 of 342 ProSoft Technology, Inc.

3.5 ADM API Architecture

The ADM API is composed of a statically-linked library (called the ADM library).
Applications using the ADM API must be linked with the ADM library. The ADM
API encapsulates the hardware, making it possible to design MVI applications
that can be run on any of the MVI family of modules.

The following illustration shows the relationship between the API components.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 60 of 342 ProSoft Technology, Inc.

3.6 ADM API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

ADM API File Names

File Name Description

admapi.h Include file

admapi.lib Library (16-bit OMF format)

3.6.1 ADM Interface Structure

The ADM interface structure functions as a data exchange between the ADM API
and user developed code. Pointers to structures are used so the API can access
structures created and named by the developer. This allows the developer
flexibility in function naming. The ADM API requires the interface structure and
the structures referenced by it. The interface structure also contains pointers to
functions. These functions allow the developer to insert code into some of the
ADM functions. The functions are required, but they can be empty. Refer to the
example code section for examples of the functions. It is the developer's
responsibility to declare and initialize these structures.

The interface structure is as follows:

typedef struct

{

 ADM_BT_DATA *adm_bt_data_ptr; /* pointer to struct holding

ADM_BT_DATA */

 ADM_BLK_ERRORS *adm_bt_err_ptr; /* pointer to struct holding

ADM_BT_DATA */

 ADM_PORT *adm_port_ptr[4]; /* pointer to struct holding

ADM_PORT */

 ADM_MODULE *adm_module_ptr; /* pointer to struct holding

ADM_MODULE */

 ADM_PORT_ERRORS *adm_port_errors_ptr[4]; /* pointer to struct

holding ADM_PORT_ERRORS */

 ADM_PRODUCT *adm_product_ptr; /* pointer to struct holding

ADM_PRODUCT */

 int (*startup_ptr)(void); /* pointer to function for

startup code */

 int (*shutdown_ptr)(void); /* pointer to function for

shutdown code */

 int (*user_menu_ptr)(void); /* pointer to function for

additional menu code */

 void (*version_ptr)(void); /* pointer to function for

version information */

 void (*process_cfg_ptr)(void); /* pointer to function for

checking configuration */

 int (*ctrl_data_block_ptr)(unsigned short); /* pointer to

function for checking configuration */

 unsigned short pass_cnt;

 short debug_mode;

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 61 of 342 ProSoft Technology, Inc.

 char buff[2000]; /* data area used to hold message

*/

 int buff_len; /* number of characters to print */

 int buff_ch; /* index of character to print */

 MVIHANDLE handle; /* backplane handle */

 HANDLE sc_handle; /* side-connect handle */

 int ModCfgErr;

 int Apperr;

 unsigned short cfg_file; /* side-connect usage */

}ADM_INTERFACE;

The following structures are referenced by the interface structure:

The structure ADM_PRODUCT contains the product name abbreviation and
version information.

typedef struct

{

 char ProdName[5]; /* Product Name */

 char Rev[5]; /* Revision */

 char Op[5]; /* Month/Year */

 char Run[5]; /* Day/Run */

}ADM_PRODUCT;

The structure ADM_BT_DATA contains the backplane transfer configuration
settings and status counters.

typedef struct

{

 short rd_start;

 short rd_count;

 short rd_blk_max;

 short wr_start;

 short wr_count;

 short wr_blk_max;

 WORD bt_fail_cnt; /* number of successive failures before comm

SD */

 WORD bt_fail_cntr; /* current number of failures */

 WORD bt_failed; /* comm SD status */

 short rd_blk;

 short rd_blk_last;

 short wr_blk;

 short wr_blk_last;

 unsigned short buff[130]; //only require a single buffer because only

1 op at a time

 WORD wrbuff[258];

 WORD rdbuff[248];

 WORD cbuff[3000];

 short bt_size;

}ADM_BT_DATA;

The structure ADM_BLK_ERRORS contains the backplane transfer status
counters.

typedef struct

{

 WORD rd; /* blocks read */

 WORD wr; /* blocks written */

 WORD parse; /* blocks parsed */

 WORD event; /* reserved */

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 62 of 342 ProSoft Technology, Inc.

 WORD cmd; /* reserved */

 WORD err; /* block transfer errors */

}ADM_BLK_ERRORS;

The structure ADM_PORT contains the application port configuration and status
variables.

typedef struct

{

 char enabled; /* Y=Yes, N=No */

 unsigned short baud; /* port baud rate */

 short parity; /* port parity */

 short databits; /* number of data bits per character */

 short stopbits; /* number of stop bits */

 unsigned short MinDelay; /* minimum response delay */

 unsigned short RTS_On; /* RTS delay before assertion */

 unsigned short RTS_Off; /* RTS delay before de-assertion */

 char CTS; /* Y=Yes, N=No */

 short state; /* state of comm. Message state machine */

 int len; /* length of data in buffer */

 int expLen; /* expected length of message */

 unsigned long timeout; /* timeout for message */

 int ComState; /* State of serial communication */

 int RTULen; /* reserved */

 unsigned short tm; /* timing variable; used for current time */

 unsigned short tmlast; /* time of previous time check */

 long tmout; /* timeout time variable */

 long tmdiff; /* holds tm - tmlast */

 unsigned short CurErr; /* current comm. error */

 unsigned short LastErr; /* previous comm. error */

 unsigned short CfgErr; /* port configuration error */

 unsigned short buff_ptr; /* pointer to current location in buff */

 char buff[600]; /* buffer for holding comm. packets */

 unsigned char SendBuff[1000]; /* reserved */

 unsigned char RecBuff[1000]; /* reserved */

}ADM_PORT;

The structure ADM_MODULE contains the module database configuration
variables.

typedef struct

{

 char name[81]; /* module name */

 short max_regs; /* number of database registers */

 short err_offset; /* address of status table in database */

 unsigned short err_freq; /* status table update time in ms */

 short rd_start; /* read block start address*/

 short rd_count; /* read block register count */

 short rd_blk_max; /* maximum number of read blocks */

 short wr_start; /* write block starting address */

 short wr_count; /* write block register count */

 short wr_blk_max; /* maximum number of write blocks */

 short bt_fail_cnt; /* number of backplane transfer failures */

/* before ending communications (not used)*/

}ADM_MODULE;

The structure ADM_PORT_ERRORS contains the application port
communication status variables.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 63 of 342 ProSoft Technology, Inc.

typedef struct

{

 WORD CmdList; /* Total number of command list requests */

 WORD CmdListResponses; /* Total number of command list responses

*/

 WORD CmdListErrors; /* Total number of command list errors */

 WORD Requests; /* Total number of requests of slave */

 WORD Responses; /* Total number of responses */

 WORD ErrSent; /* Total number of errors sent */

 WORD ErrRec; /* Total number of errors received */

}ADM_PORT_ERRORS;

The following are the prototypes for the referenced functions:

extern int (*startup_ptr)(void); /* pointer to function for startup code

*/

extern int (*shutdown_ptr)(void); /* pointer to function for shutdown

code */

extern int (*user_menu_ptr)(void); /* pointer to function for additional

menu code */

extern void (*version_ptr)(void); /* pointer to function for version

information */

extern void (*process_cfg_ptr)(void); /* pointer to function for checking

configuration */

extern int (*ctrl_data_block_ptr)(unsigned short); /* pointer to function

for checking configuration */

The following is an example excerpted from the sample code of how the pointers
to functions can be initialized:

 interface.startup_ptr = startup;

 interface.shutdown_ptr = shutdown;

 interface.version_ptr = ShowVersion;

 interface.user_menu_ptr = DebugMenu;

 interface.process_cfg_ptr = ProcessCfg;

 interface.ctrl_data_block_ptr = CtrlDataBlock;

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 64 of 342 ProSoft Technology, Inc.

3.7 Backplane API Files

The backplane API provides a simple backplane interface that is portable among
members of the MVI family. This is useful when developing an application that
implements a serial protocol for a particular device, such as a scale or barcode
reader. After an application has been developed, it can be used on any of the
MVI family modules.

The following table lists the supplied backplane API file names. These files
should be copied to a convenient directory on the computer on which the
application is being developed. These files need not be present on the module
when executing the application.

File Name Description

MVIbpapi.h Include file

MVIbpapi.lib Library (16-bit OMF formatted)

3.7.1 Backplane API Architecture

The MVI API is composed of two parts: a memory resident driver (called the MVI
driver) and a statically-linked library (called the MVI library). Applications using
the MVI API must be linked with the MVI library. In addition, the MVI driver must
be loaded before an MVI API application can be executed.

This architecture makes it possible to design MVI applications that can be run on
any of the MVI family of modules without modification or even recompilation.

Data Transfer

The primary purpose of the API is to allow data to be transferred between the
module and the Controller. The API supports two types of data transfer functions:
Direct I/O and Messaging. Each of these methods has advantages and
disadvantages. The appropriate function for use will mainly depend upon the
amount of data to be transferred.

Direct I/O Access

For small amounts of data (that is, data that will fit into the specific module’s input
or output image), the direct I/O functions provide simple, fast access to the
module’s input and output images. This is the simplest and fastest way to
transfer data to and from the control processor, because the control processor
code accesses the module’s I/O image as it would for any other I/O module.

The disadvantage of this method is that the amount of data that can be
transferred is limited by the size of the module’s I/O image.

The direct I/O functions are MVIbp_WriteInputImage (page 215) and
MVIbp_ReadOutputImage (page 214).

It is important to note that if messaging is used, a portion of each I/O image must
be reserved for messaging, and therefore will not be available for direct I/O
access. One word of input and one word of output are required for messaging
control for each direction of desired data flow.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 65 of 342 ProSoft Technology, Inc.

For example, if bi-directional messaging is used, at least two words of output and
two words of input image must be reserved for messaging.

Direct I/O access begins at the first word of the input and output images (word 0).
If only one direction of messaging data flow is enabled, that messaging control
word is always the last word of the total image size (refer to the
MVIbp_SetIOConfig (page 208) function). If both directions of messaging data
flow are enabled, the SendMessage (from the MVI to the Controller) control word
is the last word of the total image size, and the ReceiveMessage (from the
Controller to the MVI) control word is the word before the last word of the total
image size.

Messaging

For large amounts of data (that is, data that is too large to fit into the module’s
input or output image), the Messaging functions provide a data transfer
mechanism that is very simple for the module application to use. Large amounts
of data may be transferred to and from the control processor with a single
function call, with the transfer protocol handled by the API.

The main disadvantage of this method is that the control processor code is more
complex.

Example ladder logic code is provided to illustrate how the messaging protocol
may be implemented on the control processor.

Note: At this time, messaging is not supported on the MVI69.

Messaging Protocol

The API messaging protocol has been designed to be as simple as possible,
while providing the necessary controls for reliable data transfer between the
module and the control processor. The protocol is completely handled by the
API, and is therefore transparent to the module application. However, the
protocol must be implemented in the control processor’s code. For this reason,
details of the protocol are presented here.

The protocol utilizes two control words for each direction of data flow: the Input
Control Word, which is written by the module and read by the processor, and the
Output Control Word, which is written by the processor and read by the module.
The location of these control words depends upon how the module is configured
by the user. If only one direction of messaging data flow is enabled, that
messaging control word is always the last word of the total image size (refer to
the MVIbp_SetIOConfig (page 208) function).

If both directions of messaging data flow are enabled, the SendMessage (from
the MVI to the Controller) control word is the last word of the total image size and
the ReceiveMessage (from the Controller to the MVI) control word is the word
before the last word of the total image size.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 66 of 342 ProSoft Technology, Inc.

3.8 Serial API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

File Name Description

MVIspapi.h Include file

MVIspapi.lib Library (16-bit OMF format)

3.8.1 Serial API Architecture

The serial API communicates with foreign serial devices via industry standard
UART hardware.

The API acts as a high level interface that hides the hardware details from the
application programmer. The primary purpose of the API is to allow data to be
transferred between the module and a foreign device. Because each foreign
device is different, the communications protocol used to transfer data must be
device specific. The application must be programmed to implement the specific
protocol of the device, and the data can then be processed by the application
and transferred to the control processor.

Note: Care must be taken if using PRT1 (COM1) when the console is enabled or the Setup jumper
is installed. If the console is enabled, the serial API will not be able to change the baud rate on
PRT1. In addition, console functions such as keyboard input may not behave properly while the
serial API has control of PRT1. In general, this situation should be avoided by disabling the console
when using PRT1 with the serial API.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
'C' Programmable Application Development Module Developer's Guide

Page 67 of 342 ProSoft Technology, Inc.

3.9 Side-Connect API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

File Name Description

MVIscapi.h Include file

MVIscapi.lib Library (16-bit OMF format)

3.9.1 Side-Connect API Architecture

The side-connect API is an alternative communication path to the backplane
interface. This architecture is only used in the MVI71 module. Applications using
the MVI API must be linked with the MVI library, and the MVI must be directly
connected to the PLC-5 via the side-connect interface.

3.9.2 Data Transfer

The side-connect interface provides the fastest available communications path to
the PLC-5. With the API, applications may read and write to the PLC-5 data
tables, synchronize with the PLC-5 ladder scan, handle message instructions
from the PLC-5, set the PLC-5 mode, clear faults, perform block transfers
through the PLC-5, and perform other functions.

When the side-connect interface is used, no ladder logic is required for normal
data transfer. The module directly reads and writes information between the
module and the processor using the user data files defined. The SC_DATA.TXT
file contains the file number to be used for the configuration file. This file number
and the module configuration determine the set of user data files required in the
PLC. In order to perform special control of the module (for example, warm-boot
operation), ladder logic is required.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 68 of 342 ProSoft Technology, Inc.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 69 of 342 ProSoft Technology, Inc.

4 Setting Up Your Development Environment

In This Chapter

 Setting Up Your Compiler .. 70

 Setting Up WINIMAGE .. 87

 Installing and Configuring the Module ... 88

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 70 of 342 ProSoft Technology, Inc.

4.1 Setting Up Your Compiler

There are some important compiler settings that must be set in order to
successfully compile an application for the MVI platform. The following topics
describe the setup procedures for each of the supported compilers.

4.1.1 Configuring Digital Mars C++ 8.49

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note: This procedure assumes that you have successfully installed Digital Mars C++ 8.49 on your
workstation.

Downloading the Sample Program

The sample code files are located at: www.prosoft-technology.com. Y

Important: The sample code and libraries in the 1756-MVI-Samples folder are not compatible with,
and are not supported for, the Digital Mars compiler.

Building an Existing Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project  Open from the Main
Menu.

2 From the Folders field, navigate to the folder that contains the project
(C:\ADM_TOOL_MVI\SAMPLES\…).

3 In the File Name field, click on the project name (56adm-si.prj).

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 71 of 342 ProSoft Technology, Inc.

4 Click OK. The Project window appears:

5 Click Project  Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 72 of 342 ProSoft Technology, Inc.

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be

accessed by clicking Project  Settings from the Main Menu.

Creating a New Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project  New from the Main
Menu.

2 Select the path and type in the Project Name.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 73 of 342 ProSoft Technology, Inc.

3 Click Next.

4 In the Platform field, choose DOS.
5 In the Project Settings choose Release if you do not want debug information

included in your build.
6 Click Next.

7 Select the first source file necessary for the project.
8 Click Add.
9 Repeat this step for all source files needed for the project.
10 Repeat the same procedure for all library files (.lib) needed for the project.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 74 of 342 ProSoft Technology, Inc.

11 Choose Libraries (*.lib) from the List Files of Type field to view all library files:

12 Click Next.

13 Add any defines or include directories desired.
14 Click Finish.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 75 of 342 ProSoft Technology, Inc.

15 The Project window should now contain all the necessary source and library
files as shown in the following window:

16 Click Project  Settings from the Main Menu.

17 These settings were set when the project was created. No changes are
required. The executable must be built as a DOS executable in order to run
on the MVI platform.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 76 of 342 ProSoft Technology, Inc.

18 Click the Directories tab and fill in directory information as required by your
project’s directory structure.

19 If the fields are left blank then it is assumed that all of the files are in the
same directory as the project file. The output files will be placed in this
directory as well.

20 Click on the Build tab, and choose the Compiler selection. Confirm that the
settings match those shown in the following screen:

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 77 of 342 ProSoft Technology, Inc.

21 Click Code Generation from the Topics field and ensure that the options
match those shown in the following screen:

22 Click Memory Models from the Topics field and ensure that the options
match those shown in the following screen:

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 78 of 342 ProSoft Technology, Inc.

23 Click Linker from the Topics field and ensure that the options match those
shown in the following screen:

24 Click Packing & Map File from the Topics field and ensure that the options
match those shown in the following screen:

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 79 of 342 ProSoft Technology, Inc.

25 Click Make from the Topics field and ensure that the options match those
shown in the following screen:

26 Click OK.

27 Click Parse  Update All from the Project Window Menu. The new settings
may not take effect unless the project is updated and reparsed.

28 Click Project  Build All from the Main Menu.
29 When complete, the build results will appear in the Output window:

The executable file will be located in the directory listed in the Compiler Output
Directory box of the Directories tab (that is, C:\ADM_TOOL_MVI\SAMPLES\…).

The Project Settings window can be accessed by clicking Project  Settings
from the Main Menu.

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 80 of 342 ProSoft Technology, Inc.

4.1.2 Configuring Borland C++5.02

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology, using Borland C++ 5.02. After verifying that the
sample code can be successfully compiled and built, you can modify the sample
code to work with your application.

Note: This procedure assumes that you have successfully installed Borland C++ 5.02 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_MVI.ZIP file. This zip file
is available at: www.prosoft-technology.com web site.

Important: The sample code and libraries in the 1756-MVI-Samples folder are not compatible with,
and are not supported for, the Digital Mars compiler.

Building an Existing Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, then click Project  Open Project from the Main
Menu.

2 From the Directories field, navigate to the directory that contains the project
(C:\adm\sample).

3 In the File Name field, click on the project name (adm.ide).
4 Click OK. The Project window appears:

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 81 of 342 ProSoft Technology, Inc.

5 Click Project  Build All from the Main Menu to create the .exe file. The
Building ADM window appears when complete:

6 When Success appears in the Status field, click OK.

The executable file will be located in the directory listed in the Final field of
the Output Directories (that is, C:\adm\sample). The Project Options window
can be accessed by clicking Options  Project Menu from the Main Menu.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 82 of 342 ProSoft Technology, Inc.

Creating a New Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click File  Project from the Main Menu.

2 Type in the Project Path and Name. The Target Name is created
automatically.

3 In the Target Type field, choose Application (.exe).
4 In the Platform field, choose DOS (Standard).
5 In the Target Model field, choose Large.
6 Ensure that Emulation is checked in the Math Support field.
7 Click OK. A Project window appears:

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 83 of 342 ProSoft Technology, Inc.

8 Click on the .cpp file created and press the Delete key. Click Yes to delete
the .cpp file.

9 Right click on the .exe file listed in the Project window and choose the Add
Node menu selection. The following window appears:

10 Click source file, then click Open to add source file to the project. Repeat this
step for all source files needed for the project.

11 Repeat the same procedure for all library files (.lib) needed for the project.
12 Choose Libraries (*.lib) from the Files of Type field to view all library files:

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 84 of 342 ProSoft Technology, Inc.

13 The Project window should now contain all the necessary source and library
files as shown in the following window:

14 Click Options  Project from the Main Menu.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 85 of 342 ProSoft Technology, Inc.

15 Click Directories from the Topics field and fill in directory information as
required by your project’s directory structure.

16 Double-click on the Compiler header in the Topics field, and choose the
Processor selection. Confirm that the settings match those shown in the
following screen:

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 86 of 342 ProSoft Technology, Inc.

17 Click Memory Model from the Topics field and ensure that the options match
those shown in the following screen:

18 Click OK.

19 Click Project  Build All from the Main Menu.
20 When complete, the Success window appears:

21 Click OK. The executable file will be located in the directory listed in the Final
box of the Output Directories (that is, C:\adm\sample). The Project Options

window can be accessed by clicking Options  Project from the Main
Menu.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 87 of 342 ProSoft Technology, Inc.

4.2 Setting Up WINIMAGE

WINIMAGE is a Win9x/NT utility used to create disk images for downloading to
the MVI-ADM module. It does not require the used of a floppy diskette. In
addition, it is not necessary to estimate the disk image size, because WINIMAGE
does this automatically and can truncate the unused portion of the disk.
WINIMAGE will de-fragment a disk image so that files may be deleted and added
to the image without resulting in wasted space.

To install WINIMAGE, unzip the winima40.zip file in a sub-directory on your PC
running Win9x or NT 4.0. To start WINIMAGE, run WINIMAGE.EXE.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 88 of 342 ProSoft Technology, Inc.

4.3 Installing and Configuring the Module

This chapter describes how to install and configure the module to work with your
application. The configuration process consists of the following steps.

1 Use to identify the module to the processor and add the module to a project.

Note: The software must be in "offline" mode to add the module to a project.

2 Modify the example ladder logic to meet the needs of your application, and
copy the ladder logic to the processor. Example ladder logic files are
provided at www.prosoft-technology.com

Note: If you are installing this module in an existing application, you can copy the necessary
elements from the example ladder logic into your application.

The rest of this chapter describes these steps in more detail.

Note for MVI94: Configuration information for the MVI94-ADM module is stored in the module’s
Flash ROM. This provides permanent storage of the information. The user configures the module
using a text file and then using the terminal emulation software provided with the module to
download it to the module’s Flash ROM. The file contains the configuration for the Flex backplane
data transfer, master port and the command list. This file is downloaded to the module for each
application.
Note for MVI69: Configuration information for the MVI69-ADM module is stored in the module’s
EEPROM. This provides permanent storage of the information. The user configures the module
using a text file and then using the terminal emulation software provided with the module to
download it to the module’s EEPROM. The file contains the configuration for the virtual database,
backplane data transfer, and serial port. This file is downloaded to the module for each application.

4.3.1 Using Side-Connect (Requires Side-Connect Adapter) (MVI71)

If the side-connect interface is used, the file SC_DATA.TXT on the Compact
Flash Disk must contain the correct configuration file number. To set the
configuration file number for your application, run the setdnpsc.exe program.
Install the module in the rack and turn on the power

1 Install the module in the rack and turn on the power.
2 Connect the serial cable to the module’s debug/configuration port
3 To exit the program, [ESC], followed by [Y]. The program will exit and remain

at the operating system prompt.
4 Run the setdnpsc.exe program with a command line argument of the file

number to use for the configuration file. For example, to select N10: as the
configuration file, enter the following:

SETDNPSC 10

The program will build the SC_DATA.TXT on the Compact Flash Disk (C: drive in
the root directory).

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
'C' Programmable Application Development Module Developer's Guide

Page 89 of 342 ProSoft Technology, Inc.

Next, define the data files for the application. If the block transfer interface is
used, define the data files to hold the configuration, status, and user data. Enter
the module’s configuration in the user data files. Enter the ladder logic to handle
the blocks transferred between the module and the PLC. Download the program
to the PLC and test the program with the module.

If the side-connect interface is used, no ladder logic is required for data transfer.
The user data files to interface with the module must reside in contiguous order
in the processor. The first file to be used by the interface is the configuration file.
This is the file number set in the SC_DATA.TXT file using the SETDNPSC.EXE
program. The following table lists the files used by the side-connect interface:

File Number Example Size Description

Cfg File N10 300 Configuration/Control/Status File

Cfg File+1 N11 to 1000 Port 1 commands 0 to 99

Cfg File+2 N12 to 1000 Port 2 commands 0 to 99

Cfg File+5 N15 to 1000 Data transferred from the module to the processor.

Other files for read data.

Cfg File+5+n N16 to 1000 Data transferred from the processor to the module.

Cfg File +5+n+m Other files for write data.

n is the number of read data files minus one. Each file contains up to 1000
words.

m is the number of write data files minus one. Each file contains up to 1000
words.

Even if both files are not required for a port’s commands, they are still reserved
and should only be used for that purpose. The read and write data contained in
the last set of files possess the data transferred between the module and the
processor. The number of files required for each depends on the number of
registers configured for each operation. Two examples follow:

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 90 of 342 ProSoft Technology, Inc.

Example of 240 words of read and write data (cfg file=10)

Data Files Description

N15:0 to 239 Read Data

N16:0 to 239 Write Data

Example of 2300 read and 3500 write data registers (cfg file=10)

Data Files Description

N15:0 to 999 Read data words 0 to 999

N16:0 to 999 Read data words 1000 to 1999

N17:0 to 299 Read data words 2000 to 2299

N18:0 to 999 Write data words 0 to 999

N19:0 to 999 Write data words 1000 to 1999

N20:0 to 999 Write data words 2000 to 2999

N21:0 to 499 Write data words 3000 to 3499

Special care must be taken when defining the files for the side-connect interface.
Because the module directly interacts with the PLC processor and its memory,
any errors in the configuration may cause the processor to fault and it may even
lose its configuration program. After defining the files and populating them with
the correct data, download the program to the processor, and place the
processor in Run mode. If everything is configured properly, the module should
start its normal operation.

If all the configuration parameters are set correctly, the module’s application LED
(OK LED) should remain off and the backplane activity LED (BP ACT) should
blink rapidly. Refer to the Diagnostics and Troubleshooting of this manual if you
encounter errors. Attach a terminal to Port 1 on the module and look at the status
of the module using the Configuration/Debug Menu in the module.

MVI-ADM ♦ 'C' Programmable Programming the Module
'C' Programmable Application Development Module Developer's Guide

Page 91 of 342 ProSoft Technology, Inc.

5 Programming the Module

In This Chapter

 ROM Disk Configuration .. 92

 Creating a ROM Disk Image .. 97

 Downloading a ROM Disk Image .. 99

 MVIUPDAT .. 99

 MVI System BIOS Setup ... 101

 Debugging Strategies .. 102

This section describes how to get your application running on the MVI-ADM
module. After an application has been developed using the backplane and serial
API’s, it must be downloaded to the MVI-ADM module in order to run. The
application may then be run manually from the console command line, or
automatically on boot from the AUTOEXEC.BAT or CONFIG.SYS files.

Programming the Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 92 of 342 ProSoft Technology, Inc.

5.1 ROM Disk Configuration

User programs are stored in the MVI-ADM module’s ROM disk. This disk is
actually a portion of Flash ROM that appears as Drive A:.

The ROM disk size is:

Module Type Disk Size

MVI46 896K bytes

MVI56 896K bytes

MVI69 896K bytes

MVI71 896K bytes

MVI94 384K bytes

This section describes the contents of the ROM disk.

Along with the user application, the ROM disk image must also contain, at a
minimum, a CONFIG.SYS file and the backplane device driver file.

Module Type File Name

MVI46 MVI46BP.EXE

MVI56 MVI56BP.EXE & MVI56DD.EXE

MVI69 MVI69BP.EXE

MVI71 MVI71BP.EXE

MVI94 MVI94BP.EXE

If a command interpreter is needed, it should also be included.

5.1.1 CONFIG.SYS File

The following lines should always be present in your CONFIG.SYS file:

MVI46

IRQPRIORITY=1

INSTALL=A:\MVI46bp.exe -iomix=0 -class=4 -m0size=3000 -m1size=10000

Note: The MVI46 driver file is called MVI46BP.EXE, and may be loaded from the CONFIG.SYS or
AUTOEXEC.BAT files. The driver must be loaded before executing an application which uses the
MVI API.

The SLC platform supports several classes of modules. The MVI46 can be
configured as a Class 1 or Class 4 module. Also, the I/O image sizes are
configurable. If the MVI46 is configured as Class 4, M0 and M1 files are
supported and their sizes are configurable.

Note: Messaging is only supported when the MVI46 is Class 4.

MVI-ADM ♦ 'C' Programmable Programming the Module
'C' Programmable Application Development Module Developer's Guide

Page 93 of 342 ProSoft Technology, Inc.

To configure the class of the MVI46, use the command line options shown below
when loading the MVI driver MVI46BP.EXE. If no options are given, the MVI46
MVI driver defaults to Class 4, 32 words of I/O, and M0 and M1 sizes of 1024
words (module ID = 13635).

[C:\]MVI46bp -?

MVI46 MVI Driver V1.00

Copyright (c) 2000 Online Development, Inc.

Usage:

C:\MVI46bp.EXE [-iomix=n] [-class=n] [-m0size=n] [-m1size=n]

where:

- iomix=n sets the I/O image sizes. Valid values for n are:

0 => 2 words of IO 5 => 12 words of IO

1 => 4 words of IO 6 => 16 words of IO

2 => 6 words of IO 7 => 24 words of IO

3 => 8 words of IO 8 => 32 words of IO (default)

4 => 10 words of IO

- class=n sets the module class. Valid values for n are:

1 => Class 1 (Messaging disabled)

4 => Class 4 (Messaging enabled, default)

- m0size=n sets the number of words for the Messaging

receive buffer, default m0size=1024

- m1size=n sets the number of words for the Messaging

send buffer, default m1size=1024

NOTE: m0size + m1size must be less than 16320 words.

When configuring the Host Controller for the MVI46, the programming software
requires the Module ID for each module in the system. The Module ID for the
MVI46 depends upon the configuration set by the driver. When the driver is
loaded, it prints to the console the Module ID value that can be entered into the
programming software for the Host Controller. For example, the default
configuration prints the following information:

[C:\]MVI46bp

MVI46 MVI Driver V1.00

Copyright (c) 2000 Online Development, Inc.

1746 MVI Configuration

Class 4

IO mix 8 = 32 words of IO

M0 File size = 1024 words

M1 File size = 1024 words

SLC Module ID = 13635

The first line, IRQPRIORITY=1, assigns the highest interrupt priority to the I/O
backplane interrupt. The next line loads the backplane device driver. In this
example, the backplane device driver file (MVI46BP.EXE) must be located in the
root directory of the ROM disk. In the case of the MVI46, the module I/O is set
when the backplane driver is loaded. The module is set to class 4 with a 3000
word M0 file and a 10000 word M1 file. The Module ID for installing and
configuring the module in the ladder program will be printed to the console when
the backplane driver is loaded.

If a command interpreter is needed, a line like the following should be included in
CONFIG.SYS:

Programming the Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 94 of 342 ProSoft Technology, Inc.

SHELL=A:\TINYCMD.COM /s /p

If a command interpreter is not needed, the user application may be executed
directly from the CONFIG.SYS file as shown (where USERAPP.EXE is the user
application executable file name):

SHELL=A:\USERAPP.EXE

The user application may also be executed automatically from an
AUTOEXEC.BAT file, or manually from the console command line. In either
case, a command interpreter (page 94) must be loaded.

MVI56

IRQPRIORITY=1

INSTALL=A:\MVI56bp.exe

INSTALL=A:\MVI56dd.exe

MVI69

IRQPRIORITY=1

SYSTEMPOOL=16384

STACKS=5

SHELL=A:\TINYCMD.COM /s /p

INSTALL=A:\MVI69bp.exe

Note: At this time, messaging is not supported on the MVI69.

MVI71

IRQPRIORITY=1

INSTALL=A:\MVI71bp.exe

MVI94

IRQPRIORITY=1

INSTALL=A:\MVI94bp.exe

5.1.2 Command Interpreter

A command interpreter is needed if you want the module to boot to a command
prompt, or if you want to execute an AUTOEXEC.BAT file. Two command
interpreters are included, a full-featured COMMAND.COM, and the smaller, more
limited TINYCMD.COM. Refer to the General Software Embedded DOS 6-XL
Developer's Guide located at: www.prosoft-technology.com.

MVI-ADM ♦ 'C' Programmable Programming the Module
'C' Programmable Application Development Module Developer's Guide

Page 95 of 342 ProSoft Technology, Inc.

5.1.3 Sample ROM Disk Image

The sample ROM disk image that is included with the MVI-ADM module contains
the following files:

MVI46

File Name Description

AUTOEXEC.BAT Runs the executable at startup

CONFIG.SYS Loads the backplane device driver and the command interpreter

TINYCMD.COM Command interpreter

MVI46BP.EXE Backplane device driver

ADM.EXE Sample application

MVI56

File Name Description

AUTOEXEC.BAT Runs the executable at startup

CONFIG.SYS Loads the backplane device driver and the command interpreter

TINYCMD.COM Command interpreter

MVI56BP.EXE Backplane device driver

MVI56DD.EXE Backplane device driver

ADM.EXE Sample application

MVI69

File Name Description

AUTOEXEC.BAT Runs the executable at startup

CONFIG.SYS Loads the backplane device driver and the command interpreter

TINYCMD.COM Command interpreter

MVI69BP.EXE Backplane device driver

ADM.EXE Sample application

MVI71

File Name Description

AUTOEXEC.BAT Runs the executable at startup

CONFIG.SYS Loads the backplane device driver and the command interpreter

TINYCMD.COM Command interpreter

MVI71BP.EXE Backplane device driver

ADM.EXE Sample application

SETDNPSC.EXE Configures the module to use either backplane or side-connect interface.

MVI94

File Name Description

AUTOEXEC.BAT Runs the executable at startup

CONFIG.SYS Loads the backplane device driver and the command interpreter

Programming the Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 96 of 342 ProSoft Technology, Inc.

File Name Description

TINYCMD.COM Command interpreter

MVI94BP.EXE Backplane device driver

ADM.EXE Sample application

MVI-ADM ♦ 'C' Programmable Programming the Module
'C' Programmable Application Development Module Developer's Guide

Page 97 of 342 ProSoft Technology, Inc.

5.2 Creating a ROM Disk Image

To change the contents of the ROM disk, a new disk image must be created
using the WINIMAGE utility.

The WINIMAGE utility for creating disk images is described in the following
topics.

5.2.1 WINIMAGE: Windows Disk Image Builder

WINIMAGE is a Win9x/NT utility that may be used to create disk images for
downloading to the MVI-ADM module. It does not require the use of a floppy
diskette. Also, it is not necessary to estimate the disk image size, since
WINIMAGE does this automatically and can truncate the unused portion of the
disk. In addition, WINIMAGE will de-fragment a disk image so that files may be
deleted and added to the image without resulting in wasted space.

To install WINIMAGE, unzip the winima40.zip file in a subdirectory on your PC
running Win9x or NT 4.0. To start WINIMAGE, run WINIMAGE.EXE.

Follow these steps to build a disk image:

1 Start WINIMAGE.
2 Select File, New and choose a disk format as shown in the following

diagram. Any format will do, as long as it is large enough to contain your files.
The default is 1.44Mb, which is fine for our purposes. Click on OK.

3 Drag and drop the files you want in your image to the WINIMAGE window.

Programming the Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 98 of 342 ProSoft Technology, Inc.

4 Click on Options, Settings and make sure the Truncate unused image part
option is selected, as shown in the following figure. Click on OK.

5 Click on File, Save As, and choose a directory and filename for the disk
image file. The image must be saved as an uncompressed disk image, so be
sure to select Save as type: Image file (*.IMA) as shown in the following
figure.

6 Check the disk image file size to be sure it does not exceed the maximum
size of the MVI-ADM module’s ROM disk (896K bytes, 384K bytes for
MVI94). If it is too large, use WINIMAGE to remove some files from the
image, then de-fragment the image and try again (Note: To de-fragment an
image, click on Image, Defrag current image.

7 The disk image is now ready to be downloaded to the MVI-ADM module.

For more information on using WINIMAGE, refer to the documentation included
with it.

Note: WINIMAGE is a shareware utility. If you find this program useful, please register it with the
author.

MVI-ADM ♦ 'C' Programmable Programming the Module
'C' Programmable Application Development Module Developer's Guide

Page 99 of 342 ProSoft Technology, Inc.

5.3 MVIUPDAT

MVIUPDAT.EXE is a DOS-compatible utility for downloading a ROM disk image
from a host PC to the MVI-ADM module. MVIUPDAT.EXE uses a serial port on
the PC to communicate with the module. Follow the steps below to download a
ROM disk image:

1 Connect a null-modem serial cable between the serial port on the PC and
PRT1 on the MVI module.

2 If you are using HyperTerm or a similar terminal program for the MVI-ADM
module console, exit or disconnect from the serial port before running the
MVI Flash Update tool.

3 Turn off power to the MVI module. Install the Setup Jumper as described in
the Installation Instructions.

For DOS:

1 Click the START button, and then choose RUN.

2 In the OPEN: field, enter MVIUPDAT. Specify the PC port on the command line
as shown in the following illustration. The default is COM1.

3 Turn on power to the MVI module. You should see the following menu shown
on the host PC.

+----------------------------+

| Main Menu |

|----------------------------|

| Verify Module Connection |

| Update Flash Disk Image |

| Reboot Module |

+----------------------------+

4 Select VERIFY MODULE CONNECTION to verify the connection to the MVI
module. If the connection is working properly, the message "Module
Responding" will be displayed.

Note: If an error occurs, check your serial port assignments and cable connections. You may also
need to cycle power more than once before the module responds.

5 Select UPDATE FLASH DISK IMAGE to download the ROM disk image. Type the
image file name when prompted. The download progress is displayed as the
file is being transmitted to the module.

6 After the disk image has been transferred, reboot the MVI module by
selecting the REBOOT MODULE menu item.

7 Exit the MVIUPDAT.EXE utility by pressing [ESC].

For Windows:

Programming the Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 100 of 342 ProSoft Technology, Inc.

1 Double Click on the MVI FLASH UPDATE icon to open the Establish
Connection dialog box.

2. Choose the COM PORT [1,2,3,4] that your PC is using.

3. Choose CONNECT

4. This opens a dialog box that lets you choose the location of the image file to
be placed on the module. After choosing the correct image file it will
begin downloading and a progress bar will let you know when the image has
finished downloading as is ready to use.

MVI-ADM ♦ 'C' Programmable Programming the Module
'C' Programmable Application Development Module Developer's Guide

Page 101 of 342 ProSoft Technology, Inc.

5.4 MVI System BIOS Setup

The BIOS Setup for the MVI products contains module configuration settings and
allows for placing the MVI-ADM module in a flash update mode. To access the
BIOS Setup, attach a null modem cable from the PC COM port to the
Status/Debug port on the MVI-ADM module. Start HyperTerm with the
appropriate communication settings for the Debug port. Press CTRL-C during the
memory test portion in the booting of the module.

It may be necessary to install the setup jumper in order to access the BIOS
Setup. The setup jumper will be necessary if the Console is disabled. When the
BIOS Setup is entered the following screen will appear:

To place the MVI-ADM module in a mode where it is waiting to receive a new
flash image, select Begin Flash ROM Update Mode.

Select MVI-ADM module Configuration to set the Console, Console Baud Rate
and Compact Flash mode. The Console allows keyboard entry and text output to
the debug port. The baud rate of the console port is selected by the Console
Baud Rate option. In order to use a Compact Flash disk in the MVI-ADM module
the Compact Flash option must be set to CHS mode.

Programming the Module MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 102 of 342 ProSoft Technology, Inc.

5.5 Debugging Strategies

For simple debugging, printf’s may be inserted into the module application to
display debugging information on the console connected to PRT1.

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
'C' Programmable Application Development Module Developer's Guide

Page 103 of 342 ProSoft Technology, Inc.

6 Creating Ladder Logic

In This Chapter

 MVI46 Ladder Logic .. 104

 MVI56 Ladder Logic .. 105

 MVI69 Ladder Logic .. 106

 MVI71 Ladder Logic .. 109

 MVI94 Ladder Logic .. 115

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 104 of 342 ProSoft Technology, Inc.

6.1 MVI46 Ladder Logic

6.1.1 Main Routine

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
'C' Programmable Application Development Module Developer's Guide

Page 105 of 342 ProSoft Technology, Inc.

6.2 MVI56 Ladder Logic

6.2.1 Main Routine

6.2.2 Read Routine

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 106 of 342 ProSoft Technology, Inc.

6.3 MVI69 Ladder Logic

6.3.1 Main Routine

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
'C' Programmable Application Development Module Developer's Guide

Page 107 of 342 ProSoft Technology, Inc.

6.3.2 Read Routine

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 108 of 342 ProSoft Technology, Inc.

6.3.3 Write Routine

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
'C' Programmable Application Development Module Developer's Guide

Page 109 of 342 ProSoft Technology, Inc.

6.4 MVI71 Ladder Logic

The ladder files included are:

File Name Description

MVI71ADM_BT.RSP RSLogix5 Sample Program (For Backplane Interface)

MVI71ADM_SC.RSP RSLogix5 Sample Program (For Side-connect Interface)

Note: The ladder files for the various hardware platforms are provided with the ADM module. They
are also available on on the ProSoft Technology web site at www.prosoft-technology.com.

6.4.1 Sample Ladder Logic

Ladder logic is required for application of the MVI71-ADM module when using the
block transfer interface. Ladder logic is only required when using the side-
connect interface to perform special functions. Tasks that must be handled by the
ladder logic are module configuration, data transfer, and special block handling.
This section discusses each aspect of the ladder logic as required by the module.
The sections that follow describe the simple ladder logic example provided for
each interface.

Block Transfer Interface

When the block transfer interface is used, ladder logic is required to transfer all
data between the module and the processor.

Main Routine

The Main program file is used to jump to the routine that processes the BTR and
BTW functions for the interface. Ladder logic to accomplish this task is shown
below:

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 110 of 342 ProSoft Technology, Inc.

Block Transfer Routine

The Block Transfer Routine handles the BTR and BTW operations to transfer
data between the processor and the module. Each block to be interfaced
between the processor and the module must be addressed in this logic. The
example ladder logic displays the minimum application of the module and does
not use any of the special features offered by the module. The first rung of the
routine handles the BTR operation (data read from the module). The rung is
shown in the following example:

This rung will only execute when a BTR or BTW message is not enabled. This
logic is required to alternate between the BTR and BTW messages. When it is
time to perform a BTR operation, the 64-word data block will be transferred to
N7:410. The remaining branches of the rung then process this data.

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
'C' Programmable Application Development Module Developer's Guide

Page 111 of 342 ProSoft Technology, Inc.

The first branch examines the block identification code to see if the data
contained in the block is status data. If the block code is set to -1, the status data
is copied N10:200, the status data area. With the block code -2, the module
returns an error code for module configuration and port configuration to the PLC.

The next four branches check to see if the block identification code corresponds
to a read data block (1 to 4). If the block contains a valid code, the 60-word data
set is copied to the user data file.

The next branch is very important, as it copies the BTW block identification code
received from the module into the BTW block. This code requests data from the
processor for the module.

The last two branches in the rung override the BTW block identification code
requested. These branches request the module to perform the cold-boot or
warm-boot operation. If you want to perform any other special functions, add
branches to the rung at this location.

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 112 of 342 ProSoft Technology, Inc.

The next rung in the ladder logic handles the BTW message blocks. An example
rung is displayed below. As with the BTR rung, execution of this rung alternates
between the BTR and BTW operation with the contacts in the rung guaranteeing
this mode. The topmost branch of the rung checks if the module is requesting the
configuration information (block 9000). The module requests this block each time
a module restart operation occurs. The branch will execute when the block is
requested and will copy the module configuration information into the BTW block.

The next two branches clear the cold-boot and warm-boot request bits in the
processor. The block numbers for these special functions are set in the BTR rung
above.

The next four branches transfer the write data from the processor to the module.
The branches determine the block to write (1 to 4) and copy the associated data
into the BTW block.

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
'C' Programmable Application Development Module Developer's Guide

Page 113 of 342 ProSoft Technology, Inc.

The last branch of the rung performs the BTW message operation. This
operation will be recognized by the module, and the data contained in the
received BTW block will be processed by the module. If the data contained in the
block is normal write data, the data will be placed in the module's internal
database. If the block is a special control block (for example, warm-boot block),
the module will perform the selected operation.

Side-Connect Interface

When the side-connect interface is used, no ladder logic is required for normal
data transfer. The module directly reads and writes information between the
module and the processor using the user data files defined. The SC_DATA.TXT
file contains the file number to be used for the configuration file. This file number
and the module configuration determine the set of user data files required in the
PLC.

In order to perform special control of the module (for example, warm-boot
operation), ladder logic is required. A reserved area in the configuration file is
constantly monitored by the module (elements 80 to 139). If the module
recognizes a valid control command code in element 80, it will use the data in the
block to perform the requested operation. For example, to perform a warm-boot
operation on the module, copy a value of 9998 into element 80 of the
configuration file. The module should perform the warm-boot operation and reset
the register value back to zero.

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 114 of 342 ProSoft Technology, Inc.

Boot

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
'C' Programmable Application Development Module Developer's Guide

Page 115 of 342 ProSoft Technology, Inc.

6.5 MVI94 Ladder Logic

6.5.1 Main Routine

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 116 of 342 ProSoft Technology, Inc.

6.5.2 ADM

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
'C' Programmable Application Development Module Developer's Guide

Page 117 of 342 ProSoft Technology, Inc.

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 118 of 342 ProSoft Technology, Inc.

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 119 of 342 ProSoft Technology, Inc.

7 Application Development Function Library -
ADM API

In This Chapter

 ADM API Functions ... 120

 ADM API Initialization Functions ... 123

 ADM API Debug Port Functions .. 125

 ADM API Database Functions ... 132

 ADM API Clock Functions ... 167

 ADM API Backplane Functions ... 169

 ADM LED Functions .. 176

 ADM API Flash Functions ... 177

 ADM API Miscellaneous Functions ... 185

 ADM Side-Connect Functions ... 188

 ADM API RAM Functions .. 193

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 120 of 342 ProSoft Technology, Inc.

7.1 ADM API Functions

This section provides detailed programming information for each of the ADM API
library functions. The calling convention for each API function is shown in 'C'
format.

The same set of API functions is supported for all of the modules in the MVI
family. Differences between modules are noted where appropriate.

API library routines are categorized according to functionality.

Function Category Function Name Description

Initialization ADM_Open Initialize access to the API

ADM_Close Terminate access to the API

Debug Port ADM_ProcessDebug Debug port user interface

ADM_DAWriteSendCtl Writes a data analyzer Tx control symbol

ADM_DAWriteRecvCtl Writes a data analyzer Rx control symbol

ADM_DAWriteSendData Writes a data analyzer Tx data byte

ADM_DAWriteRecvData Writes a data analyzer Rx data byte

ADM_ConPrint Outputs characters to Debug port

ADM_CheckDBPort Checks for character input on Debug port

Database ADM_DBOpen Initializes database

ADM_DBClose Closes database

ADM_DBZero Zeros database

ADM_DBGetBit Read a bit from the database

ADM_DBSetBit Write a 1 to a bit to the database

ADM_DBClearBit Write a 0 to a bit to the database

ADM_DBGetByte Read a byte from the database

ADM_DBSetByte Write a byte to the database

ADM_DBGetWord Read a word from the database

ADM_DBSetWord Write a word to the database

ADM_DBGetLong Read a double word from the database

ADM_DBSetLong Write a double word to the database

ADM_DBGetFloat Read a floating-point number from the
database

ADM_DBSetFloat Write a floating-point number to the database

ADM_DBGetDFloat Read a double floating-point number from the
database

ADM_DBSetDFloat Write a double floating-point number to the
database

ADM_DBGetBuff Reads a character buffer from the database

ADM_DBSetBuff Writes a character buffer to the database

ADM_DBGetRegs Read multiple word registers from the
database

ADM_DBSetRegs Write multiple word registers to the database

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 121 of 342 ProSoft Technology, Inc.

Function Category Function Name Description

ADM_DBGetString Read a string from the database

ADM_DBSetString Write a string to the database

ADM_DBSwapWord Swaps bytes within a word in the database

ADM_DBSwapDWord Swaps bytes within a double word in the
database

ADM_GetDBCptr Get a pointer to a character in the database

ADM_GetDBIptr Get a pointer to a word in the database

ADM_GetDBInt Returns an integer from the database

ADM_DBChanged Tests a database register for a change

ADM_DBBitChanged Tests a database bit for a change

ADM_DBOR_Byte Inclusive OR a byte with a database byte

ADM_DBNOR_Byte Inclusive NOR a byte with a database byte

ADM_DBAND_Byte AND a byte with a database byte

ADM_DBNAND_Byte NAND a byte with a database byte

ADM_DBXOR_Byte Exclusive OR a byte with a database byte

ADM_DBXNOR_Byte Exclusive NOR a byte with a database byte

Timer ADM_StartTimer Initialize a timer

ADM_CheckTimer Check current timer value

Backplane ADM_BtOpen Opens and initializes backplane interface

ADM_BtClose Closes backplane interface

ADM_BtNext Sets next write block number

ADM_ReadBtCfg Reads configuration from the processor

ADM_BtFunc Handles backplane transfers

ADM_SetStatus Writes status to Error/Status table

ADM_SetBtStatus Writes status to processor

LED ADM_SetLed Turn user LED indicators on or off

Flash ADM_FileGetString Searches for a string in a config file

ADM_FileGetInt Searches for an integer in a config file

ADM_FileGetChar Searches for a char in a config file

ADM_GetVal Gets an integer from a buffer

ADM_GetStr Gets a string from a buffer

ADM_Getc Gets a char from a buffer

ADM_SkipToNext Skips white space

Miscellaneous ADM_GetVersionInfo Get the ADM API version information

ADM_SetConsolePort Enable the console on a port

ADM_SetConsoleSpeed Set the console port baud rate

Side Connect ADM_ScOpen Open and initializes the side-connect
interface

ADM_ScClose Close the side-connect interface

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 122 of 342 ProSoft Technology, Inc.

Function Category Function Name Description

ADM_ReadScFile Read SC_DATA.TXT file from the C drive on
a Compact Flash in the module to select
between using backplane or side-connect
interface

ADM_ReadScCfg Read configuration from the processor

ADM_ScScan Handles side-connect transfer

RAM ADM_EEPROM_Read
Configuration

Read configuration file

ADM_RAM_Find_Section Find section in the configuration file

ADM_RAM_GetString Get string under topic name

ADM_RAM_GetInt Get integer under topic name

ADM_RAM_GetLong Get Long under topic name

ADM_RAM_GetFloat Get Float under topic name

ADM_RAM_GetDouble Get Double under topic name

ADM_RAM_GetChar Get Char under topic name

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 123 of 342 ProSoft Technology, Inc.

7.2 ADM API Initialization Functions

ADM_Open

Syntax

int ADM_Open(ADMHANDLE *adm_handle);

Parameters

adm_handle Pointer to variable of type ADMHANDLE

Description

ADM_Open acquires access to the ADM API and sets adm_handle to a unique
ID that the application uses in subsequent functions. This function must be called
before any of the other API functions can be used.

IMPORTANT: After the API has been opened, ADM_Close should always be called before exiting
the application.

Return Value

ADM_SUCCESS API was opened successfully

ADM_ERR_REOPEN API is already open

ADM_ERR_NOACCESS API cannot run on this hardware

Note: ADM_ERR_NOACCESS will be returned if the hardware is not from ProSoft Technology.

Example

ADMHANDLE adm_handle;

 if(ADM_Open(&adm_handle) != ADM_SUCCESS)

 {

printf("\nFailed to open ADM API... exiting program\n");

exit(1);

 }

See Also

ADM_Close (page 124)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 124 of 342 ProSoft Technology, Inc.

ADM_Close

Syntax

int ADM_Close(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function is used by an application to release control of the API. adm_handle
must be a valid handle returned from ADM_Open.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

ADM_SUCCESS API was closed successfully

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

 ADM_Close(adm_handle);

See Also

ADM_Open (page 123)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 125 of 342 ProSoft Technology, Inc.

7.3 ADM API Debug Port Functions

ADM_ProcessDebug

Syntax

int ADM_ProcessDebug(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function provides a module user interface using the debug port. adm_handle
must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access or user pressed ESC to exit

program

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_ProcessDebug(adm_handle, interface_ptr);

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 126 of 342 ProSoft Technology, Inc.

ADM_DAWriteSendCtl

Syntax

int ADM_DAWriteSendCtl(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,

int app_port, int marker);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

marker Flow control symbol to output to the data analyzer screen

Description

This function may be used to send a transmit flow control symbol to the data
analyzer screen. The control symbol will appear between two angle brackets:
<R+>, <R->, <CS>.

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF <R->

RTSON <R+>

CTSRCV <CS>

MVI94 Note

Only application port 0 is valid for the MVI94.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

MVI_ERR_BADPARAM Value of marker is not valid

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteSendCtl(adm_handle, interface_ptr, app_port, RTSON);

See Also

ADM_DAWriteRecvCtl (page 127)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 127 of 342 ProSoft Technology, Inc.

ADM_DAWriteRecvCtl

Syntax

int ADM_DAWriteRecvCtl(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,

int app_port, int marker);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

marker Flow control symbol to output to the data analyzer screen

Description

This function may be used to send a receive flow control symbol to the data
analyzer screen. The control symbol will appear between two square brackets:
[R+], [R-], [CS].

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF [R-]

RTSON [R+]

CTSRCV [CS]

MVI94 Note

Only application port 0 is valid for the MVI94.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

MVI_ERR_BADPARAM Value of marker is not valid

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteRecvCtl(adm_handle, interface_ptr, app_port, RTSON);

See Also

ADM_DAWriteSendCtl (page 126)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 128 of 342 ProSoft Technology, Inc.

ADM_DAWriteSendData

Syntax

int ADM_DAWriteSendData(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,

int app_port, int length, char *data_buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

length The number of data characters to send to the data analyzer

data_buff The buffer holding the transmit data

Description

This function may be used to send transmit data to the data analyzer screen. The
data will appear between two angle brackets: <data>.

adm_handle must be a valid handle returned from ADM_Open.

MVI94 Note

Only application port 0 is valid for the MVI94.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_PORT ports[MAX_APP_PORTS];

Int app_port;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteSendData(adm_handle, interface_ptr, app_port, ports[app_port].len,

ports[app_port].buff);

See Also

ADM_DAWriteRecvData (page 129)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 129 of 342 ProSoft Technology, Inc.

ADM_DAWriteRecvData

Syntax

int ADM_DAWriteRecvData(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,

int app_port, int length, char *data_buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

length The number of data characters to send to the data analyzer

data_buff The buffer holding the receive data

Description

This function sends receive data to the data analyzer screen. The data will
appear between two square brackets: [data].

adm_handle must be a valid handle returned from ADM_Open.

MVI94 Note

Only application port 0 is valid for the MVI94.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_PORT ports[MAX_APP_PORTS];

Int app_port;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteRecvData(adm_handle, interface_ptr, app_port, ports[app_port].len,

ports[app_port].buff);

See Also

ADM_DAWriteSendData (page 128)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 130 of 342 ProSoft Technology, Inc.

ADM_ConPrint

Syntax

int ADM_ConPrint(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function outputs characters to the debug port. This function will buffer the
output and allow other functions to run. The buffer is serviced with each call to
ADM_ProcessDebug and can be serviced by the user's program. When sending
data to the debug port, if printf statements are used, other processes will be held
up until the printf function completes execution. Two variables in the interface
structure must be set when data is loaded. The first, buff_ch is the offset of the
next character to print. This should be set to 0. The second is buff_len. This
should be set to the length of the string placed in the buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_ERR_NOACCESS adm_handle does not have access

Number of characters left in the buffer

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

sprintf(interface.buff,"MVI ADM\n");

 interface.buff_ch = 0;

 interface.buff_len = strlen(interface.buff);

/* write buffer to console */

 while(interface.buff_len)

 {

interface.buff_len = ADM_ConPrint(adm_handle, interface_ptr);

 }

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 131 of 342 ProSoft Technology, Inc.

ADM_CheckDBPort

Syntax

int ADM_CheckDBPort(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function checks for input characters on the debug port. adm_handle must be
a valid handle returned from ADM_Open.

Return Value

ADM_ERR_NOACCESS adm_handle does not have access

Returns the character input to the debug port

Example

 int key;

 key = ADM_CheckDBPort(adm_handle);

 printf("key = %i\n", key);

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 132 of 342 ProSoft Technology, Inc.

7.4 ADM API Database Functions

ADM_DBOpen

Syntax

int ADM_DBOpen(ADMHANDLE adm_handle, unsigned short max_size)

Parameters

adm_handle Handle returned by previous call to ADM_Open

max_size Maximum number of words in the database

Description

This function creates a database in the RAM area of the MVI-ADM module.

adm_handle must be a valid handle returned from ADM_Open.

MVI94 Note: The maximum number of database registers in the MVI94 is limited to 3996.
MVI56 Note: The maximum number of database registers in the MVI56 is limited to 7000.
MVI46 Note: The maximum number of database registers in the MVI46 is limited to 10000.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_DB_MAX_SIZE max_size has exceeded the maximum allowed

ADM_ERR_REG_RANGE max_size requested was zero

ADM_ERR_OPEN Database already created

ADM_ERR_MEMORY Insufficient memory for database

Example

ADMHANDLE adm_handle;

if(ADM_DBOpen(adm_handle, ADM_MAX_DB_REGS) != ADM_SUCCESS)

printf("Error setting up Database!\n");

See Also

ADM_DBClose (page 133)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 133 of 342 ProSoft Technology, Inc.

ADM_DBClose

Syntax

int ADM_DBClose(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function closes a database previously created by ADM_DBOpen.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_DBClose(adm_handle);

See Also

ADM_DBOpen (page 132)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 134 of 342 ProSoft Technology, Inc.

ADM_DBZero

Syntax

int ADM_DBZero(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function writes zeros to a database previously created by ADM_DBOpen.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

Example

ADMHANDLE adm_handle;

ADM_DBZero(adm_handle);

See Also

ADM_DBOpen (page 132)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 135 of 342 ProSoft Technology, Inc.

ADM_DBGetBit

Syntax

int ADM_DBGetBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function reads a bit from the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested bit

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

if(ADM_DBGetBit(adm_handle, offset))

 printf("bit is set");

else

 printf("bit is clear");

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 136 of 342 ProSoft Technology, Inc.

ADM_DBSetBit

Syntax

int ADM_DBSetBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function sets a bit to a 1 in the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBSetBit(adm_handle, offset);

See Also

ADM_DBClearBit (page 137)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 137 of 342 ProSoft Technology, Inc.

ADM_DBClearBit

Syntax

int ADM_DBClearBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function clears a bit to a 0 in the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBClearBit(adm_handle, offset);

See Also

ADM_DBSetBit (page 136)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 138 of 342 ProSoft Technology, Inc.

ADM_DBGetByte

Syntax

char ADM_DBGetByte(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

Description

This function reads a byte from the database at a specified byte offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested byte

Example

ADMHANDLE adm_handle;

unsigned short offset;

int i;

i = ADM_DBGetByte(adm_handle, offset);

See Also

ADM_DBSetByte (page 139)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 139 of 342 ProSoft Technology, Inc.

ADM_DBSetByte

Syntax

int ADM_DBSetByte(ADMHANDLE adm_handle, unsigned short offset, const char val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

val Value to be written to the database

Description

This function writes a byte to the database at a specified byte offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const char val;

ADM_DBSetByte(adm_handle, offset, val);

See Also

ADM_DBGetByte (page 138)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 140 of 342 ProSoft Technology, Inc.

ADM_DBGetWord

Syntax

int ADM_DBGetWord(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function reads a word from the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested word

Example

ADMHANDLE adm_handle;

unsigned short offset;

int i;

i = ADM_DBGetWord(adm_handle, offset);

See Also

ADM_DBSetWord (page 141)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 141 of 342 ProSoft Technology, Inc.

ADM_DBSetWord

Syntax

int ADM_DBSetWord(ADMHANDLE adm_handle, unsigned short offset, const short

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

val Value to be written to the database

Description

This function writes a word to the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const short val;

ADM_DBSetWord(adm_handle, offset, val);

See Also

ADM_DBGetWord (page 140)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 142 of 342 ProSoft Technology, Inc.

ADM_DBGetLong

Syntax

long ADM_DBGetLong(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Long int offset into database

Description

This function reads a long int from the database at a specified long int offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested long int

Example

ADMHANDLE adm_handle;

unsigned short offset;

long l;

l = ADM_DBGetLong(adm_handle, offset);

See Also

ADM_DBSetLong (page 143)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 143 of 342 ProSoft Technology, Inc.

ADM_DBSetLong

Syntax

int ADM_DBSetLong(ADMHANDLE adm_handle, unsigned short offset, const long val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Long int offset into database

val Value to be written to the database

Description

This function writes a long int to the database at a specified long int offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const long val;

ADM_DBSetLong(adm_handle, offset, val);

See Also

ADM_DBGetLong (page 142)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 144 of 342 ProSoft Technology, Inc.

ADM_DBGetFloat

Syntax

float ADM_DBGetFloat(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset float offset into database

Description

This function reads a floating-point number from the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested floating-point number.

Example

ADMHANDLE adm_handle;

unsigned short offset;

float f;

f = ADM_DBGetFloat(adm_handle, offset);

See Also

ADM_DBSetFloat (page 145)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 145 of 342 ProSoft Technology, Inc.

ADM_DBSetFloat

Syntax

int ADM_DBSetFloat(ADMHANDLE adm_handle, unsigned short offset, const float

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset float offset into database

val Value to be written to the database

Description

This function writes a floating-point number to the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const float val;

ADM_DBSetFloat(adm_handle, offset, val);

See Also

ADM_DBGetFloat (page 144)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 146 of 342 ProSoft Technology, Inc.

ADM_DBGetDFloat

Syntax

double ADM_DBGetDFloat(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset double float offset into database

Description

This function reads a double floating-point number from the database at a
specified double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested double floating-point number

Example

ADMHANDLE adm_handle;

unsigned short offset;

double d;

d = ADM_DBGetDFloat(adm_handle, offset);

See Also

ADM_DBSetDFloat (page 147)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 147 of 342 ProSoft Technology, Inc.

ADM_DBSetDFloat

Syntax

int ADM_DBSetDFloat(ADMHANDLE adm_handle, unsigned short offset, const double

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset double float offset into database

val Value to be written to the database

Description

This function writes a double floating-point number to the database at a specified
double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const double val;

ADM_DBSetDFloat(adm_handle, offset, val);

See Also

ADM_DBGetDFloat (page 146)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 148 of 342 ProSoft Technology, Inc.

ADM_DBGetBuff

Syntax

char * ADM_DBGetBuff(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short count, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of characters to retrieve

str String buffer to receive characters

Description

This function copies a buffer of characters in the database to a character buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short char_count;

char *string_buff;

ADM_DBGetBuff(adm_handle, offset, char_count, string_buff);

See Also

ADM_DBSetBuff (page 149)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 149 of 342 ProSoft Technology, Inc.

ADM_DBSetBuff

Syntax

int ADM_DBSetBuff(ADMHANDLE adm_handle, unsigned short offset, const unsigned

short count, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of characters to write

str String buffer to copy characters from

Description

This function copies a buffer of characters to the database.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

NULL adm_handle has no access, the database is not allocated, or count
+ offset is beyond the max size of the database

Characters from buffer

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short char_count;

char *string_buff = "MVI ADM";

char_count = strlen(string_buff);

ADM_DBSetBuff(adm_handle, offset, char_count, string_buff);

See Also

ADM_DBGetBuff (page 148)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 150 of 342 ProSoft Technology, Inc.

ADM_DBGetRegs

Syntax

unsigned short * ADM_DBGetRegs(ADMHANDLE adm_handle, unsigned short offset,

const unsigned short count, unsigned short * buff)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of integers to retrieve

buff Register buffer to receive integers

Description

This function copies a buffer of registers in the database to a register buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns buff if successful.

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short reg_count;

unsigned short *reg_buff;

ADM_DBGetRegs(adm_handle, offset, reg_count, reg_buff);

See Also

ADM_DBSetRegs (page 151)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 151 of 342 ProSoft Technology, Inc.

ADM_DBSetRegs

Syntax

int ADM_DBSetRegs(ADMHANDLE adm_handle, unsigned short offset, const unsigned

short count, unsigned short * buff)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of integers to write

buff Register buffer from which integers are copied

Description

This function copies a buffer of registers to the database.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short reg_count;

unsigned short *reg_buff;

ADM_DBSetRegs(adm_handle, offset, reg_count, reg_buff);

See Also

ADM_DBGetRegs (page 150)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 152 of 342 ProSoft Technology, Inc.

ADM_DBGetString

Syntax

char * ADM_DBGetString(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short maxcount, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

maxcount Maximum number of characters to retrieve

str String buffer to receive characters

Description

This function copies a string from the database to a string buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns str if string is copy is successful.

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short maxcount;

char *string_buff;

ADM_DBGetString(adm_handle, offset, maxcount, str);

See Also

ADM_DBSetString (page 153)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 153 of 342 ProSoft Technology, Inc.

ADM_DBSetString

Syntax

int ADM_DBSetString(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short maxcount, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

maxcount Maximum number of characters to write

str String buffer to copy string from

Description

This function copies a string to the database from a string buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short maxcount;

char *string_buff;

ADM_DBSetString(adm_handle, offset, maxcount, str);

See Also

ADM_DBGetString (page 152)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 154 of 342 ProSoft Technology, Inc.

ADM_DBSwapWord

Syntax

int ADM_DBSwapWord(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database where swapping is to be performed

Description

This function swaps bytes within a database word.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBSwapWord(adm_handle, offset);

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 155 of 342 ProSoft Technology, Inc.

ADM_DBSwapDWord

Syntax

int ADM_DBSwapDWord(ADMHANDLE adm_handle, unsigned short offset, int type)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset long offset into database where swapping is to be performed

type If type = 3 then bytes will be swapped in pairs within the long.

Description

This function swaps bytes within a database long word.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBSwapDWord(adm_handle, offset, 3);

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 156 of 342 ProSoft Technology, Inc.

ADM_GetDBCptr

Syntax

char * ADM_GetDBCptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains a pointer to char corresponding to the database + offset
location. Because offset is a word offset, the pointer will always reference a
character on a word boundary.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns pointer to char if successful.

Example

ADMHANDLE adm_handle;

int offset;

char c;

c = *(ADM_GetDBCptr(adm_handle, offset));

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 157 of 342 ProSoft Technology, Inc.

ADM_GetDBIptr

Syntax

int * ADM_GetDBIptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains a pointer to int corresponding to the database + offset
location.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns pointer to int if successful.

Example

ADMHANDLE adm_handle;

int offset;

int i;

i = *(ADM_GetDBIptr(adm_handle, offset));

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 158 of 342 ProSoft Technology, Inc.

ADM_GetDBInt

Syntax

int ADM_GetDBIptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains an int corresponding to the database + offset location.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns 0 if not successful.

Returns int requested if successful.

Example

ADMHANDLE adm_handle;

int offset;

int i;

i = ADM_GetDBInt(adm_handle, offset);

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 159 of 342 ProSoft Technology, Inc.

ADM_DBChanged

Syntax

int ADM_DBChanged(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function checks to see if a register has changed since the last call to
ADM_DBChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

0 No change

1 Register has changed

Example

ADMHANDLE adm_handle;

int offset;

if(ADM_DBChanged(adm_handle, offset))

 printf("Data has changed");

else

 printf("Data is unchanged");

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 160 of 342 ProSoft Technology, Inc.

ADM_DBBitChanged

Syntax

int ADM_DBBitChanged(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function checks to see if a bit has changed since the last call to
ADM_DBBitChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

0 No change

1 Bit has changed

Example

ADMHANDLE adm_handle;

int offset;

if(ADM_DBBitChanged(adm_handle, offset))

 printf("Bit has changed");

else

 printf("Bit is unchanged");

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 161 of 342 ProSoft Technology, Inc.

ADM_DBOR_Byte

Syntax

int ADM_DBOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be ORed with the byte at offset

Description

This function ORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBOR_Byte(adm_handle, offset, bval);

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 162 of 342 ProSoft Technology, Inc.

ADM_DBNOR_Byte

Syntax

int ADM_DBNOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be NORed with the byte at offset

Description

This function NORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBNOR_Byte(adm_handle, offset, bval);

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 163 of 342 ProSoft Technology, Inc.

ADM_DBAND_Byte

Syntax

int ADM_DBAND_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be ANDed with the byte at offset

Description

This function ANDs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBAND_Byte(adm_handle, offset, bval);

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 164 of 342 ProSoft Technology, Inc.

ADM_DBNAND_Byte

Syntax

int ADM_DBNAND_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be NANDed with the byte at offset

Description

This function NANDs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBNAND_Byte(adm_handle, offset, bval);

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 165 of 342
February 20, 2013

ADM_DBXOR_Byte

Syntax

int ADM_DBXOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be XORed with the byte at offset

Description

This function XORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBXOR_Byte(adm_handle, offset, bval);

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 166 of 342 ProSoft Technology, Inc.

ADM_DBXNOR_Byte

Syntax

int ADM_DBXNOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be XNORed with the byte at offset

Description

This function XNORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBXNOR_Byte(adm_handle, offset, bval);

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 167 of 342 ProSoft Technology, Inc.

7.5 ADM API Clock Functions

ADM_StartTimer

Syntax

unsigned short ADM_StartTimer(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

ADM_StartTimer can be used to initialize a variable with a starting time with the
current time from a microsecond clock. A timer can be created by making a call
to ADM_StartTimer and by using ADM_CheckTimer to check to see if timeout
has occurred. For multiple timers call ADM_StartTimer using a different variable
for each timer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Current time value from millisecond clock

Example

Initialize 2 timers.

ADMHANDLE adm_handle;

unsigned short timer1;

unsigned short timer2;

timer1 = ADM_StartTimer(adm_handle);

timer2 = ADM_StartTimer(adm_handle);

See Also

ADM_CheckTimer (page 168)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 168 of 342 ProSoft Technology, Inc.

ADM_CheckTimer

Syntax

int ADM_CheckTimer(ADMHANDLE adm_handle, unsigned short *adm_tmlast, long

*adm_tmout)

Parameters

adm_handle Handle returned by previous call to ADM_Open.

adm_tmlast Starting time of timer returned from call to ADM_StartTimer.

adm_tmout Timeout value in microseconds.

Description

ADM_CheckTimer checks a timer for a timeout condition. Each time the function
is called, ADM_CheckTimer updates the current timer value in adm_tmlast and
the time remaining until timeout in adm_tmout. If adm_tmout is less than 0, then
a 1 is returned to indicate a timeout condition. If the timer has not expired, a 0 will
be returned.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Timer not expired.

Timer expired.

Example

Check 2 timers.

ADMHANDLE adm_handle;

unsigned short timer1;

unsigned short timer2;

long timeout1;

long timeout2;

timeout1 = 10000000L; /* set timeout for 10 seconds */

timer1 = ADM_StartTimer(adm_handle);

/* wait until timer 1 times out */

while(!ADM_CheckTimer(adm_handle, &timer1, &timeout1))

timeout2 = 5000000L; /* set timeout for 5 seconds */

timer2 = ADM_StartTimer(adm_handle);

/* wait until timer 2 times out */

while(!ADM_CheckTimer(adm_handle, &timer2, &timeout2))

See Also

ADM_StartTimer (page 167)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 169 of 342 ProSoft Technology, Inc.

7.6 ADM API Backplane Functions

ADM_BtOpen

Syntax

int ADM_BtOpen(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function opens and initializes the backplane interface.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

Backplane error number If there is an error writing to the backplane during initialization,
the error code is returned.

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_BtOpen(adm_handle, interface_ptr, verbose);

See Also

ADM_BtClose (page 170)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 170 of 342 ProSoft Technology, Inc.

ADM_BtClose

Syntax

int ADM_BtClose(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function closes the backplane interface.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

 ADM_BtClose(adm_handle, interface_ptr);

See Also

ADM_BtOpen (page 169)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 171 of 342 ProSoft Technology, Inc.

ADM_BtNext

Syntax

int ADM_BtNext(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function sets the next write block number.

MVI56 Note

If the write block is equal to the maximum write block, the next write block will be
set to 1. If the maximum is 1, the next write block will be 0. If the maximum is 0,
then the next write block will be -1.

MVI94 Note

If the write block is equal to the maximum write block, the next write block will be
set to 1.

MVI69 Note

If the write block is equal to the maximum write block, the next write block will be
set to 0. If the maximum is 0, the next write block will be -1.

MVI46 Note

This is a null function for the MVI46.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_NOTSUPPORTED Function is not supported on this platform

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

 ADM_BtNext(adm_handle, interface_ptr);

See Also

ADM_BtOpen (page 169)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 172 of 342 ProSoft Technology, Inc.

ADM_ReadBtCfg

Syntax

int ADM_ReadBtCfg(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function reads the module configuration from the processor. The function
will make a call to the function pointed to by interface.process_cfg_ptr. The
user function can be used to perform boundary checking on the configuration
parameters.

MVI69 Note

This is a null function for the MVI69.

MVI94 Note

This function is a null function for the MVI94.

Return Value:

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access, or configuration was
interrupted by operator.

ADM_ERR_NOTSUPPORTED This function is not supported on this platform

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_ReadBtCfg(adm_handle, interface_ptr, verbose);

See Also

ADM_BtOpen (page 169)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 173 of 342 ProSoft Technology, Inc.

ADM_BtFunc

Syntax

int ADM_BtFunc(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function handles the transfer of data across the backplane.

Return Value

0 Block transfer was successful

1 Invalid block number received

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

 interface_ptr = &interface;

 /* call backplane transfer logic */

 ADM_BtFunc(adm_handle, interface_ptr, verbose);

See Also

ADM_BtOpen (page 169)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 174 of 342 ProSoft Technology, Inc.

ADM_SetStatus

Syntax

int ADM_SetStatus(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

pass_cnt)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to structures

pass_cnt Counter from user code to indicate module health. This counter could be
updated in the main loop of the program.

Description

This function writes status data to the database at the location set by Error/Status
Pointer in the module configuration. The data is written in the following order:

pass_cnt (in the ADM_INTERFACE structure)

ADM_PRODUCT (structure)

ADM_PORT_ERRORS (structure, 1 time for each application port)

ADM_BLK_ERRORS (structure)

Return Value

ADM_SUCCESS The function has completed successfully.

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int pass_cnt;

ADM_INTERFACE interface;

 interface_ptr = &interface;

 ADM_SetStatus(adm_handle, interface_ptr, interface.pass_cnt);

See Also

ADM_SetBtStatus (page 175)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 175 of 342 ProSoft Technology, Inc.

ADM_SetBtStatus

Syntax

int ADM_SetBtStatus(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr,

int pass_cnt)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to structures

pass_cnt Counter from user code to indicate module health. This counter could be
updated in the main loop of the program.

Description

In the MVI56, this function writes status data to the processor at word 202 in the
input image and to the database at location 6670. The data is written in the
following order:

pass_cnt (in the ADM_INTERFACE structure)

ADM_PRODUCT (structure)

ADM_PORT_ERRORS (structure, 1 time for each application port)

ADM_BLK_ERRORS (structure)

CurErr (port 1, from ADM_PORT structure)

LastErr (port 1, from ADM_PORT structure)

CurErr (port 2, from ADM_PORT structure)

LastErr (port 2, from ADM_PORT structure)

MVI94 Note

This function is a null function for the MVI94.

MVI46 Note

This function is a null function for the MVI46.

Return Value:

ADM_SUCCESS The function has completed successfully.

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_NOTSUPPORTED This function is not supported on this platform

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int pass_cnt;

ADM_INTERFACE interface;

 interface_ptr = &interface;

 ADM_SetBtStatus(adm_handle, interface_ptr, interface.pass_cnt);

See Also

ADM_SetStatus (page 174)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 176 of 342 ProSoft Technology, Inc.

7.7 ADM LED Functions

ADM_SetLed

Syntax

int ADM_SetLed(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr, int led,

int state);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to the interface structure

led Specifies which of the user LED indicators is being addressed

state Specifies whether the LED will be turned on or off

Description

ADM_SetLed allows an application to turn the user LED indicators on and off.

adm_handle must be a valid handle returned from ADM_Open.

led must be set to ADM_LED_USER1, ADM_LED_USER2 or
ADM_LED_STATUS for User LED 1, User LED 2 or Status LED, respectively.

state must be set to ADM_LED_OK, ADM_LED_FAULT to turn the Status LED
green or red, respectively. For User LED 1 and User LED 2 state must be set to
ADM_LED_OFF or ADM_LED_ON to turn the indicator On or Off, respectively.

Return Value

ADM_SUCCESS The LED has successfully been set.

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_BADPARAM led or state is invalid.

Example

ADMHANDLE adm_handle;

/* Set Status LED OK, turn User LED 1 off and User LED 2 on */

ADM_SetLed(adm_handle, interface_ptr, ADM_LED_STATUS, ADM_LED_OK);

 ADM_SetLed(adm_handle, interface_ptr, ADM_LED_USER1, ADM_LED_OFF);

 ADM_SetLed(adm_handle, interface_ptr, ADM_LED_USER2, ADM_LED_ON);

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 177 of 342 ProSoft Technology, Inc.

7.8 ADM API Flash Functions

ADM_FileGetString

Syntax

char* ADM_FileGetString(ADMHANDLE adm_handle, char *SubSec, char *Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

SubSec Subsection denoted by [].

Topic The individual line item under the subsection.

Description

ADM_FileGetString allows an application to fetch a string topic under a
subsection of a configuration file located in flash. This function is valid for MVI94
only.

adm_handle must be a valid handle returned from ADM_Open.

SubSec must be a pointer to the subsection.

Topic must be a pointer to the topic.

Return Value:

Pointer to string where the data value starts. If the subsection is [Module] and the
topic is Module Name, then the pointer will point to the first non-space character
after the colon.

Example

Get the data from [Module]

Module Name: MVI56-ADM

The return value will point to the "M" at the start of MVI56-ADM.

ADMHANDLE adm_handle;

char *cptr;

cptr = ADM_FileGetString(adm_handle, "[Module]", "Module Name");

See Also

ADM_FileGetInt (page 178)

ADM_FileGetChar (page 179)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 178 of 342 ProSoft Technology, Inc.

ADM_FileGetInt

Syntax

unsigned int ADM_FileGetInt(ADMHANDLE adm_handle, char *SubSec, char *Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

SubSec Subsection denoted by [].

Topic The individual line item under the subsection.

Description

ADM_FileGetInt allows an application to fetch an integer topic under a
subsection of a configuration file located in flash. This function is valid for MVI94
only.

adm_handle must be a valid handle returned from ADM_Open.

SubSec must be a pointer to the subsection.

Topic must be a pointer to the topic.

Return Value:

Integer data.

[Module]

Maximum Register : 3996 #Maximum number of database registers

If the subsection is [Module] and the topic is Maximum Register, then the value
after the colon will be returned. In this example 3996 will be returned from the
function call.

Example

Get the data from [Module]

Maximum Register: 3996

The return value will be 3996.

ADMHANDLE adm_handle;

module.max_regs = ADM_FileGetInt(adm_handle, "[Module]", "Maximum Register");

See Also

ADM_FileGetString (page 177)

ADM_FileGetChar (page 179)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 179 of 342 ProSoft Technology, Inc.

ADM_FileGetChar

Syntax

char ADM_FileGetChar(ADMHANDLE adm_handle, char *SubSec, char *Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

SubSec Subsection denoted by [].

Topic The individual line item under the subsection.

Description

ADM_FileGetChar allows an application to fetch a topic under a subsection of a
configuration file located in flash. This function is valid for MVI94 only.

adm_handle must be a valid handle returned from ADM_Open.

SubSec must be a pointer to the subsection.

Topic must be a pointer to the topic.

Return Value:

Character data.

"N" if no character found.

[Port]

Use CTS Line : N #Monitor CTS modem line (Y/N)

If the subsection is [Port] and the topic is Use CTS Line, then the value after the
colon will be returned. In this example N will be returned from the function call.

Example:

Get the data from [Port]

Use CTS Line: N

The return value will be N.

ADMHANDLE adm_handle;

ports[0].CTS = ADM_FileGetChar(adm_handle, "[Port]", "Use CTS Line");

See Also

ADM_FileGetString (page 177)

ADM_FileGetInt (page 178)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 180 of 342 ProSoft Technology, Inc.

ADM_GetVal

Syntax

int ADM_GetVal(ADMHANDLE adm_handle, char *buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

buff pointer to character buffer

Description

ADM_GetVal converts the first character in buff from ASCII to an integer.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a character buffer.

Return Value

Integer data.

Example:

ADMHANDLE adm_handle;

char *buffer;

int data_val;

data_val = ADM_GetVal(adm_handle, buffer);

See Also

ADM_GetChar (page 181)

ADM_GetStr (page 182)

ADM_Getc (page 184)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 181 of 342 ProSoft Technology, Inc.

ADM_GetChar

Syntax

char ADM_GetChar(ADMHANDLE adm_handle, char *buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

buff pointer to character buffer

Description

ADM_GetChar will skip white space and return the first non-white space
character in uppercase.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a character buffer.

Return Value

Character data.

Example

ADMHANDLE adm_handle;

char *buffer;

char data_val;

data_val = ADM_GetChar(adm_handle, buffer);

See Also

ADM_GetVal (page 180)

ADM_GetStr (page 182)

ADM_Getc (page 184)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 182 of 342 ProSoft Technology, Inc.

ADM_GetStr

Syntax

int ADM_GetStr(ADMHANDLE adm_handle, char *buff, char *fbuff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

buff pointer to source string buffer

fbuff pointer to destination string buffer

Description

ADM_GetStr copies characters from the source buffer to the destination buffer.
White space at the start of the string is discarded. The function will copy up to 9
characters until a space is encountered.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a string buffer.

Fbuff must be a pointer to a string buffer.

Return Value

ADM_SUCCESS The string has been successfully copied.

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

char *src_buffer;

char *dest_buffer;

ADM_GetStr(adm_handle, src_buffer, dest_buffer);

See Also

ADM_GetVal (page 180)

ADM_GetChar (page 181)

ADM_Getc (page 184)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 183 of 342 ProSoft Technology, Inc.

ADM_SkipToNext

Syntax

char* ADM_SkipToNextl(ADMHANDLE adm_handle, char *buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

buff pointer to string buffer

Description

ADM_SkipToNext skips characters encountered until white space is reached.
The white space is skipped. A pointer to the next non-white space character is
returned. If no character is found, null is returned.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a string buffer.

Return Value:

Pointer to char at start of next data.

NULL if no character found.

Example

ADMHANDLE adm_handle;

char *buffer;

buffer = ADM_SkipToNext(adm_handle, buffer);

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 184 of 342 ProSoft Technology, Inc.

ADM_Getc

Syntax

char ADM_Getc(ADMHANDLE adm_handle, char *buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

buff pointer to character buffer

Description

ADM_Getc skips white space and returns the next character.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a string buffer.

Return Value

Character data.

Example

ADMHANDLE adm_handle;

char *buffer;

char data_val;

data_val = ADM_Getc(adm_handle, buffer);

See Also

ADM_GetStr (page 182)

ADM_GetVal (page 180)

ADM_GetChar (page 181)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 185 of 342 ProSoft Technology, Inc.

7.9 ADM API Miscellaneous Functions

ADM_GetVersionInfo

Syntax

int ADM_GetVersionInfo(ADMHANDLE adm_handle, ADMVERSIONINFO *adm_verinfo);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_verinfo Pointer to structure of type ADMVERSIONINFO

Description

ADM_GetVersionInfo retrieves the current version of the ADM API library. The
information is returned in the structure adm_verinfo. adm_handle must be a valid
handle returned from ADM_Open.

The ADMVERSIONINFO structure is defined as follows:

typedef struct

{

 char APISeries[4];

 short APIRevisionMajor;

 short APIRevisionMinor;

 long APIRun;

}ADMVERSIONINFO;

Return Value

ADM_SUCCESS The version information was read successfully.

ADI_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADMVERSIONINFO verinfo;

/* print version of API library */

 ADM_GetVersionInfo(adm_handle, &adm_version);

printf("Revision %d.%d\n", verinfo.APIRevisionMajor, verinfo.APIRevisionMinor);

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 186 of 342 ProSoft Technology, Inc.

ADM_SetConsolePort

Syntax

void ADM_SetConsolePort(int Port);

Parameters

Port Com port to use as the console (COM1=0, COM2=1, COM3=2)

Description

ADM_SetConsolePort sets the specified communication port as the console. This
allows the console to be disabled in the BIOS setup and the application can still
configure the console for use.

MVI46 Note: The MVI46 should have the console disabled in the BIOS setup in order for the
module to avoid faulting the processor on power-on boot. The console can still be used if the
application uses ADM_SetConsolePort to enable console services and ADM_SetConsoleSpeed to
set the baud rate.

Return Value

None

Example

 /* enable console on COM1 */

 ADM_SetConsolePort(COM1);

See Also

ADM_SetConsoleSpeed (page 187)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 187 of 342 ProSoft Technology, Inc.

ADM_SetConsoleSpeed

Syntax

void ADM_SetConsoleSpeed(int Port, long Speed);

Parameters

Port Com port to use as the console (COM1=0, COM2=1, COM3=2)

Speed Baud rate for console port.

Available settings are: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2400,
4800, 9600, 19200, 38400, 57600 and 115200.

Description

ADM_SetConsoleSpeed sets the specified communication port to the baud rate
specified.

MVI46 Note: The MVI46 should have the console disabled in the BIOS setup in order for the
module to avoid faulting the processor on power-on boot. The console can still be used if the
application uses ADM_SetConsolePort to enable console services and ADM_SetConsoleSpeed to
set the baud rate.

Return Value

None

Example

 /* set console to 115200 baud */

 ADM_SetConsoleSpeed (COM1, 115200L);

See Also

ADM_SetConsolePort (page 186)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 188 of 342 ProSoft Technology, Inc.

7.10 ADM Side-Connect Functions

ADM_ScOpen

Syntax

int ADM_ScOpen(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function opens and initializes the side-connect interface.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_NOTSUPPORTED Function is not supported on this platform

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

interface_ptr = &interface;

ADM_ScOpen(adm_handle, interface_ptr, verbose);

See Also

ADM_ScClose (page 189)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 189 of 342 ProSoft Technology, Inc.

ADM_ScClose

Syntax

int ADM_ScClose(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures.

Description

This function closes the side-connect interface.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_NOTSUPPORTED Function is not supported on this platform

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

interface_ptr = &interface;

ADM_ScClose(adm_handle, interface_ptr);

See Also

ADM_ScOpen (page 188)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 190 of 342 ProSoft Technology, Inc.

ADM_ReadScFile

Syntax

int ADM_ReadScFile(ADMHANDLE adm_handle, int verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function reads SC_DATA.TXT file from C drive on a compact flash in the
module to select between using the backplane or the side-connect interface.

Return Value

> 4 and < 200 value for the side-connect used (valid value is 5 to 199).

0 value for the backplane used, value that is not between 5 to 199,
or if SC_DATA.TXT is not existed. Note: set verbose to 1 to see
message according to this return value.

ADM_ERR_NOACCESS adm_handle does not have access.

Example

ADMHANDLE adm_handle;

int verbose = 1;

ADM_INTERFACE interface;

interface.cfg_file = ADM_ReadSCFile(adm_handle, verbose);

See Also

ADM_ScOpen (page 188)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 191 of 342 ProSoft Technology, Inc.

ADM_ReadScCfg

Syntax

int ADM_ReadScCfg(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function reads the module configuration from the processor. The function
will directly read from the module file name according to what has been set in the

file SC_DATA.txt. The user function can be used to perform boundary checking
on the configuration parameters.

MVI71 Note

This function is used only for the MVI71.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access, or configuration was
interrupted by operator.

ADM_ERR_BADPARAM A parameter is invalid.

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

interface_ptr = &interface;

if(ADM_ReadScCfg(adm_handle, interface_ptr, 1))

{

printf("ADM_ReadScCfg() failed.");

return 1;

}

See Also

ADM_ScOpen (page 188)

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 192 of 342 ProSoft Technology, Inc.

ADM_ScScan

Syntax

int ADM_ScScan(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function handles the transfer of data across the side-connect.

Return Value

0 Block transfer was successful

1 Invalid block number received

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

interface_ptr = &interface;

/* call backplane transfer logic */

ADM_ScScan(adm_handle, interface_ptr, verbose);

See Also

ADM_ScOpen (page 188)

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 193 of 342 ProSoft Technology, Inc.

7.11 ADM API RAM Functions

ADM_EEPROM_ReadConfiguration

Syntax

long ADM_EEPROM_ReadConfiguration(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

ADM_EEPROM_ReadConfiguration read configuration information from a
configuration file located on the EEPROM.

Return Value

Length of the data read from the configuration file.

Example

 if (!ADM_EEPROM_ReadConfiguration(adm_handle)) //if no configuration data,

return

 {

printf("ERROR: No configuration return\n");

return (1);

 }

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 194 of 342 ProSoft Technology, Inc.

ADM_RAM_Find_Section

Syntax

char huge * ADM_RAM_Find_Section(ADMHANDLE adm_handle, char * SubSec);

Parameters

adm_handle Handle returned by previous call to ADM_Open

SubSec String of Sub-section that you'd like to find in the configuration file.

Description

ADM_RAM_Find_Section tries to find the section passed to the function.

Return Value

Pointer to the location found in the file or NULL if the sub-section is not found.

Example

 if((tptr = ADM_RAM_Find_Section(adm_handle, "[Module]")) != NULL)

 {

cptr = (char*)ADM_RAM_GetString(tptr, "Module Name");

if(cptr == NULL)

strcpy(module.name, "No Module Name");

else

{

strcpy(module.name, cptr);

}

 }

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 195 of 342 ProSoft Technology, Inc.

ADM_RAM_GetString

Syntax

char huge ADM_RAM_GetString (ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetString tries to find the Topic name passed to the function in the
file.

Return Value

Pointer to the string found in the file or NULL if the sub-section is not found.

Example

 cptr = (char*)ADM_RAM_GetString(adm_handle, tptr, "Module Name");

 if(cptr == NULL)

strcpy(module.name, "No Module Name");

 else

 {

if(strlen(cptr) > 80)

*(cptr+80) = 0;

strcpy(module.name, cptr);

if(module.name[strlen(module.name)-1] < 32)

module.name[strlen(module.name)-1] = 0;

 }

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 196 of 342 ProSoft Technology, Inc.

ADM_RAM_GetInt

Syntax

unsigned short ADM_RAM_GetInt(ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetInt tries to find the Topic name passed to the function in the file.

Return Value

Value of type Integer found under the Topic name or 0 if the sub-section is not
found.

Example

 module.err_offset = ADM_RAM_GetInt(adm_handle, tptr, "Baud Rate");

 if(module.err_offset < 0 || module.err_offset > module.max_regs-61)

 {

module.err_offset = -1;

module.err_freq = 0;

 }

 else

 {

module.err_freq = 500;

 }

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 197 of 342 ProSoft Technology, Inc.

ADM_RAM_GetLong

Syntax

unsigned long ADM_RAM_GetLong (ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetLong tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Long found under the Topic name or 0 if the sub-section is not
found.

Example

 module.err_offset = ADM_RAM_GetLong(adm_handle, tptr, "Baud Rate");

 if(module.err_offset < 0 || module.err_offset > module.max_regs-61)

 {

module.err_offset = -1;

module.err_freq = 0;

 }

 else

 {

module.err_freq = 500;

 }

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 198 of 342 ProSoft Technology, Inc.

ADM_RAM_GetFloat

Syntax

float ADM_RAM_GetFloat (ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetFloat tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Float found under the Topic name or 0 if the sub-section is not
found.

Example

 module.time = ADM_RAM_GetFloat(adm_handle, tptr, "Time");

 if(module.time < 0 || module.time > module.max_regs-61)

 {

module.time = -1;

module.err_freq = 0;

 }

 else

 {

module.err_freq = 500;

 }

MVI-ADM ♦ 'C' Programmable Application Development Function Library - ADM API
'C' Programmable Application Development Module Developer's Guide

Page 199 of 342 ProSoft Technology, Inc.

ADM_RAM_GetDouble

Syntax

double ADM_RAM_GetDouble(ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetDouble tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Double found under the Topic name or 0 if the sub-section is not
found.

Example

 module.time = ADM_RAM_GetDouble(adm_handle, tptr, "Time");

 if(module.time < 0 || module.time > module.max_regs-61)

 {

module.time = -1;

module.err_freq = 0;

 }

 else

 {

module.err_freq = 500;

 }

Application Development Function Library - ADM API MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 200 of 342 ProSoft Technology, Inc.

ADM_RAM_GetChar

Syntax

unsigned char ADM_RAM_GetChar (ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetChar tries to find the Topic name passed to the function in the
file.

Return Value

Character found under the Topic name or ' ' if the sub-section is not found.

Example

 module.enable = ADM_RAM_GetChar(adm_handle, tptr, "Enable");

 if(module.enable == ' ')

 {

module.time = -1;

module.err_freq = 0;

 }

 else

 {

module.err_freq = 500;

 }

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 201 of 342 ProSoft Technology, Inc.

8 Backplane API Functions

In This Chapter

 Backplane API Initialization Functions ... 203

 Backplane API Configuration Functions .. 206

 Backplane API Synchronization Functions .. 210

 Backplane API Direct I/O Access .. 214

 Backplane API Messaging Functions .. 216

 Backplane API Miscellaneous Functions ... 220

 Platform Specific Functions ... 230

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in 'C'
format.

The API library routines are categorized according to functionality as follows:

Initialization

MVIbp_Open

MVIbp_Close

Configuration

MVIbp_GetIOConfig

MVIbp_SetIOConfig

Synchronization

MVIbp_WaitForInputScan

MVIbp_WaitForOutputScan

Direct I/O Access

MVIbp_ReadOutputImage

MVIbp_WriteInputImage

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 202 of 342 ProSoft Technology, Inc.

Messaging

MVIbp_ReceiveMessage

MVIbp_SendMessage

Miscellaneous

MVIbp_GetVersionInfo

MVIbp_ErrorString

MVIbp_SetUserLED

MVIbp_SetModuleStatus

MVIbp_GetSetupMode

MVIbp_GetConsoleMode

MVIbp_SetConsoleMode

MVIbp_GetModuleInfo

MVIbp_GetProcessorStatus

MVIbp_Sleep

Platform Specific

MVIbp_WriteModuleFile

MVIbp_ReadModuleFile

MVIbp_SetModuleInterrupt

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 203 of 342 ProSoft Technology, Inc.

8.1 Backplane API Initialization Functions

MVIbp_Open

Syntax

int MVIbp_Open(MVIHANDLE *handle);

Parameters

handle Pointer to variable of type MVIHANDLE

Description

MVIbp_Open acquires access to the API and sets handle to a unique ID that the
application uses in subsequent functions. This function must be called before any
of the other API functions can be used.

IMPORTANT: After the API has been opened, MVIbp_Close should always be called before
exiting the application.

Return Value

MVI_SUCCESS API was opened successfully

MVI_ERR_REOPEN API is already open

MVI_ERR_NODEVICE Backplane driver could not be accessed

Note: MVI_ERR_NODEVICE will be returned if the backplane device driver is not loaded.

Example

MVIHANDLE Handle;

if (MVIbp_Open(&Handle) != MVI_SUCCESS) {

printf("Open failed!\n");

} else {

printf("Open succeeded\n");

}

See Also

MVIbp_Close (page 204)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 204 of 342 ProSoft Technology, Inc.

MVIbp_Close

Syntax

int MVIbp_Close(MVIHANDLE handle);

Parameters

handle Handle returned by previous call to MVIbp_Open

Description

This function is used by an application to release control of the API.

handle must be a valid handle returned from MVIbp_Open.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

MVI_SUCCESS API was closed successfully

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE Handle;

MVIbp_Close(Handle);

See Also

MVIbp_Open (page 203)

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 205 of 342 ProSoft Technology, Inc.

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 206 of 342 ProSoft Technology, Inc.

8.2 Backplane API Configuration Functions

MVIbp_GetIOConfig

Syntax

int MVIbp_GetIOConfig(MVIHANDLE handle, MVIBPIOCONFIG *ioconfig);

Parameters

handle Handle returned by previous call to MVIbp_Open

ioconfig Pointer to MVIBPIOCONFIG structure to receive configuration
information

Description

This function obtains the I/O configuration of the MVI-ADM module.

handle must be a valid handle returned from MVIbp_Open.

The MVIBPIOCONFIG structure is defined as shown:

typedef struct tagMVIBPIOCONFIG

{

 WORD TotalInputSize; // Size of entire input image in words

 WORD TotalOutputSize; // Size of entire output image in words

 WORD DirectInputSize; // Input words available for direct access

 WORD DirectOutputSize; // Output words available for direct access

 WORD MsgRcvBufSize; // Max size in words for received messages

 WORD MsgSndBufSize; // Max size in words for sent messages

} MVIBPIOCONFIG;

The sizes in words of the module’s input and output images are returned in the
MVIBPIOCONFIG structure pointed to by ioconfig. The TotalInputSize and
TotalOutputSize members are set equal to the size of the entire input or output
image, respectively. The DirectInputSize and DirectOutputSize members are set
equal to the number of words of the respective image that is available for direct
access via the MVIbp_WriteInputImage or MVIbpReadOutputImage functions. By
default, the direct and total sizes are equal. Refer to the MVIbp_SetIOConfig
function for more information.

The MsgRcvBufSize and MsgSndBufSize members indicate the maximum size in
words for received or sent messages, respectively. By default, these values are
both zero, indicating that messaging is disabled. Refer to the MVIbp_SetIOConfig
function for more information.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

MVIBPIOCONFIG ioconfig;

MVIbp_GetIOConfig(handle, &ioconfig);

printf("%d words of input image available\n", ioconfig.DirectInputSize);

printf("%d words of output image available\n", ioconfig.DirectOutputSize);

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 207 of 342 ProSoft Technology, Inc.

See Also

MVIbp_SetIOConfig (page 208)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 208 of 342 ProSoft Technology, Inc.

MVIbp_SetIOConfig

Syntax

int MVIbp_SetIOConfig(MVIHANDLE handle, MVIBPIOCONFIG *ioconfig);

Parameters

handle Handle returned by previous call to MVIbp_Open

ioconfig Pointer to MVIBPIOCONFIG structure which contains
configuration information

Description

This function defines the portion of the module’s I/O images that will be used for
direct I/O access, and to enable messaging.

handle must be a valid handle returned from MVIbp_Open.

By default, all of the module’s I/O image is available for direct I/O access, and
messaging is disabled. The MVIbp_SetIOConfig may be used to limit the amount
of I/O image available for direct access to only that which the application expects
to use. Attempts to access I/O outside of the range defined by this function will
result in an error.

If the application is to use the messaging functions (MVIbp_SendMessage and
MVIbp_ReceiveMessage), MVIbp_SetIOConfig must be called to enable
messaging and setup the maximum message size that will be allowed. The
message size is expressed in words.

The MVIBPIOCONFIG structure is defined as shown:

typedef struct tagMVIBPIOCONFIG

{

 WORD TotalInputSize; // Size of entire input image in words

 WORD TotalOutputSize; // Size of entire output image in words

 WORD DirectInputSize; // Input words available for direct access

 WORD DirectOutputSize; // Output words available for direct access

 WORD MsgRcvBufSize; // Max size in words for received messages

 WORD MsgSndBufSize; // Max size in words for sent messages

} MVIBPIOCONFIG;

The TotalInputSize and TotalOutputSize members are ignored by the API, since
the total I/O image sizes cannot be changed by the application. The
DirectInputSize and DirectOutputSize members should be set equal to the
number of words of the respective image that will be used for direct access via
the MVIbp_WriteInputImage or MVIbpReadOutputImage functions.

To enable the module to receive messages from the control processor via the
MVIbp_ReceiveMessage function, the MsgRcvBufSize member should be set to
the maximum message size expected. Likewise, to enable the module to send
messages to the control processor via the MVIbp_SendMessage function, the
MsgSndBufSize member should be set to the maximum message size expected.
The message sizes are expressed in words. The combined maximum message
size is 2048 words. If the sum of MsgRcvBufSize and MsgSndBufSize exceeds
2048, the error MVI_ERR_BADCONFIG will be returned.

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 209 of 342 ProSoft Technology, Inc.

Notes: If messaging is enabled, a portion of the input and output images must be reserved for use
by the messaging protocol. One word of input and one word of output are required for messaging
control. At least one additional word of input and/or output is required for messaging data,
depending upon the messaging direction(s) enabled. To receive messages from the control
processor, at least one word of output image is required for messaging data. To send messages to
the control processor, at least one word of input image is required for messaging data. Therefore,
for bi-directional messaging, at least two words of input and two words of output image must be left
unallocated when the direct I/O sizes are specified. If messaging is enabled and insufficient I/O
image is available for messaging, the error MVI_ERR_BADCONFIG will be returned.
For best messaging performance, set the direct I/O sizes as small as possible.
MVI56 Note: MVIbp_SetIOConfig is a null function in the MVI56 module. The I/O image and
message maximum sizes are configured by the controller and cannot be changed by the MVI
application. This function will always return MVI_ERR_NOTSUPPORTED on the MVI56 module.
MVI94, MVI46 Notes: This function defines the portion of the module’s I/O images that will be used
for direct I/O access, and to enable messaging.
MVI46 Notes: Messaging requires 1 input image word and 1 output image word for each direction
of messaging. If both sending and receiving messages are enabled, then 2 words total are required
in the input and output images. These words are used for handshaking between the module and
the Controller. To enable messaging, the DirectInputSize and/or DirectOutputSize values must be
1 or 2 words less than the TotalInputSize and/or TotalOutputSize.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADCONFIG Configuration is not valid

MVI46_ERR_INVALIDCLASS Invalid Class (only for MVI46)

MVI_ERR_NOTSUPPORTED MVI56 always returns this error (only for MVI56)

Example

MVIHANDLE handle;

MVIBPIOCONFIG ioconfig;

ioconfig.DirectInputSize = 2; // 2 words used for input

ioconfig.DirectOutputSize = 1; // 1 word used for output

MsgSndBufSize = 256; // Enable 256 word (max) messages to processor

MsgRcvBufSize = 0; // Received messages not enabled

if (MVI_SUCCESS != MVIbp_SetIOConfig(handle, &ioconfig))

printf("Error: I/O configuration failed\n");

See Also

MVIbp_GetIOConfig (page 206)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 210 of 342 ProSoft Technology, Inc.

8.3 Backplane API Synchronization Functions

MVIbp_WaitForInputScan

Syntax

int MVIbp_WaitForInputScan(MVIHANDLE handle, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

timeout Maximum number of milliseconds to wait for scan

Description

MVIbp_WaitForInputScan allows an application to synchronize with the scan of
the module’s input image. This function will return immediately after the input
image has been read. This function may also be used by a module application to
determine if the Flex I/O bus is active.

handle must be a valid handle returned from MVIbp_Open.

timeout specifies the number of milliseconds that the function will wait for the
input scan to occur.

Notes: There is no distinction in the MVI94 module between input and output scans. Therefore, the
MVIbp_WaitForInputScan and MVIbp_WaitForOutputScan functions will perform exactly the same
function and are interchangeable.
The scan time of the Flex I/O bus varies according to the number of modules installed. If the MVI-
ADM module is the only module present, then it will be scanned approximately every 200
microseconds. The maximum scan time for a full rack of 8 modules is approximately 1.6
milliseconds. Note that the scan time referred to here is not the PLC scan time, but the Flex I/O bus
scan time. The PLC scan time will depend upon which Flex adapter is used and how it is
configured.
MVI56 Note: This function is not supported for the MVI56 and will return
MVI_ERR_NOTSUPPORTED.
MVI94 Note: There is no distinction in the MVI94 module between input and output scans.
Therefore, the MVIbp_WaitForInputScan and MVIbp_WaitForOutputScan functions will perform
exactly the same function and are interchangeable.

Return Value

MVI_SUCCESS The input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_TIMEOUT The timeout expired before an input scan occurred.

Example

MVIHANDLE Handle;

/* Wait here until input scan, 50ms timeout */

rc = MVIbp_WaitForInputScan(Handle, 50);

if (rc == MVI_ERR_TIMEOUT)

printf("Input scan did not occur within 50 milliseconds\n");

else

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 211 of 342 ProSoft Technology, Inc.

printf("Input scan has occurred\n");

See Also

MVIbp_WaitForOutputScan (page 212)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 212 of 342 ProSoft Technology, Inc.

MVIbp_WaitForOutputScan

Syntax

int MVIbp_WaitForOutputScan(MVIHANDLE handle, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

timeout Maximum number of milliseconds to wait for scan

Description

MVIbp_WaitForInputScan allows an application to synchronize with the scan of
the module’s output image. This function will return immediately after the
module’s output image has been written. . This function may also be used by a
module application to determine if the Flex I/O bus is active.

handle must be a valid handle returned from MVIbp_Open. timeout specifies the
number of milliseconds that the function will wait for the output scan to occur.

Notes: There is no distinction in the MVI94 module between input and output scans. Therefore, the
MVIbp_WaitForInputScan and MVIbp_WaitForOutputScan functions will perform exactly the same
function and are interchangeable.
The scan time of the Flex I/O bus varies according to the number of modules installed. If the MVI-
ADM module is the only module present, then it will be scanned approximately every 200
microseconds. The maximum scan time for a full rack of 8 modules is approximately 1.6
milliseconds. Note that the scan time referred to here is not the PLC scan time, but the Flex I/O bus
scan time. The PLC scan time will depend upon which Flex adapter is used and how it is
configured.
MVI56 Note: This function is not supported for the MVI56 and will return
MVI_ERR_NOTSUPPORTED.
MVI94 Note: There is no distinction in the MVI94 module between input and output scans.
Therefore, the MVIbp_WaitForInputScan and MVIbp_WaitForOutputScan functions will perform
exactly the same function and are interchangeable.

Return Value

MVI_SUCCESS The output scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_TIMEOUT The timeout expired before an output scan occurred.

MVI_ERR_BADCONFIG the data connection is not open (MVI56 only)

Example

MVIHANDLE Handle;

int rc;

/* Wait here until output scan, 50ms timeout */

rc = MVIbp_WaitForOutputScan(Handle, 50);

if (rc == MVI_ERR_TIMEOUT)

printf("Output scan did not occur within 50ms\n");

else

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 213 of 342 ProSoft Technology, Inc.

printf("Output scan has occurred\n");

See Also

MVIbp_WaitForInputScan (page 210)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 214 of 342 ProSoft Technology, Inc.

8.4 Backplane API Direct I/O Access

MVIbp_ReadOutputImage

Syntax

int MVIbp_ReadOutputImage(MVIHANDLE handle, WORD *buffer, WORD offset, WORD

length);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer to receive data from output image

offset Word offset into output image at which to begin reading

length Number of words to read

Description

MVIbp_ReadOutputImage reads from the module’s output image.

handle must be a valid handle returned from MVIbp_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the output image to begin reading, and length
specifies the number of words to read. The error MVI_ERR_BADPARAM will be
returned if an attempt is made to access the output image beyond the range
configured for direct I/O. Refer to the MVIbp_SetIOConfig function for more
information.

The output image is written by the control processor and read by the module.

Return Value

MVI_SUCCESS The data was read from the output image successfully.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Parameter contains invalid value

MVI_ERR_BADCONFIG the data connection is not open (MVI46 and MVI56 only)

Example

MVIHANDLE Handle;

WORD buffer[8];

int rc;

/* Read 8 words of data from the output image, starting with word 2 */

rc = MVIbp_ReadOutputImage(Handle, buffer, 2, 8);

if (rc != MVI_SUCCESS)

printf("ERROR: MVIbp_ReadOutputImage failed");

See Also

MVIbp_SetIOConfig (page 208)

MVIbp_WriteInputImage (page 215)

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 215 of 342 ProSoft Technology, Inc.

MVIbp_WriteInputImage

Syntax

int MVIbp_WriteInputImage(MVIHANDLE handle, WORD *buffer, WORD offset, WORD

length);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer of data to be written to input image

offset Word offset into input image at which to begin writing

length Number of words to write

Description

MVIbp_WriteInputImage writes to the module’s input image.

handle must be a valid handle returned from MVIbp_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the input image to begin writing, and length specifies
the number of words to write. The error MVI_ERR_BADPARAM will be returned
if an attempt is made to access the input image beyond the range configured for
direct I/O. If this error is returned, no data will be written to the input image. Refer
to the MVIbp_SetIOConfig function for more information.

The input image is written by the module and read by the control processor.

Return Value

MVI_SUCCESS The data was written to the input image successfully.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Parameter contains invalid value

MVI_ERR_BADCONFIG the data connection is not open (MVI46 and MVI56 only)

Example

MVIHANDLE Handle;

WORD buffer[2];

int rc;

/* Write 2 words of data to the input image, starting with word 0 */

rc = MVIbp_WriteInputImage(Handle, buffer, 0, 2);

if (rc != MVI_SUCCESS)

printf("ERROR: MVIbp_WriteInputImage failed");

See Also

MVIbp_SetIOConfig (page 208)

MVIbp_ReadOutputImage (page 214)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 216 of 342 ProSoft Technology, Inc.

8.5 Backplane API Messaging Functions

MVIbp_ReceiveMessage

Syntax

int MVIbp_ReceiveMessage(MVIHANDLE handle, WORD *buffer, WORD *length, WORD

reserved, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer to receive message data from processor

length Pointer to a variable containing the maximum message length in words.
When this function is called, this should be set to the size of the indicated
buffer. Upon successful return, this variable will contain the actual
received message length.

reserved Must be set to 0

timeout Maximum number of milliseconds to wait for message

Description

This function retrieves a message sent from the control processor.

handle must be a valid handle returned from MVIbp_Open.

Upon calling this function, length should contain the maximum message size in
words to be received.

buffer must point to a buffer of at least length words in size. Upon successful
return, length will contain the actual length of the message received.

If length exceeds the maximum message size specified by the value
MsgRcvBufSize (refer to the MVIbp_SetIOConfig function),
MVI_ERR_BADPARAM will be returned.

reserved is not used for the MVI94 module and must be set to zero.
MVI_ERR_BADPARAM will be returned if reserved is not zero.

timeout specifies the number of milliseconds that the function will wait for a
message. To poll for a message without waiting, set timeout to zero. If no
message has been received, MVI_ERR_TIMEOUT will be returned.

Before this function can be used, messaging must be enabled with the
MVIbp_SetIOConfig function. If messaging has not been enabled,
MVI_ERR_BADCONFIG will be returned.

If the message received from the control processor is larger than length, the
message will be truncated to length words and MVI_ERR_MSGTOOBIG will be
returned.

MVI46 Notes: The Controller passes Message data to the MVI46 via the module’s M0 module file.
This requires the MVI46 to be configured as a Class 4 module.

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 217 of 342 ProSoft Technology, Inc.

The MVIbp_ReceiveMessage function retrieves data written to the MVI-ADM module by the
processor via a MSG instruction. The MSG instruction must be configured as shown in table A. The
MSG instruction implements a "put attribute' command to the MVI-ADM module’s assembly object.
The MSG instruction will fail if a message has already been written to the MVI-ADM module but
application has not yet retrieved the message via MVIbp_ReceiveMessage.
MVI69 Note: At this time, messaging is not supported on the MVI69.

Receive MSG Instruction Configuration

Field Value Description

Message Type CIP Generic Specify CIP message type

Service Code 10 (Hex) Set_Attribute_Single service

Object Type 4 Assembly object class code

Object ID 8 Output message instance number

Object Attribute 3 Data attribute

Num Elements Application dependent Size of message to be written

Path Application dependent Path to MVI-ADM module

Return Value

MVI_SUCCESS A message has been received.

MVI_ERR_NOACCESS handle does not have access.

MVI_ERR_TIMEOUT The timeout occurred before a message was received.

MVI_ERR_BADPARAM A parameter is invalid.

MVI_ERR_BADCONFIG Receive messaging is not enabled.

MVI_ERR_MSGTOOBIG The received message is too big for the buffer.

Example

MVIHANDLE Handle;

int rc;

WORD buffer[256];

WORD length;

length = 256; // maximum message size that can be received

// Wait up to 5 seconds for a message

rc = MVIbp_ReceiveMessage(Handle, buffer, &length, 0, 5000);

if (rc == MVI_SUCCESS)

printf("Message received. Length is %d words\n", length);

See Also

MVIbp_SetIOConfig (page 208)

MVIbp_SendMessage (page 218)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 218 of 342 ProSoft Technology, Inc.

MVIbp_SendMessage

Syntax

int MVIbp_SendMessage(MVIHANDLE handle, WORD *buffer, WORD length, WORD

reserved, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer of data to send to processor

length The length in words of the message to send.

reserved Must be set to 0

timeout Maximum number of milliseconds to wait for processor to read message

Description

This function sends a message to the control processor.

handle must be a valid handle returned from MVIbp_Open.

Upon calling this function, length should contain the message size in words.
buffer must point to a buffer of at least length words in size.

If length exceeds the maximum message size specified by the value
MsgSndBufSize (refer to the MVIbp_SetIOConfig function),
MVI_ERR_BADPARAM will be returned.

reserved is not used for the MVI94 module and must be set to zero.
MVI_ERR_BADPARAM will be returned if reserved is not zero.

timeout specifies the number of milliseconds that the function will wait for the
message to transfer to the control processor. If the timeout occurs before the
message has been transferred, MVI_ERR_TIMEOUT will be returned.

If timeout is 0, the function will return immediately. If the message was
successfully queued to be sent, MVI_SUCCESS will be returned. If the message
was not queued (for example, a previous message is being sent),
MVI_ERR_TIMEOUT will be returned and the message must be re-tried at a later
time. A timeout of 0 allows an application to perform other tasks while the
message is being transmitted.

Before this function can be used, messaging must be enabled with the
MVIbp_SetIOConfig function. If messaging has not been enabled,
MVI_ERR_BADCONFIG will be returned.

MVI46 Notes The MVI46 passed Message data to the Controller via the M1 module file. This
requires the MVI46 to be configured as a Class 4 module.
The MVIbp_SendMessage function copies the message data into a buffer to be retrieved by the
processor via a MSG instruction. The MSG instruction must be configured as shown in table B. The
MSG instruction implements a "get attribute" command to the MVI-ADM module’s assembly object.
The MSG instruction will fail if a message has not already been written by the application via
MVIbp_SendMessage.
MVI69 Note: At this time, messaging is not supported on the MVI69.

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 219 of 342 ProSoft Technology, Inc.

Send MSG Instruction Configuration

Field Value Description

Message Type CIP Generic Specify CIP message type

Service Code OE (Hex) Get_Attribute_Single service

Object Type 4 Assembly object class code

Object ID 7 Output message instance number

Object Attribute 3 Data attribute

Num Elements Application dependent Size of message to be written

Path Application dependent Path to MVI-ADM module

Return Value

MVI_SUCCESS A message has been received.

MVI_ERR_NOACCESS handle does not have access.

MVI_ERR_TIMEOUT The timeout occurred before the message was transferred.

MVI_ERR_BADPARAM A parameter is invalid.

MVI_ERR_BADCONFIG Send messaging is not enabled.

Example

MVIHANDLE Handle;

int rc;

WORD buffer[256];

// Wait 5 seconds for the message to be sent

rc = MVIbp_SendMessage(Handle, buffer, 256, 5000);

if (rc == MVI_SUCCESS)

printf("Message sent\n");

See Also

MVIbp_SetIOConfig (page 208)

MVIbp_ReceiveMessage (page 216)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 220 of 342 ProSoft Technology, Inc.

8.6 Backplane API Miscellaneous Functions

MVIbp_GetVersionInfo

Syntax

int MVIbp_GetVersionInfo(MVIHANDLE handle, MVIBPVERSIONINFO *verinfo);

Parameters

handle Handle returned by previous call to MVIbp_Open

verinfo Pointer to structure of type MVIBPVERSIONINFO

Description

MVIbp_GetVersionInfo retrieves the current version of the API library and the
backplane device driver. The information is returned in the structure verinfo.

handle must be a valid handle returned from MVIbp_Open.

The MVIBPVERSIONINFO structure is defined as follows:

typedef struct tagMVIBPVERSIONINFO

{

 WORD APISeries; /* API series */

 WORD APIRevision; /* API revision */

 WORD BPDDSeries;/* Backplane device driver series */

 WORD BPDDRevision; /* Backplane device driver revision */

 BYTE Reserved[8]; /* Reserved */ (MVI94 Only)

} MVIBPVERSIONINFO;

Return Value

MVI_SUCCESS The version information was read successfully.

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE Handle;

MVIBPVERSIONINFO verinfo;

/* print version of API library */

MVIbp_GetVersionInfo(Handle,&verinfo);

printf("Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);

printf("Driver Series %d, Rev %d\n", verinfo.BPDDSeries, verinfo.BPDDRevision);

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 221 of 342 ProSoft Technology, Inc.

MVIbp_GetModuleInfo

Syntax

int MVIbp_GetModuleInfo(MVIHANDLE handle, MVIBPMODULEINFO *modinfo);

Parameters

handle Handle returned by previous call to MVIbp_Open

modinfo Pointer to structure of type MVIBPMODULEINFO

Description

MVIbp_GetModuleInfo retrieves identity information for the module. The
information is returned in the structure modinfo.

handle must be a valid handle returned from MVIbp_Open.

The MVIBPMODULEINFO structure is defined as follows:

typedef struct tagMVIBPMODULEINFO

{

WORD VendorID; // Reserved

WORD DeviceType; // Reserved

WORD ProductCode; // Device model code

BYTE MajorRevision; // Device major revision

BYTE MinorRevision; // Device minor revision

DWORD SerialNo; // Serial number

BYTE Name[32]; // Device name (string)

BYTE Month; // Date of manufacture - month

BYTE Day; // Date of manufacture - day

WORD Year; // Date of manufacture - year

} MVIBPMODULEINFO;

Return Value

MVI_SUCCESS The version information was read successfully.

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE Handle;

MVIBPMODULEINFO modinfo;

/* print module name */

MVIbp_GetModuleInfo(Handle,&modinfo);

printf("Name is %s\n", modinfo.Name);

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 222 of 342 ProSoft Technology, Inc.

MVIbp_ErrorString

Syntax

int MVIbp_ErrorString(int errcode, char *buf);

Parameters

errcode Error code returned from an API function

buf Pointer to user buffer to receive message

Description

MVIbp_ErrorStr returns a text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value

MVI_SUCCESS Message returned in buf

MVI_ERR_BADPARAM Unknown error code

Example

char buf[80];

int rc;

/* print error message */

MVIbp_ErrorString(rc, buf);

printf("Error: %s", buf);

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 223 of 342 ProSoft Technology, Inc.

MVIbp_SetUserLED

Syntax

int MVIbp_SetUserLED(MVIHANDLE handle, int lednum, int ledstate);

Parameters

handle Handle returned by previous call to MVIbp_Open

lednum Specifies which of the user LED indicators is being addressed

Description

MVIbp_SetUserLED allows an application to turn the user LED indicators on and
off.

handle must be a valid handle returned from MVIbp_Open.

lednum must be set to MVI_LED_USER1 or MVI_LED_USER2 to select User
LED 1 or User LED 2, respectively.

ledstate must be set to MVI_LED_STATE_ON or MVI_LED_STATE_OFF to turn
the indicator On or Off, respectively.

Return Value

MVI_SUCCESS The input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example

MVIHANDLE Handle;

/* Turn User LED 1 on and User LED 2 off */

MVIbp_SetUserLED(Handle, MVI_LED_USER1, MVI_LED_STATE_ON);

MVIbp_SetUserLED(Handle, MVI_LED_USER2, MVI_LED_STATE_OFF);

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 224 of 342 ProSoft Technology, Inc.

MVIbp_SetModuleStatus

Syntax

int MVIbp_SetModuleStatus(MVIHANDLE handle, int status);

Parameters

handle Handle returned by previous call to MVIbp_Open

status Module status, OK or Faulted

Description

MVIbp_SetModuleStatus allows an application set the state of the module to OK
or Faulted.

handle must be a valid handle returned from MVIbp_Open.

state must be set to MVI_MODULE_STATUS_OK or
MVI_MODULE_STATUS_FAULTED. If the state is OK, the module status LED
indicator will be set to Green. If the state is Faulted, the status indicator will be
set to Red.

Note: The MVI hardware can set the OK LED to Red if any of the following occurs:

 an unrecoverable fault
 hardware failure
 backplane driver failure

Neither the MVI hardware nor the Set ModuleStatus call has priority. Either can
overwrite the other.

Return Value

MVI_SUCCESS The input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example

MVIHANDLE Handle;

/* Set the Status indicator to Red */

MVIbp_SetModuleStatus(Handle, MVI_MODULE_STATUS_FAULTED);

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 225 of 342 ProSoft Technology, Inc.

MVIbp_GetConsoleMode

Syntax

int MVIbp_GetConsoleMode(MVIHANDLE handle, int *mode, int *baud);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode Pointer to an integer that is set to 1 if the console is installed, or 0
if the console is not enabled.

baud Pointer to an integer that is set to the console baud rate index if
the console is enabled.

Description

This function queries the state of the console.

handle must be a valid handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the console is enabled, or 0 if the console is disabled.

baud is a pointer to an integer. When this function returns, baud will be set to the
console’s baud index value if the console is enabled. baud is not set if the
console is disabled.

It may be useful for an application to detect that the console is enabled and allow
user interaction.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int mode;

MVIbp_GetConsoleMode(handle, &mode);

if (mode)

 // Console is enabled - allow user interaction

else

 // Console is not available - normal operation

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 226 of 342 ProSoft Technology, Inc.

MVIbp_GetSetupMode

Syntax

int MVIbp_GetSetupMode(MVIHANDLE handle, int *mode);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode Pointer to an integer that is set to 1 if the Setup Jumper is
installed, or 0 if the Setup Jumper is not installed.

Description

This function queries the state of the Setup Jumper.

handle must be a valid handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the module is in Setup Mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup Mode. It
may be useful for an application to detect Setup Mode and perform special
configuration or diagnostic functions.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int mode;

MVIbp_GetSetupMode(handle, &mode);

if (mode)

 // Setup Jumper is installed - perform configuration/diagnostic

else

 // Not in Setup Mode - normal operation

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 227 of 342 ProSoft Technology, Inc.

MVIbp_GetProcessorStatus

Syntax

int MVIbp_GetProcessorStatus(MVIHANDLE handle, WORD *pstatus);

Parameters

handle Handle returned by previous call to MVIbp_Open

pstatus Pointer to a word that will be updated with the current processor
status.

Description

This function queries the state of the processor.

handle must be a valid handle returned from MVIbp_Open.

pstatus is a pointer to an word. When this function returns, certain bits in this
word will be set to indicate the current processor status, as shown in the
following table.

Processor Status Bits

Bit Name Description

0 MVI_PROCESSOR_STATUS_RUN Set if processor is in Run Mode

1 MVI_DATA_CONNECTION_OPEN Set if data connection is open (MVI56 only)

2 MVI_STATUS_CONNECTION_OPEN Set if status connection is open (MVI56 only)

MVI56 Note

The data connection must be established in order to receive the processor
status. Therefore, if the data connection is not established, this function will
return MVI_ERR_BADCONFIG and pstatus will be zero.

MVI94 Note

This function is not supported on the MVI94 and will always return
MVI_ERR_NOTSUPPORTED.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADCONFIG The data connection is not open (MVI56 only)

Example

MVIHANDLE handle;

WORD status;

MVIbp_GetProcessorStatus(handle, &status);

if (status & MVI_PROCESSOR_STATUS_RUN)

// Processor is in Run Mode

else

// Processor is not in Run Mode or there is no connection

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 228 of 342 ProSoft Technology, Inc.

MVIbp_Sleep

Syntax

int MVIbp_Sleep(MVIHANDLE handle, WORD msdelay);

Parameters

handle Handle returned by previous call to MVIbp_Open

msdelay Time in milliseconds to suspend task

Description

MVIbp_Sleep suspends the calling thread for at least msdelay milliseconds. The
actual delay may be several milliseconds longer than msdelay, due to system
overhead and the system timer granularity (5ms).

Return Value

MVI_SUCCESS Success

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int timeout=200;

// Simple timeout loop

while(timeout--)

{

// Poll for data, and so on.

// Break if condition is met (no timeout)

// Else sleep a bit and try again

MVIbp_Sleep(10);

}

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 229 of 342 ProSoft Technology, Inc.

MVIbp_SetConsoleMode

Syntax

int MVIbp_SetConsoleMode(MVIHANDLE handle, int mode, int baud);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode An integer that is set to 1 if the console is to be enabled, or 0 if
the console is not enabled.

baud An integer that is set to the desired console baud rate index if the
console is enabled.

Description

This function sets the state of the console.

handle must be a valid handle returned from MVIbp_Open.

mode is an integer that contains the desired state of the console. mode should
be set to 1 if the console is to be enabled, or 0 if the console is to be disabled.

baud is an integer that contains the desired baud rate of the console. baud
should be set to the console’s baud index value if the console is enabled. The
baud index values are shown in Table 3.

The state of the console is normally configured with the BIOS setup menu and is
saved in battery-backed memory. If the module is removed from power for a
period of time and the battery discharges, then the state information is lost. This
function allows an application to store a desired console state into the battery-
backed memory. Note that the new console state does not take effect until the
MVI46 is rebooted.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int mode,baud;

mode = 1; // enable the console

baud = 8; // set baud rate to 19200 baud

MVIbp_SetConsoleMode(handle, mode, baud);

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 230 of 342 ProSoft Technology, Inc.

8.7 Platform Specific Functions

MVIbp_ReadModuleFile (MVI46)

Syntax

int MVIbp_ReadModuleFile(MVIHANDLE handle, BYTE filetype, WORD *filedata, WORD

offset, WORD len);

Parameters

handle Handle returned by previous call to MVIbp_Open

filetype Type of module file to read, M0 or M1

filedata Pointer to buffer to receive data

offset Word offset into the module file to begin reading

len Number of words to read

Description

MVIbp_ReadModuleFile reads data from the M0 or M1 file of the module. This
function can only be used when the module is configured as a Class 4 module.

handle must be a valid handle returned from MVIbp_Open.

The type of file to be read is determined by the value in filetype, which should be
set to FILTYP_M0 or FILTYP_M1.

This function reads len words starting at word offset of the module file and copies
the data to the buffer pointed to by filedata, which must be len words in size. The
error MVI_ERR_BADPARAM will be returned if an attempt is made to access the
module file beyond the range configured for module file. If this error is returned,
no data will be read from the module file.

Note: This function provides data integrity in blocks of 64 Words as the data is copied.
Note: Because Messaging uses module files, MVIbp_ReadModuleFile should not be used while
Messaging is used.
Note: At this time, messaging is not supported on the MVI69.

Return Value

MVI_SUCCESS The module file data was read successfully.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Invalid parameter

MVI46_ERR_INVALIDCLASS The module is not Class 4

Example

MVIHANDLE Handle;

WORD buffer[10];

/* Read the first 10 words of the M1 file */

MVIbp_ReadModuleFile(Handle,FILTYP_M1, &buffer[0], 0, 10);

MVI-ADM ♦ 'C' Programmable Backplane API Functions
'C' Programmable Application Development Module Developer's Guide

Page 231 of 342 ProSoft Technology, Inc.

MVIbp_WriteModuleFile (MVI46)

Syntax

int MVIbp_WriteModuleFile(MVIHANDLE handle, BYTE filetype, WORD *filedata,

WORD offset, WORD len);

Parameters

handle Handle returned by previous call to MVIbp_Open

filetype Type of module file to write, M0 or M1

filedata Pointer to buffer of data to write to the module file

offset Word offset into the module file to begin writing

len Number of words to write

Description

MVIbp_WriteModuleFile writes data to the M0 or M1 file of the module. This
function can only be used when the module is configured as a Class 4 module.

handle must be a valid handle returned from MVIbp_Open.

The type of file to be written is determined by the value in filetype, which should
be set to FILTYP_M0 or FILTYP_M1.

This function writes len words from the buffer pointed to by filedata to the module
file starting at WORD offset. The buffer must be len words in size. The error
MVI_ERR_BADPARAM will be returned if an attempt is made to access the
module file beyond the range configured for module file. If this error is returned,
no data will be written to the module file.

Note: This function provides data integrity in blocks of 64 words as the data is copied.
Note: Because Messaging uses module files, MVIbp_WriteModuleFile should not be used while
Messaging is used.
Note: At this time, messaging is not supported on the MVI69.

Return Value

MVI_SUCCESS The module file data was read successfully.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Invalid parameter

MVI46_ERR_INVALIDCLASS The module is not Class 4

Example

MVIHANDLE Handle;

WORD buffer[2];

/* write 2 words to words 5 and 6 of the M0 file */

buffer[0] = 12;

buffer[1] = 34;

MVIbp_WriteModuleFile(Handle,FILTYP_M0, &buffer[0], 5, 2);

Backplane API Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 232 of 342 ProSoft Technology, Inc.

MVIbp_SetModuleInterrupt (MVI46)

Syntax

int MVIbp_SetModuleInterrupt(MVIHANDLE handle);

Parameters

handle Handle returned by previous call to MVIbp_Open

Description

MVIbp_SetModuleInterrupt generates a Module Interrupt to the host Controller.
This function can only be used when the module is configured as a Class 4
module.

handle must be a valid handle returned from MVIbp_Open.

This function waits for the host Controller to acknowledge the interrupt, which
may take up to 2.5 seconds. The host Controller must be in RUN mode and must
contain a Module Interrupt function routine to process and acknowledge the
interrupt. The acknowledge from the Controller may either be Success or Failure,
depending on the interrupt routine.

Return Value

MVI_SUCCESS The module file data was read successfully.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_TIMEOUT The function timed out waiting for an acknowledge

MVI46_ERR_PROGMODE Controller not in RUN mode

MVI46_ERR_INVALIDCLASS The module is not Class 4

MVI46_ERR_SLOTDIS The module’s slot has been disabled by the Controller

MVI46_ERR_SERVFAIL The Controller acknowledged the interrupt with Failure

Example

MVIHANDLE Handle;

/* Generate a module interrupt and wait for ack */

if (MVI_SUCCESS == MVIbp_SetModuleInterrupt(Handle))

printf("Module Interrupt Successful\n");

else

printf("Module Interrupt Failed\n");

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 233 of 342 ProSoft Technology, Inc.

9 Serial Port Library Functions

In This Chapter

 Serial Port API Initialization Functions ... 235

 Serial Port API Configuration Functions .. 240

 Serial Port API Status Functions ... 243

 Serial Port API Communications ... 251

 Serial Port API Miscellaneous Functions ... 265

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in 'C'
format.

The API library routines are categorized according to functionality as follows:

Initialization

MVIsp_Open

MVIsp_Close

MVIsp_OpenAlt

Configuration

MVIsp_Config

MVIsp_SetHandshaking

Port Status

MVIsp_SetRTS, MVIsp_GetRTS

MVIsp_SetDTR, MVIsp_GetDTR

MVIsp_GetCTS

MVIsp_GetDSR

MVIsp_GetDCD

MVIsp_GetLineStatus

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 234 of 342 ProSoft Technology, Inc.

Communications

MVIsp_Putch

MVIsp_Puts

MVIsp_PutData

MVIsp_Getch

MVIsp_Gets

MVIsp_GetData

MVIsp_GetCountUnsent

MVIsp_GetCountUnread

MVIsp_PurgeDataUnsent

MVIsp_PurgeDataUnread

Miscellaneous

MVIsp_GetVersionInfo

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 235 of 342 ProSoft Technology, Inc.

9.1 Serial Port API Initialization Functions

MVIsp_Open

Syntax

int MVIsp_Open(int comport, BYTE baudrate, BYTE parity, BYTE wordlen,

BYTE stopbits);

Parameters

comport Communications Port to open

baudrate Baud rate for this port

parity Parity setting for this port

wordlen Number of bits for each character

stopbits Number of stop bits for each character

Description

MVIsp_Open acquires access to a communications port. This function must be
called before any of the other API functions can be used.

comport specifies which port is to be opened. The valid values for the module are
COM1 (corresponds to PRT1 (CFG on MVI69)), COM2 (corresponds to PRT2
(PRT1 on MVI69)), and COM3 (corresponds to PRT3(PRT2 on MVI69)).

Note: PRT3 is available on MVI46 and MVI56 only.

baudrate is the desired baud rate. The allowable values for baudrate are shown
in the following table.

Baud Rate Value

BAUD_110 0

BAUD_150 1

BAUD_300 2

BAUD_600 3

BAUD_1200 4

BAUD_2400 5

BAUD_4800 6

BAUD_9600 7

BAUD_19200 8

BAUD_28800 9

BAUD_38400 10

BAUD_57600 11

BAUD_115200 12

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLEN5, WORDLEN6, WORDLEN7, and WORDLEN8.

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 236 of 342 ProSoft Technology, Inc.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

The handshake lines DTR and RTS of the port specified by comport are turned
on by MVIsp_Open.

Note: If the console is enabled or the Setup jumper is installed, the baud rate for COM1 is set as
configured in BIOS Setup and cannot be changed by MVIsp_Open. MVIsp_Open will return
MVI_SUCCESS, but the baud rate will not be affected. It is recommended that the console be
disabled in BIOS Setup if COM1 is to be accessed with the serial API.
IMPORTANT: After the API has been opened, MVIsp_Close should always be called before exiting
the application.

Return Value

MVI_SUCCESS port was opened successfully

MVI_ERR_REOPEN port is already open

MVI_ERR_NODEVICE UART not found on port

Note: MVI_ERR_NODEVICE will be returned if the port is not supported by the module.

Example

if (MVIsp_Open(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,STOPBITS1) != MVI_SUCCESS)

{

printf("Open failed!\n");

} else {

printf("Open succeeded\n");

}

See Also

MVIsp_Close (page 239)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 237 of 342 ProSoft Technology, Inc.

MVIsp_OpenAlt

Syntax

int MVIsp_ OpenAlt(int comport, MVISPALTSETUP *altsetup);

Parameters

comport Communications port to open

altsetup pointer to structure of type MVISPALTSETUP

Description

MVIsp_OpenAlt provides an alternate method to acquire access to a
communications port.

With MVIsp_OpenAlt, the sizes of the serial port data queues can be set by the
application.

See MVIsp_Open for any considerations about opening a port.

Comport specifies which port is to be opened. See MVIsp_Open for valid values.

Altsetup points to a MVISPALTSETUP structure that contains the configuration
information for the port.

The MVISPALTSETUP structure is defined as follows:

typedef struct tagMVISPALTSETUP

{

BYTE baudrate;

BYTE parity;

BYTE wordlen;

BYTE stopbits;

int txquesize; /* Transmit queue size */

int rxquesize; /* Receive queue size */

BYTE fifosize; /* UART Internal FIFO size */

} MVISPALTSETUP;

See MVIsp_Open for valid values for the baudrate, parity, wordlen, and stopbits
members of the structure. The txquesize and rxquesize members determine the
size of the data buffers used to queue serial data. Valid values for the queue
sizes can be any value from MINQSIZE to MAXQSIZE. The MVIsp_Open
function uses a queue size of DEFQSIZE.

These values are defined as:

#define MINQSIZE 512 /* Minimum Queue Size */

#define DEFQSIZE 1024 /* Default Queue Size */

#define MAXQSIZE 16384 /* Maximum Queue Size */

By default, the API sets the UART’s internal receive fifo size to 8 characters to
permit greater reliability at higher baud rates. In certain serial protocols, this
buffering of characters can cause character timeouts and can be changed or
disabled to meet these requirements. Most applications should set the fifosize to
the default RXFIFO_DEFAULT.

Either MVIsp_OpenAlt or MVIsp_Open must be called before any of the other
API functions can be used.

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 238 of 342 ProSoft Technology, Inc.

Return Value

MVI_SUCCESS port was opened successfully

MVI_ERR_REOPEN port is already open

MVI_ERR_NODEVICE UART not found for port

Example

MVISPALTSETUP altsetup;

altsetup.baudrate = BAUD_9600;

altsetup.parity = PARITY_NONE;

altsetup.wordlen = WORDLEN8;

altsetup.stopbits = STOPBITS1;

altsetup.txquesize = DEFQSIZE;

altsetup.rxquesize = DEFQSIZE * 2;

if (MVIsp_OpenAlt(COM1, &altsetup) != MVI_SUCCESS)

{

printf("Open failed!\n");

} else {

printf("Open succeeded!\n");

}

See Also

MVIsp_Open (page 235)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 239 of 342 ProSoft Technology, Inc.

MVIsp_Close

Syntax

int MVIsp_Close(int comport);

Parameters

comport Port to close

Description

This function is used by an application to release control of the a communications
port. comport must be previously opened with MVIsp_Open.

comport specifies which port is to be closed.

The handshake lines DTR and RTS of the port specified by comport are turned
off by MVIsp_Close.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

MVI_SUCCESS port was closed successfully

MVI_ERR_NOACCESS comport has not been opened

Example

MVIsp_Close(COM1);

See Also

MVIsp_Open (page 235)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 240 of 342 ProSoft Technology, Inc.

9.2 Serial Port API Configuration Functions

MVIsp_Config

Syntax

int MVIsp_Config(int comport, BYTE baudrate, BYTE parity, BYTE wordlen, BYTE

stopbits);

Parameters

comport Communications port to configure

baudrate Baud rate for this port

parity Parity setting for this port

wordlen Number of bits for each character

stopbits Number of stop bits for each character

baudrate Pointer to DWORD to receive baudrate

Description

MVIsp_Config allows the configuration of a serial port to be changed after it has
been opened.

comport specifies which port is to be configured.

baudrate is the desired baud rate.

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLEN5, WORDLEN6, WORDLEN7, and WORDLEN8.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

Note: If the console is enabled or the Setup jumper is installed, the baud rate for COM1 is set as
configured in BIOS Setup and cannot be changed by MVIsp_Open. MVIsp_Config will return
MVI_SUCCESS, but the baud rate will not be affected.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

if (MVIsp_Config(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,STOPBITS1) != MVI_SUCCESS)

{

printf("Config failed!\n");

} else {

printf("Config succeeded\n");

}

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 241 of 342 ProSoft Technology, Inc.

See Also

MVIsp_Open (page 235)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 242 of 342 ProSoft Technology, Inc.

MVIsp_SetHandshaking

Syntax

int MVIsp_SetHandshaking(int comport, int shake);

Parameters

comport port for which handshaking is to be set

shake desired handshake mode

Description

This function enables handshaking for a port after it has been opened. comport
must be previously opened with MVIsp_Open.

shake is the desired handshake mode. Valid values for shake are
HSHAKE_NONE, HSHAKE_XONXOFF, HSHAKE_RTSCTS, and
HSHAKE_DTRDSR.

Use HSHAKE_XONXOFF to enable software handshaking for a port. Use
HSHAKE_RTSCTS or HSHAKE_DTRDSR to enable hardware handshaking for
a port. Hardware and software handshaking cannot be used together.

Handshaking is supported in both the transmit and receive directions.

Important: If hardware handshaking is enabled, using the MVIsp_SetRTS and MVIsp_SetDTR
functions will cause unpredictable results. If software handshaking is enabled, ensure that the XON
and XOFF ASCII characters are not transmitted as data from a port or received into a port because
this will be treated as handshaking controls.

Return Values

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid handshaking mode

Example

if (MVI_SUCCESS != MVIsp_SetHandshaking(COM1, HSHAKE_RTSCTS))

 printf("Error: Set Handshaking failed\n");

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 243 of 342 ProSoft Technology, Inc.

9.3 Serial Port API Status Functions

MVIsp_SetRTS

Syntax

int MVIsp_SetRTS(int comport, int state);

Parameters

comport port for which RTS is to be changed

state desired RTS state

Description

This functions allows the state of the RTS signal to be controlled. comport must
be previously opened with MVIsp_Open.

state specifies desired state of the RTS signal. Valid values for state are ON and
OFF.

Note: If RTS/CTS hardware handshaking is enabled, using the MVIsp_SetRTS function will cause
unpredictable results.

Return Value

MVI_SUCCESS the RTS signal was set successfully.

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid state

Example

int rc;

rc = MVIsp_SetRTS(COM1, ON);

if (rc != MVI_SUCCESS)

printf("SetRTS failed\n ");

See Also

MVIsp_GetRTS (page 244)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 244 of 342 ProSoft Technology, Inc.

MVIsp_GetRTS

Syntax

int MVIsp_GetRTS(int comport, int *state);

Parameters

comport port for which RTS is requested

state pointer to int for desired state

Description

This function allows the state of the RTS signal to be determined. comport must
be previously opened with MVIsp_Open.

The current state of the RTS signal is copied to the int pointed to by state.

Return Value

MVI_SUCCESS the RTS state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int state;

if (MVIsp_GetRTS(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

printf("RTS is ON\n");

 else

printf("RTS is OFF\n");

}

See Also

MVIsp_SetRTS (page 243)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 245 of 342 ProSoft Technology, Inc.

MVIsp_SetDTR

Syntax

int MVIsp_SetDTR(int comport, int state);

Parameters

comport port for which DTR is to be changed

state desired state

Description

This function allows the state of the DTR signal to be controlled. comport must be
previously opened with MVIsp_Open.

state is the desired state of the DTR signal. Valid values for state are ON and
OFF.

Note: If DTR/DSR handshaking is enabled, changing the state of the DTR signal with
MVIsp_SetDTR will cause unpredictable results.

Return Value

MVI_SUCCESS the DTR signal was set successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid state

Example

if (MVIsp_SetDTR(COM1, ON) != MVI_SUCCESS)

printf("Set DTR failed\n");

See Also

MVIsp_GetDTR (page 246)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 246 of 342 ProSoft Technology, Inc.

MVIsp_GetDTR

Syntax

int MVIsp_GetDTR(int comport, int *state);

Parameters

comport port for which DTR is requested

state pointer to int for desired state

Description

This function allows the state of the DTR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DTR signal is
copied to the int pointed to by state.

Return Values

MVI_SUCCESS the DTR state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int state;

if (MVIsp_GetDTR(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

printf("DTR is ON\n");

 else

printf("DTR is OFF\n");

}

See Also

MVIsp_SetDTR (page 245)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 247 of 342 ProSoft Technology, Inc.

MVIsp_GetCTS

Syntax

int MVIsp_GetCTS(int comport, int *state);

Parameters

comport port for which CTS is requested

state pointer to int for desired state

Description

This function allows the state of the CTS signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the CTS signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS the CTS state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int state;

if (MVIsp_GetCTS(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

printf("CTS is ON\n");

 else

printf("CTS is OFF\n");

}

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 248 of 342 ProSoft Technology, Inc.

MVIsp_GetDSR

Syntax

int MVIsp_GetDSR(int comport, int *state);

Parameters

comport port for which DSR is requested

state pointer to int for desired state

Description

This function allows the state of the DSR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DSR signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS the DSR state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int state;

if (MVIsp_GetDSR(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

printf("DSR is ON\n");

 else

printf("DSR is OFF\n");

}

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 249 of 342 ProSoft Technology, Inc.

MVIsp_GetDCD

Syntax

int MVIsp_GetDCD(int comport, int *state);

Parameters

comport port for which DCD is requested

state pointer to int for desired state

Description

This function allows the state of the DCD signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DCD signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS the DCD state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int state;

if (MVIsp_GetDCD(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

printf("DCD is ON\n");

 else

printf("DCD is OFF\n");

}

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 250 of 342 ProSoft Technology, Inc.

MVIsp_GetLineStatus

Syntax

int MVIsp_GetLineStatus(int comport, BYTE *status);

Parameters

comport port for which line status is requested

status pointer to BYTE to receive line status

Description

MVIsp_GetLineStatus returns any line status errors received over the serial port.
The status returned indicates if any overrun, parity, or framing errors or break
signals have been detected.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

status points to a BYTE that will receive a set of flags that indicate errors
received over the serial port. If the returned status is 0, no errors have been
detected. If status is non-zero, it can be logically and'ed with the line status error
flags LSERR_OVERRUN, LSERR_PARITY, LSERR_FRAMING,
LSERR_BREAK, and/or QSERR_OVERRUN to determine the exact cause of the
error. The corresponding error flag will be set for each error type detected (Note:
The QSERR_OVERRUN bit indicates that a receive queue overflow has
occurred).

After returning the bit flags in status, line status errors are cleared. Therefore,
MVIsp_GetLineStatus actually returns line status errors detected since the
previous call to this function.

Return Value

MVI_SUCCESS the line status was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

BYTE sts;

if (MVIsp_GetGetLineStatus(COM2,&sts) == MVI_SUCCESS)

{

 if (sts == 0)

printf("No Line Status Errors Received\n");

 else if ((sts & LSERR_BREAK) != 0)

printf("A Break Signal was Received\n");

 else

printf("A Line Status Error was Received\n");

}

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 251 of 342 ProSoft Technology, Inc.

9.4 Serial Port API Communications

MVIsp_Putch

Syntax

int MVIsp_Putch(int comport, BYTE ch, DWORD timeout);

Parameters

comport port to which data is to be sent

ch character to be sent

timeout amount of time to wait to send character

Description

This function transmits a single character across a serial port. comport must be
previously opened with MVIsp_Open.

ch is the byte to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time after this function returns
and the actual time that the character is transmitted across the serial line. This
function attempts to insert the character into the transmission queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the character cannot be
queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until the character is queued successfully.

If the character can be queued immediately, MVIsp_Putch returns
MVI_SUCCESS. If the character cannot be queued immediately, MVIsp_Putch
tries to queue the character until the timeout elapses. If the timeout elapses
before the character can be queued, MVI_ERR_TIMEOUT is returned.

Note: If handshaking is enabled and the receiving serial device has paused transmission, timeouts
may occur after the queue becomes full.

Return Value

MVI_SUCCESS the char was sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid parameter

MVI_ERR_TIMEOUT timeout elapsed before character sent

Example

if (MVIsp_Putch(COM1, ';', 1000L) != MVI_SUCCESS)

 printf("Semicolon could not be sent in 1 second\n");

See Also

MVIsp_GetCh (page 252)

MVIsp_Puts (page 253)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 252 of 342 ProSoft Technology, Inc.

MVIsp_Getch

Syntax

int MVIsp_Getch(int comport, BYTE *ch, DWORD timeout);

Parameters

comport port from which data is to be received

ch pointer to BYTE to receive character

timeout amount of time to wait to receive character

Description

This function receives a single character from a serial port. comport must be
previously opened with MVIsp_Open.

ch points to a BYTE that will receive the character.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Getch.
This function attempts to retrieve a character from the reception queue, and
return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until a character is
retrieved from the reception queue successfully.

If the reception queue is not empty, the oldest character is retrieved from the
queue and MVIsp_Getch returns MVI_SUCCESS. If the queue is empty,
MVIsp_Getch tries to retrieve a character from the queue until the timeout
elapses. If the timeout elapses before a character can be retrieved,
MVI_ERR_TIMEOUT is returned.

Return Value

MVI_SUCCESS a char was retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before character retrieved

Example

BYTE ch;

if (MVIsp_Getch(COM1, &ch, 1000L) == MVI_SUCCESS)

 putch((char)ch);

See Also

MVIsp_PutCh (page 251)

MVIsp_Gets (page 257)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 253 of 342 ProSoft Technology, Inc.

MVIsp_Puts

Syntax

int MVIsp_Puts(int comport, BYTE *str, BYTE term, int *len, DWORD timeout);

Parameters

comport port to which data is to be sent

str string of characters to be sent

term termination character of string

len pointer to BYTE to receive number of characters sent

timeout amount of time to wait to send character

Description

This function transmits a string of characters across a serial port. comport must
be previously opened with MVIsp_Open.

str is a pointer to an array of characters (or is a string) to be sent.

MVIsp_Puts sends each char in the array str to the serial port until it encounters
the termination character term. Therefore, the character array must end with the
termination character. The termination character is not sent to the serial port.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the characters are transmitted across the serial line. This function
attempts to insert the characters into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the characters
cannot be queued immediately. If timeout is TIMEOUT_FOREVER, the function
will not return until all the characters are queued successfully.

If all the characters can be queued immediately, MVIsp_Puts returns
MVI_SUCCESS. If the characters cannot be queued immediately, MVIsp_Puts
tries to queue the characters until the timeout elapses. If the timeout elapses
before the characters can be queued, MVI_ERR_TIMEOUT is returned.

If len is not NULL, MVIsp_Puts writes to the int pointed to by len the number of
characters queued successfully. len is written for successfully sent characters as
well as timeouts.

Note: If handshaking is enabled and the receiving serial device has paused transmission, timeouts
may occur after the queue becomes full.

Return Value

MVI_SUCCESS the characters were sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid parameter

MVI_ERR_TIMEOUT timeout elapsed before characters sent

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 254 of 342 ProSoft Technology, Inc.

Example

char str[] = "Hello, World!";

int nn;

if (MVIsp_Puts(COM1, str, '\0', &nn, 1000L) != MVI_SUCCESS)

 printf("%d characters were sent\n",nn);

See Also

MVIsp_Gets (page 257)

MVIsp_PutCh (page 251)

MVIsp_PutData (page 255)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 255 of 342 ProSoft Technology, Inc.

MVIsp_PutData

Syntax

int MVIsp_PutData(int comport, BYTE *data, int *len, DWORD timeout);

Parameters

comport port to which data is to be sent

data pointer to array of bytes to be sent

len pointer to number of bytes to send / bytes sent

timeout amount of time to wait to send byte

Description

This function transmits an array of bytes across a serial port. comport must be
previously opened with MVIsp_Open.

data is a pointer to an array of bytes to be sent.

MVIsp_PutData sends each byte in the array data to the serial port. len should
point to the number of bytes in the array data to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the bytes are transmitted across the serial line. This function
attempts to insert the bytes into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the bytes cannot
be queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until all the bytes are queued successfully.

If all the bytes can be queued immediately, MVIsp_PutData returns
MVI_SUCCESS. If the characters cannot be queued immediately,
MVIsp_PutData tries to queue the bytes until the timeout elapses. If the timeout
elapses before the bytes can be queued, MVI_ERR_TIMEOUT is returned.

When MVIsp_PutData returns, it writes to the int pointed to by len the number of
bytes queued successfully. len is written for successfully sent bytes as well as
timeouts.

Note: If software handshaking is enabled on the external serial device, sending data that contains
XOFF characters may stop transmission from the external serial device.

If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.

Return Value

MVI_SUCCESS the bytes were sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid parameter

MVI_ERR_TIMEOUT timeout elapsed before bytes sent

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 256 of 342 ProSoft Technology, Inc.

Example

BYTE dd[5] = { 10, 20, 30, 40, 50 };

int nn;

nn = 5;

if (MVIsp_PutData(COM1, &dd[0], &nn, 1000L) != MVI_SUCCESS)

 printf("%d bytes were sent\n",nn);

See Also

MVIsp_PutCh (page 251)

MVIsp_Puts (page 253)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 257 of 342 ProSoft Technology, Inc.

MVIsp_Gets

Syntax

int MVIsp_Gets(int comport, BYTE *str, BYTE term, int *len, DWORD timeout);

Parameters

comport port from which data is to be received

str pointer to array of bytes to receive data

term termination character of data

len number of bytes to receive / bytes received

timeout amount of time to wait to receive character

Description

This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

str points to an array of bytes that will receive the data.

len points to the number of bytes to receive.

MVIsp_Gets retrieves bytes from the reception queue until either a byte is equal
to the termination character or the number of bytes pointed to by len are
retrieved. If a byte is retrieved that equals the termination character, the byte is
copied into the array str and the function returns.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Gets. This
function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_Gets returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.
If the function returns because a termination character was retrieved, len
includes the termination character in the length.

Note: If handshaking is enabled and the reception queue is full, this API may pause transmissions
from the external device, and timeouts may then occur.

Return Value

MVI_SUCCESS bytes were retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 258 of 342 ProSoft Technology, Inc.

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved

Example

BYTE str[10];

int nn;

nn = 10;

if (MVIsp_Gets(COM1, &str[0], '\r', &nn, 1000L) == MVI_SUCCESS)

 printf("%d bytes were received\n",nn);

See Also

MVIsp_Getch (page 252)

MVIsp_Puts (page 253)

MVIsp_PutData (page 255)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 259 of 342 ProSoft Technology, Inc.

MVIsp_GetData

Syntax

int MVIsp_GetData(int comport, BYTE *data, int *len, DWORD timeout);

Parameters

comport port from which data is to be received

data pointer to array of bytes to receive data

len number of bytes to receive / bytes received

timeout amount of time to wait to receive character

Description

This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

data points to an array of bytes that will receive the data.

len points to the number of bytes to receive.

MVIsp_GetData retrieves bytes from the reception queue until either the number
of bytes pointed to by len are retrieved or the timeout elapses.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_GetData.
This function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_GetData returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.

Return Value

MVI_SUCCESS bytes were retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved

Example

BYTE data[10];

int nn;

nn = 10;

if (MVIsp_GetData(COM1, data, &nn, 1000L) == MVI_SUCCESS)

 printf("%d bytes were received\n",nn);

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 260 of 342 ProSoft Technology, Inc.

See Also

MVIsp_Gets (page 257)

MVIsp_Getch (page 252)

MVIsp_PutData (page 255)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 261 of 342 ProSoft Technology, Inc.

MVIsp_GetCountUnsent

Syntax

int MVIsp_GetCountUnsent(int comport, int *count);

Parameters

comport Desired communications port

count Pointer to int to receive unsent character count

Description

MVIsp_GetCountUnsent returns the number of characters in the transmit queue
that are waiting to be sent. Since data sent to a port is queued before
transmission across a serial port, the application may need to determine if all
characters have been transmitted or how many characters remain to be
transmitted.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
sent to the serial port but not transmitted. If the returned count is 0, all data has
been transmitted. If it is non-zero, it contains the number of characters put into
the queue with MVIsp_Putch, MVIsp_Puts, or MVIsp_PutData but that have not
been transmitted.

Return Value

MVI_SUCCESS count retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int count;

if (MVIsp_GetCountUnsent(COM2,&count) == MVI_SUCCESS)

{

 if (count == 0)

printf("All chars sent\n");

 else

printf("%d characters remaining\n",count);

}

See Also

MVIsp_Putch (page 251)

MVIsp_Puts (page 253)

MVIsp_PutData (page 255)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 262 of 342 ProSoft Technology, Inc.

MVIsp_GetCountUnread

Syntax

int MVIsp_GetCountUnread(int comport, int *count);

Parameters

comport Desired communications port

count Pointer to int to receive unread character count

Description

MVIsp_GetCountUnread returns the number of characters in the receive queue
that are waiting to be read. Since data received from a port is queued after
reception from a serial port, the application may need to determine if all
characters have been read or how many characters remain to be read.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
received from the serial port but not read by the application. If the returned count
is 0, all received data has been read. If it is non-zero, it contains the number of
characters placed into the receive queue after reception from a serial port but
that have not been read from the queue with MVIsp_Getch, MVIsp_Gets, or
MVIsp_GetData.

Return Value

MVI_SUCCESS count retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int count;

if (MVIsp_GetCountUnread(COM2,&count) == MVI_SUCCESS)

{

 if (count == 0)

printf("All chars read\n");

 else

printf("%d characters remaining\n",count);

}

See Also

MVIsp_Getch (page 252)

MVIsp_Gets (page 257)

MVIsp_GetData (page 259)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 263 of 342 ProSoft Technology, Inc.

MVIsp_PurgeDataUnsent

Syntax

int MVIsp_PurgeDataUnsent(int comport);

Parameters

comport port whose transmit data is to be purged

Description

MVIsp_PurgeDataUnsent deletes all data waiting in the transmit queue. The data
is discarded and is not transmitted.

Comport specifies the port whose transmit queue is to be purged.

Note: MVI46 and MVI56 only.

Return Value

MVI_SUCCESS the data was purged successfully

MVI_ERR_BADPARAM invalid comport

MVI_ERR_NOACCESS the comport has not been opened

Example

if (MVIsp_PurgeDataUnsent(COM1) == MVI_SUCCESS)

printf("Transmit Data purged.\n");

See Also:

MVIsp_PurgeDataUnread (page 264)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 264 of 342 ProSoft Technology, Inc.

MVIsp_PurgeDataUnread

Syntax

int MVIsp_PurgeDataUnread(int comport)

Parameters

comport port whose receive data is to be purged

Description

MVIsp_PurgeDataUnread deletes all data waiting in the receive queue. The data
is discarded and is no longer available for reading.

Note: If handshaking is enabled and the transmitting serial device has been paused, this function
will release the transmitting serial device to resume transmission.
MVI46 and MVI56 only.

Return Value

MVI_SUCCESS the data was purged successfully

MVI_ERR_BADPARAM invalid comport

MVI_ERR_NOACCESS the comport has not been opened

Example

if (MVIsp_PurgeDataUnread(COM1) == MVI_SUCCESS)

printf("Transmit Data purged.\n");

See Also

MVIsp_PurgeDataUnsent (page 263)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 265 of 342 ProSoft Technology, Inc.

9.5 Serial Port API Miscellaneous Functions

MVIsp_GetVersionInfo

Syntax

int MVIsp_GetVersionInfo(MVISPVERSIONINFO *verinfo);

Parameters

verinfo Pointer to structure of type MVISPVERSIONINFO

Description

MVIsp_GetVersionInfo retrieves the current version of the API. The version
information is returned in the structure verinfo.

The MVISPVERSIONINFO structure is defined as follows:

typedef struct tagMVISPVERSIONINFO

{

 WORD APISeries; /* API series */

 WORD APIRevision; /* API revision */

} MVISPVERSIONINFO;

Return Value

MVI_SUCCESS The version information was read successfully.

Example

MVISPVERSIONINFO verinfo;

/* print version of API library */

MVIsp_GetVersionInfo(&verinfo);

printf("Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 266 of 342 ProSoft Technology, Inc.

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 267 of 342 ProSoft Technology, Inc.

10 CIP Messaging Library Functions

In This Chapter

 CIP Messaging API Files ... 268

 CIP API Architecture ... 269

 CIP API Initialization Functions ... 270

 CIP Object Registration ... 272

 CIPConnect
®
 Data Transfer .. 275

 CIP Callback Functions ... 278

 CIP Special Callback Registration ... 289

 CIP Miscellaneous Functions .. 292

The CIP Messaging API is one component of the MVI-ADM API Suite. CIP API
provides the lowest level of access to the ControlLogix backplane interface.
Complex applications, such as certain communications protocols, may interface
directly with the CIP API. It may be used with the MVI 56 only.

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 268 of 342 ProSoft Technology, Inc.

10.1 CIP Messaging API Files

The following table lists the supplied CIP messaging API filenames. These files
should be copied to a convenient directory on the computer on which the
application is to be developed. These files need not be present on the module
when executing the application.

Filename Description

Cipapi.h Include File

Cipapi.lib Library (16-bit OMF format)

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 269 of 342 ProSoft Technology, Inc.

10.2 CIP API Architecture

The CIP API communicates with the ControlBus through the backplane device
driver (MVI56BP.EXE). The backplane driver must be loaded before running an
application which uses the CIP API.

10.2.1 Backplane Device Driver

Details for each function are provided in the following topics.

Initialization

MVIcip_Open

MVIcip_Close

Object Registration

MVIcip_RegisterAssemblyObj

MVIcip_UnregisterAssemblyObj

Connected Data Transfer

MVIcip_WriteConnected

MVIcip_ReadConnected

Callback Functions

cnnect_proc

service_proc

rxdata_proc

fatalfault_proc

flashupdate_proc

resetrequest_proc

Special Callback Registration

MVIcip_RegisterReset ReqRtn

MVIcip_RegisterFatalFaultRtn

MVIcip_RegisterFlashUpdateRtn

Miscellaneous

MVIcip_GetIdObject

MVIcip_GetVersionInfo

MVIcip_SetUserLED

MVIcip_SetModuleStatus

MVIcip_ErrorString

MVIcip_GetSetupMode

MVIcip_GetConsoleMode

MVIcip_Sleep

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 270 of 342 ProSoft Technology, Inc.

10.3 CIP API Initialization Functions

MVIcip_Open

Syntax

int MVIcip_Open(MVIHANDLE *handle);

Parameters

handle pointer to variable of type MVIHANDLE

Description

MVIcip_Open acquires access to the CIP Messaging API and sets handle to a
unique ID that the application uses in subsequent functions. This function must
be called before any of the other CIP API functions can be used.

Return Value

MVI_SUCCESS API was opened successfully

MVI_ERR_REOPEN API is already open

MVI_ERR_NODEVICE backplane driver could not be accessed

Note: MVI_ERR_NODEVICE will be returned if the backplane device driver is not
loaded.

Example

MVIHANDLE handle;

if (MVIcip_Open(&handle)!= MVI_SUCCESS)

{

printf ("Open failed!\n");

}

else

{

printf ("Open succeeded\n");

}

See Also

MVIcip_Close (page 271)

After the API has been opened, MVIcip_Close should always be called before
exiting the application.

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 271 of 342 ProSoft Technology, Inc.

MVIcip_Close

Syntax

int MVIcip_Close(MVIHANDLE handle);

Parameters

handle handle returned by previous call to MVIcip_Open

Description

This function is used by an application to release control of the CIP API.

handle must be a valid handle returned from MVIcip_Open.

Return Value

MVI_SUCCESS API was closed successfully

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

MVIcip_Close (handle);

See Also

MVIcip_Open (page 270)

After the CIP API has been opened, this function should always be called before
exiting the application.

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 272 of 342 ProSoft Technology, Inc.

10.4 CIP Object Registration

MVIcip_RegisterAssemblyObj

Syntax

int MVIcip_RegisterAssemblyObj(MVIHANDLE handle, MVIHANDLE *objHandle, DWORD

reg_param, MVICALLBACK (*connect_proc)(), MVICALLBACK (*service_proc)(),

MVICALLBACK (*rxdata_proc)());

Parameters

handle handle returned by previous call to MVIcip_Open

objHandle pointer to variable of type MVIHANDLE. On successful return,
this variable will contain a value which identifies this object.

reg_param value that will be passed back to the application as a parameter
in the connect_proc and service_proc callback functions.

connect_proc pointer to callback function to handle connection requests

service_proc pointer to callback function to handle service requests

rxdata_proc pointer to callback function to receive data from an open
connection

Description

This function is used by an application to register all instances of the Assembly
Object with the CIP API. The object must be registered before a connection can
be established with it.

handle must be a valid handle returned from MVIcip_Open.

reg_param is a value that will be passed back to the application as a parameter
in the connect_proc and service_proc callback functions. The application may
use this to store an index or pointer. It is not used by the CIP API.

connect_proc is a pointer to a callback function to handle connection requests to
the registered object. This function will be called by the backplane device driver
when a Class 1 scheduled connection request for the object is received. It will
also be called when an established connection is closed.

service_proc is a pointer to a callback function which handles service requests to
the registered object. This function will be called by the backplane device driver
when an unscheduled message is received for the object.

rxdata_proc is a pointer to a callback function which handles data received on an
open connection. If rxdata_proc is NULL, then the CIP API buffers the received
data and the application must retrieve the data using the
MVIcip_ReadConnected() function. If rxdata_proc is not NULL, then the
rxdata_proc callback routine must copy the received data to a local buffer.

Return Value

MVI_SUCCESS object was registered successfully

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM connect_proc or service_proc is NULL

MVI_ERR_ALREADY_REGISTERED object has already been registered

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 273 of 342 ProSoft Technology, Inc.

Example

MVIHANDLE handle;

MVIHANDLE objHandle;

MY_STRUCT mystruct;

int rc;

MVICALLBACK MyConnectProc (MVIHANDLE, MVICIPCONNSTRUC *);

MVICALLBACK MyServiceProc(MVIHANDLE, MVICIPSERVSTRUC *);

// Register all instances of the assembly object

rc = MVIcip_RegisterAssemblyObj(handle, &objHandle,

(DWORD)&mystruct, MyConnectProc, MyServiceProc, NULL);

if (rc != MVI_SUCCESS) printf("Unable to register assembly object\n");

See Also

MVIcip_UnregisterAssemblyObj (page 274)

connect_proc (page 278)

service_proc (page 282)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 274 of 342 ProSoft Technology, Inc.

MVIcip_UnregisterAssemblyObj

Syntax

int MVIcip_UnregisterAssemblyObj(MVIHANDLE handle, MVIHANDLE objHandle);

Parameters

handle handle returned by previous call to MVIcip_Open

objHandle handle for object to be unregistered

Description

This function is used by an application to unregister all instances of the Assembly
Object with the CIP API. Any current connections for the object specified by
objHandle will be terminated.

handle must be a valid handle returned from MVIcip_Open.

objHandle must be a handle returned from

MVIcip_RegisterAssemblyObj.

Return Value

MVI_SUCCESS object was unregistered successfully

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM objHandle is invalid

Example

MVIHANDLE handle;

MVIHANDLE objHandle;

// Unregister all instances of the object

MVIcip_UnregisterAssemblyObj(handle, objHandle);

See Also

MVIcip_RegisterAssemblyObj (page 272)

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 275 of 342 ProSoft Technology, Inc.

10.5 CIPConnect® Data Transfer

MVIcip_WriteConnected

Syntax

int MVIcip_WriteConnected(MVIHANDLE handle, MVIHANDLE connHandle, BYTE

*dataBuf, WORD offset,WORD dataSize);

Parameters

handle handle returned by previous call to MVIcip_Open

connHandle handle of open connection

dataBuf pointer to data to be written

offset offset of byte to begin writing

dataSize number of bytes of data to write

Description

This function is used by an application to update data being sent on the open
connection specified by connHandle.

Handle must be a valid handle returned from MVIcip_Open.

ConnHandle must be a handle passed by the connect_proc callback function.

Offset is the offset into the connected data buffer to begin writing.

DataBuf is a pointer to a buffer containing the data to be written.

DataSize is the number of bytes of data to be written.

Note: For Assembly Instance 1, the first 4 bytes of the ControlLogix input image table are
overwritten with "FF" (hex) when the connection is not open or broken.

Return Value

MVI_SUCCESS data was updated successfully

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM connHandle or dataSize is invalid

Example

MVIHANDLE handle;

MVIHANDLE connHandle;

BYTE buffer[128];

// Write 128 bytes to the connected data buffer

MVIcip_WriteConnected(handle, connHandle, buffer, 0, 128);

See Also

MVIcip_ReadConnected (page 276)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 276 of 342 ProSoft Technology, Inc.

MVIcip_ReadConnected

Syntax

int MVIcip_ReadConnected(MVIHANDLE handle, MVIHANDLE connHandle, BYTE

*dataBuf, WORD offset, WORD dataSize);

Parameters

handle handle returned by previous call to MVIcip_Open

connHandle handle of open connection

dataBuf pointer to buffer to receive data

offset offset of byte to begin reading

dataSize number of bytes to read

Description

This function is used by an application read data being received on the open
connection specified by connHandle.

handle must be a valid handle returned from MVIcip_Open. connHandle must be
a handle passed by the connect_proc callback function. offset is the offset into

the connected data buffer to begin reading. dataBuf is a pointer to a buffer to
receive the data. dataSize is the number of bytes of data to be read.

Notes: When a connection has been established with a ControlLogix controller, the first 4 bytes of
received data are processor status and are automatically set by the controller. The first byte of data
appears at offset 4 in the receive data buffer.
A Run/Idle status word is appended when the communication format is one of the "Data-xxx" types.
This status word is not used for "Input Data-xxx" types or status connections. Only the least
significant bit of the word is used. All other bits are reset to 0. When set to 1 (run), the bit signals
the module to activate its I/O. When reset to 0, it signals the module to deactivate I/O (idle state).
The Run/Idle bit can be set only when the processor is in Run mode.
The bit is reset when the ControlLogix processor:
 goes into a major fault state
 is in program mode
 is in test mode
The MVIcip_ReadConnected function can only be used if the rxdata_proc callback function pointer
was set to NULL in the call to MVIcip_RegisterAssemblyObject().

Return Value

MVI_SUCCESS data was read successfully

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM connHandle or dataSize is invalid

MVI_ERR_INVALID an rxdata_proc callback has already been registered, see
MVIcp_RegisterAssemblyObject()."

Example

MVIHANDLE handle;

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 277 of 342 ProSoft Technology, Inc.

MVIHANDLE connHandle;

BYTE buffer[128];

// Read 128 bytes from the connected data buffer

MVIcip_ReadConnected(handle, connHandle, buffer, 0, 128);

See Also

MVIcip_WriteConnected (page 275)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 278 of 342 ProSoft Technology, Inc.

10.6 CIP Callback Functions

Note: The functions in this section are not part of the CIP API, but must be implemented by the
application. The CIP API calls the connect_proc or service_proc functions when connection or
service requests are received for the registered object. The optional rxdata_proc function is called
when data is received on a connection. The optional fatalfault_proc function is called when the
backplane device driver detects a fatal fault condition. The optional resetrequest_proc function is
called when a reset request is received by the backplane device driver.

Special care must be taken when coding the callback functions, because these
functions are called directly from the backplane device driver. in particular, no
assumptions can be made about the segment registers DS or SS. Therefore, the
compiler options or directives used must disable stack probes and reload DS. For
convenience, the macro MVICALLBACK has been defined to include the
__loadds compiler directive, which forces the data segment register to be
reloaded upon entry to the callback function.

Stack probes (or stack checking) must be disabled using compiler command line
arguments or pragmas. Stack checking is off by default for the Borland compiler.

In general, the callback routines should be as short as possible, especially
rxdata_proc. Do not call any library functions from the rxdata_proc callback
routine. Stack size is limited, so keep stack variables to a minimum.

connect_proc

Syntax

MVICALLBACK connect_proc(MVIHANDLE objHandle, MVICIPCONNSTRUC *sConn);

Parameters

objHandle handle of registered object instance

sConn pointer to structure of type MVICIPCONNSTRUCT

Description

connect_proc is a callback function which is passed to the CIP API in the
MVIcip_RegisterAssemblyObj call. The CIP API calls the connect_proc function
when a Class 1 scheduled connection request is made for the registered object
instance specified by objHandle.

sConn is a pointer to a structure of type MVICIPCONNSTRUCT. this structure is
shown below:

typedef struct tagMVICIPCONNSTRUC

{

MVIHANDLE connHandle; // unique value which identifies this connection

DWORD reg_param; // value passed via MVIcip_Register AssemblyObj

WORD reason; // specifies reason for callback

WORD instance; // instance specified in open

WORD producerCP; // producer connection point specified in open

WORD consumerCP; // consumer connection point specified in open

DWORD *lOTApi; // pointer to originator to target packet interval

DWORD *lTOApi; // pointer to target to originator packet interval

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 279 of 342 ProSoft Technology, Inc.

DWORD lODeviceSn; // Serial number of the originator

WORD iOVendorId; // Vendor Id of the originator

WORD rxDataSize; // size in bytes of receive data

WORD txDataSize; // size in bytes of transmit data

BYTE *configData; // pointer to configuration data sent in open

WORD configSize; // size of configuration data sent in open

WORD *extendederr; // an extended error code if an error occurs

} MVICIPCONNSTRUC;

connHandle identifies this connection. This value must be passed to the
MVIcip_ReadConnected function.

reg_param is the value that was passed to MVIcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

reason specifies whether the connection is being opened or closed. A value of
MVI_CIP_CONN_OPEN indicates the connection is being opened,
MVI_CIP_CONN_OPEN_COMPLETE indicates the connection has been
successfully opened, and MVI_CIP_CONN_CLOSE indicates the connection is
being closed. If reason is MVI_CIP_CONN_CLOSE, the following parameters are
unused: producerCP, consumerCP, api, rxDataSize, and txDataSize.

instance is the instance number that is passed in the forward open.

Note: This corresponds to the Configuration Instance on the RSLogix 5000 generic profile.

producerCP is the producer connection point from the open request.

Note: This corresponds to the Input Instance on the RSLogix 5000 generic profile.

consumerCP is the consumer connection point from the open request.

Note: This corresponds to the Output Instance on the RSLogix 5000 generic profile.

lOTApi is a pointer to the originator-to-target actual packet interval for this
connection, expressed in microseconds. This is the rate at which connection data
packets will be received from the originator. This value is initialized according to
the requested packet interval from the open request. The application may choose
to reject the connection if the value is not within a predetermined range. If the
connection is rejected, return MVI_CIP_FAILURE and set extendederr to
MVI_CIP_EX_BAD_RPI. Note: The minimum RPI value supported by the MVI56
module is 600us.

lTOApi is a pointer to the target-to-originator actual packet interval for this
connection, expressed in microseconds. This is the rate at which connection data
packets will be transmitted by the module. This value is initialized according to
the requested packet interval from the open request. The application may choose
to increase this value if necessary.

lODeviceSn is the serial number of the originating device, and iOVendorId is the
vendor ID. The combination of vendor ID and serial number is guaranteed to be
unique, and may be used to identify the source of the connection request. This is
important when connection requests may be originated by multiple devices.

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 280 of 342 ProSoft Technology, Inc.

rxDataSize is the size in bytes of the data to be received on this connection.
txDataSize is the size in bytes of the data to be sent on this connection.

configData is a pointer to a buffer containing any configuration data that was sent
with the open request. configSize is the size in bytes of the configuration data.

extendederr is a pointer to a word which may be set by the callback function to
an extended error code if the connection open request is refused.

Return Value

The connect_proc routine must return one of the following values if reason is
MVI_CIP_CONN_OPEN:

Note: If reason is MVI_CIP_CONN_OPEN_COMPLETE or MVI_CIP_CONN_CLOSE, the return
value must be MVI_SUCCESS.

MVI_SUCCESS connection is accepted

MVI_CIP_BAD_INSTANCE instance is invalid

MVI_CIP_NO_RESOURCE unable to support connection due to resource limitations

MVI_CIP_FAILURE connection is rejected: extendederr may be set

Extended Error Codes

If the open request is rejected, extendederr can be set to one of the following
values:

MVI_CIP_EX_CONNECTION_USED The requested connection is already in use.

MVI_CIP_EX_BAD_RPI The requested packet interval cannot be supported.

MVI_CIP_EX_BAD_SIZE The requested connection sizes do not match the
allowed sizes.

Example

MVIHANDLE Handle;

MVICALLBACK connect_proc(MVIHANDLE objHandle, MVICIPCONNSTRUCT

*sConn)

{

// Check reason for callback

switch(sConn->reason)

{

case MVI_CIP_CONN_OPEN:

// A new connection request is being made. Validate the // parameters and

determine whether to allow the // connection.

// Return MVI_SUCCESS if the connection is to be

// established,

// or one of the extended error codes if not. Refer to the sample

// code for more details.

return(MVI_SUCCESS);

case MVI_CIP_CONN_OPEN_COMPLETE:

// The connection has been successfully opened. If

// necessary,

// call MVIcip_WriteConnected to initialize transmit data.

return(MVI_SUCCESS);

case MVI_CIP_CONN_CLOSE:

// This connection has been closed - inform the application

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 281 of 342 ProSoft Technology, Inc.

return(MVI_SUCCESS);

}

}

See Also

MVIcip_RegisterAssemblyObj (page 272)

MVIcip_ReadConnected (page 276)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 282 of 342 ProSoft Technology, Inc.

service_proc

Syntax

MVICALLBACK service_proc(MVIHANDLE objHandle, MVICIPSERVSTRUC *sServ);

Parameters

objHandle handle of registered object

sServ pointer to structure of type MVICIPSERVSTRUC

Description

service_proc is a callback function which is passed to the CIP API in the
MVIcip_RegisterAssemblyObj call. The CIP API calls the service_proc function
when an unscheduled message is received for the registered object specified by
objHandle.

Note that the object ID, Instance Number, is overwritten by the instance
parameter of the structure below.

sServ is a pointer to a structure of type MVICIPSERVSTRUC. This structure is
shown below:

typedef struct tagMVICIPSERVSTRUC

{

DWORD reg_param; // value passed via MVIcip_RegisterAssemblyObj

WORD instance; // instance number of object being accessed

BYTE serviceCode; // service being requested

WORD attribute; // attribute being accessed

BYTE **msgBuf; // pointer to pointer to message data

WORD offset; // member offset

WORD *msgSize; // pointer to size in bytes of message data

WORD *extendederr; // an extended error code if an error occurs

} MVICIPSERVSTRUC;

reg_param is the value that was passed to MVIcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

instance specifies the instance of the object being accessed.

serviceCode specifies the service being requested. attribute specifies the
attribute being accessed.

msgBuf is a pointer to a pointer to a buffer containing the data from the message.
This pointer should be updated by the callback routine to point to the buffer
containing the message response upon return.

offset is the offset of the member being accessed.

msgSize points to the size in bytes of the data pointed to by msgBuf.

The application should update this with the size of the response data before
returning.

extendederr is a pointer to a word which can be set by the callback function to an
extended error code if the service request is refused.

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 283 of 342 ProSoft Technology, Inc.

Return Value

The service_proc routine must return one of the following values:

MVI_SUCCESS message processed successfully

MVI_CIP_BAD_INSTANCE invalid class instance

MVI_CIP_BAD_SERVICE invalid service code

MVI_CIP_BAD_ATTR invalid attribute

MVI_CIP_ATTR_NOT_SETTABLE attribute is not settable

MVI_CIP_PARTIAL_DATA data size invalid

MVI_CIP_BAD_ATTR_DATA attribute data is invalid

MVI_CIP_FAILURE generic failure code

Example

MVIHANDLE Handle;

MVICALLBACK service_proc (MVIHANDLE objHandle, MVICIPSERVSTRUC

*sServ)

{

// Select which instance is being accessed.

// The application defines how each instance is defined.

switch(sServ->instance)

{

case 1: // Instance 1

// Check serviceCode and attribute; perform

// requested service if appropriate

break;

case 2: // Instance 2

// Check serviceCode and attribute; perform

// requested service if appropriate

break;

default:

return(MVI_CIP_BAD_INSTANCE); // Invalid instance

}

}

See Also

MVIcip_RegisterAssemblyObj (page 272)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 284 of 342 ProSoft Technology, Inc.

rxdata_proc

Syntax

int rxdata_proc(MVIHANDLE objHandle, MVICIPRECVSTRUC *sRecv);

Parameters

objHandle handle of registered object

sRecv pointer to structure of type MVICIPRECVSTRUC

Description

rxdata_proc is an optional callback function which may be passed to the CIP API
in the MVIcip_RegisterAssemblyObj call. If the rxdata_proc callback has been
registered, the CIP API calls it when Class 1 scheduled data is received for the
registered object specified by objHandle.

sRecv is a pointer to a structure of type MVICIPRECVSTRUC. this structure is
shown below:

typedef struct tagMVICIPRECVSTRUC

{

DWORD reg_param; // value passed via MVIcip_Register AssemblyObj

MVIHANDLE connHandle; // unique value which identifies this connection

BYTE*' rxData; // pointer to buffer of received data

WORD dataSize; // size of received data in bytes

} MVICIPRECVSTRUC;

reg_param is the value that was passed to MVIcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

connHandle is the connection identifier passed to the connect_proc callback
when this connection was opened.

rxData is a pointer to a buffer containing the received data. dataSize is the size of
the received data in bytes.

Note: Use of the rxdata_proc callback is not recommended. Registering this callback increases
CPU overhead and reduces overall performance, especially for relatively small RPI values. It is
recommended that this callback only be used when the RPI is set to 10ms or greater.
This routine is called directly from an interrupt service routine in the backplane device driver. It
should not perform any operating system calls and should execute as quickly as possible (200us
maximum). Its only function should be to copy the data to a local buffer. The data must not be
processed in the callback routine, or backplane communications may be disrupted.

Return Value

The rxdata_proc routine must return MVI_SUCCESS.

Example

MVIHANDLE Handle;

int _loadds rxdata_proc(MVIHANDLE objHandle, MVICIPRECVSTRUC *sRecv)

{

// Copy the data to our local buffer.

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 285 of 342 ProSoft Technology, Inc.

memcpy(RxDataBuf, sRecv->rxData, sRecv->dataSize);

// Indicate that new data has been received

RxDataCnt++;

return(MVI_SUCCESS);

}

See Also

MVIcip_RegisterAssemblyObj (page 272)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 286 of 342 ProSoft Technology, Inc.

fatalfault_proc

Syntax

MVICALLBACK fatalfault_proc();

Parameters

None

Description

fatalfault_proc is an optional callback function which may be passed to the CIP
API in the MVIcip_RegisterFatalFaultRtn call. If the fatalfault_proc callback has
been registered, it will be called if the backplane device driver detects a fatal fault
condition. This allows the application an opportunity to take appropriate actions.

Return Value

The fatalfault_proc routine must return MVI_SUCCESS.

Example

MVIHANDLE Handle;

MVICALLBACK fatalfault_proc(void)

{

// Take whatever action is appropriate for the application:

// - Set local I/O to safe state

// - Log error

// - Attempt recovery (for example, restart module)

return(MVI_SUCCESS);

}

See Also

MVIcip_RegisterFatalFaultRtn; (page 289)

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 287 of 342 ProSoft Technology, Inc.

flashupdate_proc

Syntax

MVICALLBACK flashupdate_proc();

Parameters

None

Description

flashupdate_proc is an optional callback function which may be passed to the
CIP API in the MVIcip_RegisterFlashUpdateRtn call. If the flashupdate_proc
callback has been registered, it will be called if the backplane device driver
receives a flash update command. This allows the application an opportunity to
take appropriate actions before it is stopped.

Return Value

The flashupdate_proc routine must return MVI_SUCCESS.

Example

MVIHANDLE Handle;

MVICALLBACK flashupdate_proc(void)

{

// Take whatever action is appropriate for the application:

// - Set local I/O to safe state

// - Trigger an orderly shutdown

return(MVI_SUCCESS);

}

See Also

MVIcip_RegisterFlashUpdateRtn (page 291)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 288 of 342 ProSoft Technology, Inc.

resetrequest_proc

Syntax

MVICALLBACK resetrequest_proc();

Parameters

None

Description

resetrequest_proc is an optional callback function which may be passed to the
CIP API in the MVIcip_RegisterResetReqRtn call. If the resetrequest_proc
callback has been registered, it will be called if the backplane device driver
receives a module reset request (Identity Object reset service). This allows the
application an opportunity to take appropriate actions to prepare for the reset, or
to refuse the reset.

Return Value

MVI_SUCCESS the module will reset upon return from the callback

MVI_ERR_INVALID the module will not be reset and will continue normal operation

Example

MVIHANDLE Handle;

MVICALLBACK resetrequest_proc(void)

{

// Take whatever action is appropriate for the application:

// - Set local I/O to safe state

// - Perform orderly shutdown

// - Reset special hardware

// - Refuse the reset

return(MVI_SUCCESS); // allow the reset

}

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 289 of 342 ProSoft Technology, Inc.

10.7 CIP Special Callback Registration

MVIcip_RegisterFatalFaultRtn

Syntax

int MVIcip_RegisterFatalFaultRtn(MVIHANDLE handle, MVICALLBACK

(*fatalfault_proc)());

Parameters

handle handle returned by previous call to MVIcip_Open

fatalfault_proc pointer to fatal fault callback routine

Description

This function is used by an application to register a fatal fault callback routine.
Once registered, the backplane device driver will call fatalfault_proc if a fatal fault
condition is detected.

handle must be a valid handle returned from MVIcip_Open.

fatalfault_proc must be a pointer to a fatal fault callback function.

A fatal fault condition will result in the module being taken offline; that is, all
backplane communications will halt. The application may register a fatal fault
callback in order to perform recovery, safe-state, or diagnostic actions.

Return Value

MVI_SUCCESS routine was registered successfully

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

// Register a fatal fault handler

MVIcip_RegisterFatalFaultRtn(handle, fatalfault_proc);

See Also

fatalfault_proc (page 286)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 290 of 342 ProSoft Technology, Inc.

MVIcip_RegisterResetReqRtn

Syntax

int MVIcip_RegisterResetReqRtn(MVIHANDLE handle, MVICALLBACK

(*resetrequest_proc)());

Parameters

handle handle returned by previous call to MVIcip_Open

resetrequest_proc pointer to reset request callback routine

Description

This function is used by an application to register a reset request callback
routine. Once registered, the backplane device driver will call resetrequest_proc
if a module reset request is received.

handle must be a valid handle returned from MVIcip_Open.

resetrequest_proc must be a pointer to a reset request callback function.

If the application does not register a reset request handler, receipt of a module
reset request will result in a software reset (that is, reboot) of the module. The
application may register a reset request callback in order to perform an orderly
shutdown, reset special hardware, or to deny the reset request.

Return Value

MVI_SUCCESS routine was registered successfully

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

// Register a reset request handler

MVIcip_RegisterResetReqRtn(handle, resetrequest_proc);

See Also

resetrequest_proc (page 288)

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 291 of 342 ProSoft Technology, Inc.

MVIcip_RegisterFlashUpdateRtn

Syntax

int MVIcip_RegisterFlashUpdateRtn(MVIHANDLE handle, MVICALLBACK

(*flashupdate_proc)());

Parameters

handle handle returned by previous call to MVIcip_Open

flashupdate_proc pointer to flash update callback routine

Description

This function is used by an application to register a flash update callback routine.
Once registered, the backplane device driver will call flashupdate_proc if a flash
update command is received (A flash update command updates the module's
firmware. It is generated by a firmware update utility such as Control Flash).

handle must be a valid handle returned from MVIcip_Open.

flashupdate_proc must be a pointer to a flash update callback function.

The application may register a flash update callback in order to perform an
orderly shutdown. Once a flash update command is received, the backplane
device driver will close all open connections, and will refuse any new connections
until the update has completed. After calling the flash update callback (if
registered), the backplane device driver will restart the module in flash update
mode (no application will be loaded).

After the flash update has completed, the module will be restarted in normal
mode.

Return Value

MVI_SUCCESS Routine was registered successfully

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

// Register a flash update handler

MVIcip_RegisterFlashUpdateRtn(handle, flashupdate_proc);

See Also

flashupdate_proc (page 287)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 292 of 342 ProSoft Technology, Inc.

10.8 CIP Miscellaneous Functions

MVIcip_GetIdObject

Syntax

int MVIcip_GetIdObject(MVIHANDLE handle, MVICIPIDOBJ *idobject);

Parameters

handle handle returned from MVIcip_Open call

Description

MVIcip_GetIdObject retrieves the identity object for the module.

handle must be a valid handle returned from MVIcip_Open.

idobject is a pointer to a structure of type MVICIPIDOBJ. The members of this
structure will be updated with the module identity data.

The MVICIPIDOBJ structure is defined below:

typedef struct tagMVICIPIDOBJ

{

WORD VendorID; // Vendor ID number

WORD DeviceType; // General product type

WORD ProductCode; // Vendor-specific product identifier

BYTE MajorRevision; // Major revision level

BYTE MinorRevision; // Minor revision level

DWORD SerialNo; // Module serial number

BYTE Name[32]; // Text module name (null-terminated)

} MVICIPIDOBJ;

Return Value:

MVI_SUCCESS ID object was retrieved successfully

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

MVICIPIDOBJ idobject;

MVIcip_GetIdObject(handle, &idobject);

printf("Module Name: %s Serial Number: %lu\n", idobject.Name,

idobject.SerialNo);

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 293 of 342 ProSoft Technology, Inc.

MVIcip_GetVersionInfo

Syntax

int MVIcip_GetVersionInfo(MVIHANDLE handle, VICIPVERSIONINFO *verinfo);

Parameters

handle handle returned by previous call to MVIcip_Open

verinfo pointer to structure of type MVICIPVERSIONINFO

Description

MVIcip_GetVersionInfo retrieves the current version of the API library and the
backplane device driver. The information is returned in the structure verinfo.

handle must be a valid handle returned from MVIcip_Open.

The MVICIPVERSIONINFO structure is defined as follows:

typedef struct tagMVICIPVERSIONINFO

{

WORD APISeries; /*API series */

WORD APIRevision; /* API revision */

WORD BPDDSeries; /* Backplane device driver series */

WORD BPDDRevision; /* Backplane device driver revision */

} MVICIPVERSIONINFO;

Return Value

MVI_SUCCESS version information was read successfully

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE Handle;

MVICIPVERSIONINFO verinfo;

/* print version of API library */

MVIcip_GetVersionInfo(Handle,&verinfo);

printf("Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);

printf("Driver Series %d, Rev %d\n", verinfo.BPDDSeries,

verinfo.BPDDRevision);

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 294 of 342 ProSoft Technology, Inc.

MVIcip_SetUserLED

Syntax

int MVIcip_SetUserLED(MVIHANDLE handle, int lednum, int ledstate);

Parameters

handle handle returned by previous call to MVIcip_Open

lednum specifies which of the user LED indicators is being addressed

ledstate specifies state for LED indicator

Description

MVIcip_SetUserLED allows an application to turn the user LED indicators on and
off.

handle must be a valid handle returned from MVIcip_Open.

lednum must be set to MVI_LED_USER1 or MVI_LED_USER2 to select User
LED 1 or User LED 2, respectively.

ledstate must be set to MVI_LED_STATE_ON or MVI_LED_STATE_OFF to turn
the indicator On or Off, respectively.

Return Value

MVI_SUCCESS the input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example

MVIHANDLE Handle;

/* Turn User LED 1 on and User LED 2 off */

MVIcip_SetUserLED(Handle, MVI_LED_USER1, MVI_LED_STATE_ON);

MVIcip_SetUserLED(Handle, MVI_LED_USER2, MVI_LED_STATE_OFF);

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 295 of 342 ProSoft Technology, Inc.

MVIcip_SetModuleStatus

Syntax

int MVIcip_SetModuleStatus(MVIHANDLE handle, int status);

Parameters

handle handle returned by previous call to MVIcip_Open

status module status, OK or Faulted

Description

MVIcip_SetModuleStatus allows an application set the status of the module to
OK or Faulted.

handle must be a valid handle returned from MVIcip_Open.

status must be set to MVI_MODULE_STATUS_OK or
MVI_MODULE_STATUS_FAULTED. If the status is OK, the module status LED
indicator will be set to Green. If the status is Faulted, the status indicator will be
set to Red.

Return Value

MVI_SUCCESS the input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example

MVIHANDLE Handle;

/* Set the Status indicator to Red */

MVIcip_SetModuleStatus(Handle, MVI_MODULE_STATUS_FAULTED);

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 296 of 342 ProSoft Technology, Inc.

MVIcip_ErrorString

Syntax

int MVIcip_ErrorString(int errcode, char *buf);

Parameters

errcode error code returned from an API function

buf pointer to user buffer to receive message

Description

MVIcip_ErrorString returns a text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value

MVI_SUCCESS message returned in buf

MVI_ERR_BADPARAM unknown error code

Example

char buf[80];

int rc;

/* print error message */

MVIcip_ErrorString(rc, buf);

printf("Error: %s", buf);

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 297 of 342 ProSoft Technology, Inc.

MVIcip_GetSetupMode

Syntax

int MVIcip_GetSetupMode(MVIHANDLE handle, int *mode);

Parameters

handle handle returned by previous call to MVIcip_Open

mode pointer to an integer that is set to 1 if the Setup Jumper is
installed, or 0 if the Setup Jumper is not installed.

Description

This function queries the state of the Setup Jumper.

handle must be a valid handle returned from MVIcip_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the module is in Setup Mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup Mode.

It may be useful for an application to detect Setup Mode and perform special
configuration or diagnostic functions.

Return Value

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int mode;

MVIcip_GetSetupMode(handle, &mode);

if (mode)

// Setup Jumper is installed - perform configuration/diagnostic

else

// Not in Setup Mode - normal operation

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 298 of 342 ProSoft Technology, Inc.

MVIcip_GetConsoleMode

Syntax

int MVIcip_GetConsoleMode(MVIHANDLE handle, int *mode, int *baud);

Parameters

Handle handle returned by previous call to MVIcip_Open

mode pointer to an integer that is set to 1 if the console is enabled, or 0
if the console is disabled.

baud pointer to an integer that is set to the console baud rate index if
the console is enabled.

Description

This function queries the state of the console.

handle must be a valid handle returned from MVIcip_Open. mode is a pointer to
an integer. When this function returns, mode will be set to 1 if the console is
enabled, or 0 if the console is disabled. baud is a pointer to an integer. When this
function returns, baud will be set to the console’s baud index value if the console
is enabled. The baud index values are shown in table (4). baud is not set if the
console is disabled.

It may be useful for an application to detect that the console is enabled and allow
user interaction.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int mode;

MVIcip_GetConsoleMode(handle, &mode);

if (mode)

// Console is enabled - allow user interaction

else

// Console is not available - normal operation

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 299 of 342 ProSoft Technology, Inc.

MVIcip_Sleep

Syntax

int MVIcip_Sleep(MVIHANDLE handle, WORD msdelay);

Parameters

handle handle returned by previous call to MVIcip_Open

msdelay time in milliseconds to suspend taskdelay);

Description

MVIcip_Sleep suspends the calling thread for at least msdelay milliseconds. The
actual delay may be several milliseconds longer than msdelay, due to system
overhead and the system timer granularity (5ms).

Return Value

MVI_SUCCESS success

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int timeout=200;

// Simple timeout loop

while(timeout--)

{

// Poll for data, and so on.

// Break if condition is met (no timeout)

// Else sleep a bit and try again

MVIcip_Sleep (handle, 10);}

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 300 of 342 ProSoft Technology, Inc.

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 301 of 342 ProSoft Technology, Inc.

11 Side-Connect API Library Functions

In This Chapter

 Initialization .. 302

 PLC Message Handling ... 303

 Side-connect API Initialization Functions... 304

 Side-connect API PLC Data Table Access Functions 306

 Side-connect API Synchronization Functions 314

 Side-connect API PLC Message Handling Functions 315

 Side-connect API Block Transfer Functions .. 318

 Side-connect API PLC Status and Control Functions 320

 Side-connect API Miscellaneous Functions ... 326

This section provides detailed programming information for each of the API
library functions. he calling convention for each API function is shown in 'C'
format.

Important: Side-Connect API Functions apply to MVI71 only and are not supported by other
modules. T

The API library routines are categorized according to functionality as follows:

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 302 of 342 ProSoft Technology, Inc.

11.1 Initialization

MVIsc_Open

MVIsc_Close

11.1.1 PLC Data Table Access

MVIsc_GetPLCFileInfo

MVIsc_ReadPLC

MVIsc_WritePLC

MVIsc_RMWPLC

11.1.2 Synchronization

MVIsc_WaitForEos

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 303 of 342 ProSoft Technology, Inc.

11.2 PLC Message Handling

MVIsc_PLCMsgRead

MVIsc_PLCMsgWrite

MVIsc_PLCMsgWait

11.2.1 Block Transfer

MVIsc_PLCBTRead

MVIsc_PLCBTWrite

11.2.2 PLC Status and Control

MVIsc_GetPLCStatus

MVIsc_GetPLCClock

MVIsc_SyncPLCClock

MVIsc_ClearFault

MVIsc_SetPLCMode

11.2.3 Miscellaneous

MVIsc_GetVersionInfo

MVIsc_ErrorStr

MVIsc_GetLastPcccError

MVIsc_BCD2BIN

MVIsc_BIN2BCD

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 304 of 342 ProSoft Technology, Inc.

11.3 Side-connect API Initialization Functions

MVIsc_Open

Syntax

int MVIsc_Open(HANDLE *handle);

Parameters

handle Pointer to variable of type handle

Description

MVIsc_Open acquires access to the API and sets handle to a unique ID that the
application uses in subsequent functions. This function must be called before any
of the other API functions can be used.

IMPORTANT: After the API has been opened, MVIsc_Close should always be called before exiting
the application.

Return Value

MVISC_SUCCESS Side-connect API was opened successfully

MVISC_ERR_REOPEN Side-connect API is already open

MVISC_ERR_PLCTIMEOUT No response from PLC detected. Check side-connect.

Example

HANDLE Handle;

if (MVIsc_Open(&Handle) != MVISC_SUCCESS) {

printf("Open failed!\n");

}

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 305 of 342 ProSoft Technology, Inc.

MVIsc_Close

Syntax

int MVIsc_Close(HANDLE handle);

Parameters

Handle Handle returned by previous call to MVIsc_Open

Description

This function is used by an application to release control of the API.

handle must be a valid handle returned from MVIsc_Open.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

MVISC_SUCCESS API was closed successfully

MVISC_ERR_NOACCESS handle does not have access

Example

HANDLE Handle;

MVIsc_Close(Handle);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 306 of 342 ProSoft Technology, Inc.

11.4 Side-connect API PLC Data Table Access Functions

MVIsc_GetPLCFileInfo

Syntax

int MVIsc_GetPLCFileInfo(HANDLE handle, WORD fileno, MVISCFILEINFO *fileinfo);

Parameters

handle Handle returned by previous call to MVIsc_Open

fileno Number of file for which information will be retrieved

fileinfo Pointer to MVISCFILEINFO structure to receive file information

Description

This function obtains information about a PLC-5 data file.

handle must be a valid handle returned from MVIsc_Open. fileno identifies the
PLC-5 file number for which the information is to be retrieved.

The file type, length in words, and number of elements in the file are returned in
the MVISCFILEINFO structure pointed to by fileinfo. The MVISCFILEINFO
structure is defined as shown:

typedef struct tagMVISCFILEINFO

{

WORD filetype; // File type

WORD num_elements; // File size expressed in elements

DWORD num_words; // File size expressed in words

} MVISCFILEINFO;

The file type is identified by filetype. The possible values for filetype are shown in
Table 2.

PLC-5 Data File Types

Data Type Definition Value Description

MVISC_PLCTYPE_O 0 Output

MVISC_PLCTYPE_I 1 Input

MVISC_PLCTYPE_S 2 Status

MVISC_PLCTYPE_B 3 Bit (binary)

MVISC_PLCTYPE_T 4 Timer

MVISC_PLCTYPE_C 5 Counter

MVISC_PLCTYPE_R 6 Control

MVISC_PLCTYPE_N 7 Integer

MVISC_PLCTYPE_F 8 Floating-point

MVISC_PLCTYPE_PD 9 PID

MVISC_PLCTYPE_BT 10 Block Transfer

MVISC_PLCTYPE_MG 11 Message

MVISC_PLCTYPE_SC 12 SFC Status

MVISC_PLCTYPE_ST 13 ASCII String

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 307 of 342 ProSoft Technology, Inc.

Data Type Definition Value Description

MVISC_PLCTYPE_A 14 ASCII Display

MVISC_PLCTYPE_D 15 BCD Display

MVISC_PLCTYPE_NOEXIST 9998 File does not exist

MVISC_PLCTYPE_UNKNOWN 9999 Unknown data type

Return Value

MVISC_SUCCESS No errors were encountered

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

MVISC_ERR_PCCCFAIL PCCC error occurred

Example

HANDLE Handle;

MVISCFILEINFO fileinfo;

int rc;

/* Query the PLC to check file number 7. In this example, */

/* file 7 is expected to be an Integer file. If it is not, */

/* a configuration error message is displayed. */

rc = MVIsc_GetPLCFileInfo(Handle, 7, &fileinfo);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_GetPLCFileInfo failed");

if (fileinfo.filetype != MVISC_PLCTYPE_N)

printf("Configuration Error: File 7 is not Integer or does not exist");

else

printf("File Size is %d elements and %ld words",

fileinfo.num_elements, fileinfo.num_words);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 308 of 342 ProSoft Technology, Inc.

MVIsc_WritePLC

Syntax

int MVIsc_WritePLC(HANDLE handle, void *buf, WORD fileno, WORD elemno, WORD

subelemno, WORD size, WORD datatype, int fsync);

Parameters

handle Handle returned by previous call to MVIsc_Open

buf Pointer to user data buffer which contains data to be written to
the PLC-5

fileno PLC-5 data table file number

elemno PLC-5 data table element number

subelemno PLC-5 data table subelement number

size Number of data items of type datatype to be written

datatype Type of data item being written

fsync Synchronization flag. Must be set to MVISC_SYNC_ACCESS or
MVISC_ASYNC_ACCESS.

Description

MVIsc_WritePLC writes size data items of type datatype from buf to the PLC-5
data table file specified by fileno. elemno specifies the element number of the
data table file to begin writing. subelemno is used to address structured data. It
specifies the offset to a particular data item within a multi-word data structure,
such as a PID structure. For simple data files such as integer or float, subelemno
must be set to zero; otherwise, no data will be written an
MVISC_ERR_XFERFAIL will be returned. subelemno is specified as the word
offset within the data structure.

Note: For convenience, sub-element definitions for each of the data items within the various PLC-5
data structures are provided in the API include file MVISCAPI.H.

fsync specifies whether the access is synchronous or asynchronous with respect
to the PLC-5 ladder scan. When set to MVISC_SYNC_ACCESS, the transfer will
take place at the end of the next ladder scan. When set to
MVISC_ASYNC_ACCESS, the transfer will take place immediately. This flag
only has effect when the PLC-5 is in Run mode. Online handle must be a valid
handle returned from MVIsc_Open.

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 309 of 342 ProSoft Technology, Inc.

Notes: datatype specifies the type of data item being written, which may be different from the data
file type. For example, to access the SP value of a PID structure within a PD file, the data type
should be specified as MVISC_DTYP_FLOAT. In this example, subelemno must be set to the word
offset of the desired member within the PID structure, which in this case is defined as
MVISC_SUBEL_PD_SP. Valid values for datatype are MVISC_DTYP_WORD and
MVISC_DTYP_FLOAT. An attempt to write past the end of a data table file will result in a return
code of MVISC_ERR_XFERFAIL or MVISC_ERR_PCCCFAIL. If the PLC is in RUN mode when
this write is attempted, PLC-5 data will be corrupted and the PLC-5 will be faulted. Care should be
taken not to exceed the boundaries of the PLC-5 data tables. See MVIsc_GetPLCFileInfo to
determine valid data table boundaries.

Return Value

MVISC_SUCCESS The data was written successfully

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_BADPARAM Parameter contains invalid value

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

MVISC_ERR_XFERFAIL PLC-5 returned an error

MVISC_ERR_PCCCFAIL PCCC error occurred

Example

HANDLE Handle;

short N;

float SP;

int rc;

/* Write 1 integer to element 4 of integer file 7 (N7:4), asynchronously */

rc = MVIsc_WritePLC(Handle, &N, 7, 4, 0, 1, MVISC_DTYP_WORD,

MVISC_ASYNC_ACCESS);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_WritePLC failed");

/* Write to the set point value of PID element 3 of PD file 9 (PD9:3.SP),

synchronously */

rc = MVIscWritePLC(Handle, &SP, 9, 3, MVISC_SUBEL_PD_SP, 1, MVISC_DTYP_FLOAT,

MVISC_SYNC_ACCESS);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_WritePLC failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 310 of 342 ProSoft Technology, Inc.

MVIsc_ReadPLC

Syntax

int MVIsc_ReadPLC(HANDLE handle, void *buf, WORD fileno, WORD elemno, WORD

subelemno, WORD size, WORD datatype, int fsync);

Parameters

handle Handle returned by previous call to MVIsc_Open

buf Pointer to user data buffer to receive the data to be read from the
PLC-5

fileno PLC-5 data table file number

elemno PLC-5 data table element number

subelemno PLC-5 data table subelement number

size Number of data items of type datatype to be read

datatype Type of data item being written

fsync Synchronization flag. Must be set to MVISC_SYNC_ACCESS or
MVISC_ASYNC_ACCESS.

Description

MVIsc_ReadPLC reads size data items of type datatype from the PLC-5 data
table file specified by fileno to the user-supplied buffer buf. elemno specifies the
element number of the data table file to begin read. buf must be large enough to
contain the data to be read. subelemno is used to address structured data. It
specifies the offset to a particular data item within a multi-word data structure,
such as a PID structure. For simple data files such as integer or float, subelemno
must be set to zero; otherwise, no data will be read and MVISC_ERR_XFERFAIL
will be returned. subelemno is specified as the word offset within the data
structure.

Note: For convenience, sub-element definitions for each of the data items within the various PLC-5
data structures are provided in the API include file MVISCAPI.H.

fsync specifies whether the access is synchronous or asynchronous with respect
to the PLC-5 ladder scan. When set to MVISC_SYNC_ACCESS, the transfer will
take place at the end of the next ladder scan. When set to
MVISC_ASYNC_ACCESS, the transfer will take place immediately. This flag
only has effect when the PLC-5 is in Run mode.

handle must be a valid handle returned from MVIsc_Open.

Notes: datatype specifies the type of data item being read, which may be different from the data
file type. For example, to access the SP value of a PID structure within a PD file, the data type
should be specified as MVISC_DTYP_FLOAT. In this example, subelemno must be set to the word
offset of the desired member within the PID structure, which in this case is defined as
MVISC_SUBEL_PD_SP. Valid values for datatype are MVISC_DTYP_WORD and
MVISC_DTYP_FLOAT.

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 311 of 342 ProSoft Technology, Inc.

An attempt to read past the end of a data table file will result in a return code of
MVISC_ERR_XFERFAIL or MVISC_ERR_PCCCFAIL. If the PLC is in RUN mode when this read
is attempted, the PLC-5 will be faulted. Care should be taken not to exceed the boundaries of the
PLC-5 data tables. See MVIsc_GetPLCFileInfo to determine valid data table boundaries.

Return Value

MVISC_SUCCESS The data was read successfully

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_BADPARAM Parameter contains invalid value

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

MVISC_ERR_XFERFAIL PLC-5 returned an error

MVISC_ERR_PCCCFAIL PCCC error occurred

Example

HANDLE Handle;

float f[3];

WORD scantime;

short acc;

int rc;

/* Read 3 floating-point values starting at element 5 of float file 8 (F8:5 -

F8:7), asynchronously */

rc = MVIsc_ReadPLC(Handle, f, 8, 5, 0, 3, MVISC_DTYP_FLOAT,

MVISC_ASYNC_ACCESS);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_ReadPLC failed");

/* Read the last program scan time from the status file (S2:8), synchronously

*/

rc = MVIscReadPLC(Handle, &scantime, 2, 8, 0, 1, MVISC_DTYP_WORD,

MVISC_SYNC_ACCESS);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_ReadPLC failed");

/* Read the accumulated value from timer 2 of timer file 4 (T4:2.ACC),

synchronously */

rc = MVIscReadPLC(Handle, &acc, 4, 2, MVISC_SUBEL_T_ACC, 1,

MVISC_DTYP_WORD, MVISC_SYNC_ACCESS);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_ReadPLC failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 312 of 342 ProSoft Technology, Inc.

MVIsc_RMWPLC

Syntax

int MVIsc_RMWPLC(HANDLE handle, WORD and_mask, WORD or_mask, WORD fileno, WORD

elemno, WORD subelemno);

Parameters

handle Handle returned by previous call to MVIsc_Open

and_mask Bits to be preserved in the data item

or_mask Bits to be set in the data item

fileno

PLC-5 data table file number

elemno PLC-5 data table element number

subelemno PLC-5 data table subelement number

Description

MVIsc_RMWPLC reads a word from a PLC-5 data table, modifies some of the
bits, and then writes it back.

handle must be a valid handle returned from MVIsc_Open. and_mask specifies
the bits to be preserved in the data word. A "1' bit preserves the corresponding
bit in the data word; a "0' bit forces the corresponding bit to zero. or_mask
specifies the bits to be set in the data word. A "1' bit forces the corresponding bit
in the data word to 1; a '0' bit leaves the corresponding bit unchanged. The
or_mask is applied after the and_mask.

fileno and elemno specify the data table file number and element number of the
data word to be modified. subelemno is used to address structured data. It
specifies the offset to a particular data word within a multi-word data structure,
such as a PID structure. For simple data files such as integer, subelemno must
be set to zero; otherwise, no data will be written and MVISC_ERR_XFERFAIL
will be returned. subelemno is specified as the word offset within the data
structure.

Note: For convenience, sub-element definitions for each of the data items within the various PLC-5
data structures are provided in the API include file MVISCAPI.H.
Notes: An attempt to access past the end of a data table file will result in a return code of
MVISC_ERR_XFERFAIL or MVISC_ERR_PCCCFAIL. If the PLC is in RUN mode when this
access is attempted, PLC-5 data will be corrupted and the PLC-5 will be faulted. Care should be
taken not to exceed the boundaries of the PLC-5 data tables. See MVIsc_GetPLCFileInfo to
determine valid data table boundaries.

Return Value

MVISC_SUCCESS The data was written successfully

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_BADPARAM Parameter contains invalid value

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 313 of 342 ProSoft Technology, Inc.

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

MVISC_ERR_XFERFAIL PLC-5 returned an error

MVISC_ERR_PCCCFAIL PCCC error occurred

Example

HANDLE Handle;

short N;

float SP;

int rc;

/* Clear bit 4 and set bit 1 of N7:5 */

rc = MVIsc_RMWPLC(Handle, 0xFFEF, 0x0002, 7, 5, 0);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_RMWPLC failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 314 of 342 ProSoft Technology, Inc.

11.5 Side-connect API Synchronization Functions

MVIsc_WaitForEos

Syntax

int MVIsc_WaitForEos(HANDLE handle, WORD timeout);

Parameters

handle Handle returned by previous call to MVIsc_Open

timeout Maximum number of milliseconds to wait

Description

MVIsc_WaitForEos allows an application to synchronize with the PLC-5’s ladder
scan.

This function will return when the PLC-5 reaches the end of the ladder scan.

handle must be a valid handle returned from MVIsc_Open.

Return Value

MVISC_SUCCESS The PLC-5 has reached the end of the ladder scan.

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_PLCTIMEOUT The timeout expired before an end of scan occurred.

Example

HANDLE Handle;

/* Wait here until EOS, 5 second timeout */

rc = MVIsc_WaitForEos(Handle, 5000);

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 315 of 342 ProSoft Technology, Inc.

11.6 Side-connect API PLC Message Handling Functions

The PLC-5 may use the message (MSG) instruction to read or write data to the
MVI. A message handler must be registered using the MVIsc_PLCMsgRead or
MVIsc_PLCMsgWrite functions. The MSG instruction in the PLC-5 ladder
program must be setup for communication port 3A. The command type must be
set to PLC-3 Word Range Read or PLC-3 Word Range Write. The destination
data table address must be set to "00" through "31", for message number 0 to 31.

MVIsc_PLCMsgRead

Syntax

int MVIsc_PLCMsgRead(HANDLE handle, void *buf, WORD datatype, WORD size, BYTE

msgnum, WORD timeout);

Parameters

handle Handle returned by previous call to MVIsc_Open

buf Pointer to user buffer containing data to be read by the PLC-5

datatype Type of data (MVISC_DTYP_WORD or MVISC_DTYP_FLOAT)

size Number of items of type datatype to be transferred. The total size
cannot exceed 240 bytes.

msgnum PLC-5 message number (0 to 31)

timeout Maximum number of milliseconds to wait for message-read

Description

MVIsc_PLCMsgRead handles a PLC-5 message-read instruction. This function
should be called before the PLC-5 issues the message-read instruction.

handle must be a valid handle returned from MVIsc_Open. timeout indicates the
number of milliseconds to wait for the message-read instruction from the PLC-5.
A value of zero will cause the function to register the message handler and return
immediately, without waiting for the message-read instruction. In this case, the
MVIsc_PLCMsgWait function must be used to determine if the instruction has
been completed.

Return Value

MVISC_SUCCESS The command completed without error (Note: If timeout was set
to zero, this does not mean that the message-read instruction
has completed, but only that the message handler was
successfully registered. See MVIsc_PLCMsgWait).

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_PLCTIMEOUT The timeout expired before the message read instruction
occurred.

Example

HANDLE Handle;

float flt_array[8];

/* Setup message-read handler for msg 19, wait 5 seconds */

rc = MVIsc_PLCMsgRead(Handle, flt_array, MVISC_DTYP_FLOAT, 8, 19, 5000);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_PLCMsgRead failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 316 of 342 ProSoft Technology, Inc.

MVIsc_PLCMsgWrite

Syntax

int MVIsc_PLCMsgWrite(HANDLE handle, void *buf, WORD datatype, WORD size, BYTE

msgnum, WORD timeout);

Parameters

handle Handle returned by previous call to MVIsc_Open

buf Pointer to user buffer to receive data written by PLC-5

datatype Type of data (MVISC_DTYP_WORD or MVISC_DTYP_FLOAT)

size Number of items of type datatype to be transferred. The total size
cannot exceed 240 bytes.

msgnum PLC-5 message number (0 to 31)

timeout Maximum number of milliseconds to wait for message-write

Description

MVIsc_PLCMsgRead handles a PLC-5 message-write instruction. This function
should be called before the PLC-5 issues the message-write instruction.

handle must be a valid handle returned from MVIsc_Open. timeout indicates the
number of milliseconds to wait for the message-write instruction from the PLC-5.
A value of zero will cause the function to register the message handler and return
immediately, without waiting for the message-write instruction. In this case, the
MVIsc_PLCMsgWait function must be used to determine if the instruction has
been completed.

Return Value

MVISC_SUCCESS The command completed without error (Note: If timeout was set
to zero, this does not mean that the message-write instruction
has completed, but only that the message handler was
successfully registered. See MVIsc_PLCMsgWait).

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_PLCTIMEOUT The timeout expired before the message-write instruction
occurred.

Example

HANDLE Handle;

int N;

/* Setup message-write handler for msg 2, wait 5 seconds */

rc = MVIsc_PLCMsgWrite(Handle, &N, MVISC_DTYP_WORD, 1, 2, 5000);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_PLCMsgWrite failed");

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 317 of 342 ProSoft Technology, Inc.

MVIsc_PLCMsgWait

Syntax

int MVIsc_PLCMsgWait(HANDLE handle, BYTE msgnum, BYTE msgtype, WORD timeout);

Parameters

handle Handle returned by previous call to MVIsc_Open

msgnum PLC-5 message number (0 to 31)

msgtype Message type (read or write)

timeout Maximum number of milliseconds to wait for message instruction

Description

MVIsc_PLCMsgWait returns the current status of the message handler specified
by msgnum.

handle must be a valid handle returned from MVIsc_Open. msgtype must be set
to MVISC_MSGTYP_READ to specify a read message, or
MVISC_MSGTYP_WRITE to specify a write message. If timeout is set to zero,
the current status of the specified message handler is returned immediately. If
timeout is not zero, the function will return when the message instruction has
been completed, or when timeout milliseconds have expired.

Return Value

MVISC_SUCCESS The message-read or message-write instruction has completed
successfully.

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_BADPARAM No message handler has been registered for msgnum.

MVISC_ERR_PLCTIMEOUT The timeout expired before the message instruction occurred.

MVISC_ERR_PENDING The message instruction has not yet occurred (Note: This result
code is only returned if timeout is set to zero).

Example

HANDLE Handle;

/* Wait here until message handler 1 has completed, timeout=10 seconds */

rc = MVIsc_PLCMsgWait(Handle, 1, MVISC_MSGTYP_READ, 10000);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_PLCMsgWait failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 318 of 342 ProSoft Technology, Inc.

11.7 Side-connect API Block Transfer Functions

MVIsc_PLCBTRead

Syntax

int MVIsc_PLCBTRead(HANDLE handle, WORD *buf, BYTE rack, BYTE group, BYTE slot,

BYTE size);

Parameters

handle Handle returned by previous call to MVIsc_Open

buf Pointer to buffer to receive data from I/O module

rack Rack number of the I/O module to be read

group I/O group number of the I/O module

slot Slot number within the I/O group

size Number of words to read

Description

MVIsc_PLCBTRead requests the PLC-5 to perform a block transfer read from an
intelligent I/O module.

handle must be a valid handle returned from MVIsc_Open.

buf must point to a buffer of at least size words in size.

Return Value

MVISC_SUCCESS The block transfer was completed successfully.

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_BADPARAM Parameter contains invalid value

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

MVISC_ERR_XFERFAIL PLC-5 returned an error

MVISC_ERR_PCCCFAIL PCCC error occurred

Example

HANDLE Handle;

WORD buf[8];

int rc;

/* Read 8 words of data from I/O module in rack 1, I/O group 1, slot 2 */

rc = MVIsc_PLCBTRead(Handle, buf, 1, 1, 2, 8);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_PLCBTRead failed");

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 319 of 342 ProSoft Technology, Inc.

MVIsc_PLCBTWrite

Syntax

int MVIsc_PLCBTWrite(HANDLE handle, WORD *buf, BYTE rack, BYTE group, BYTE

slot, BYTE size);

Parameters

handle Handle returned by previous call to MVIsc_Open

buf Pointer to buffer of data to be written to I/O module

rack Rack number of the I/O module to be written

group I/O group number of the I/O module

slot Slot number within the I/O group

size Number of words to write

Description

MVIsc_PLCBTWrite requests the PLC-5 to perform a block transfer write to an
intelligent I/O module.

handle must be a valid handle returned from MVIsc_Open.

buf must point to a buffer of at least size words in size.

Return Value

MVISC_SUCCESS The block transfer was completed successfully.

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_BADPARAM Parameter contains invalid value

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

MVISC_ERR_XFERFAIL PLC-5 returned an error

MVISC_ERR_PCCCFAIL PCCC error occurred

Example

HANDLE Handle;

WORD buf[8];

int rc;

/* Write 8 words of data to I/O module in rack 1, I/O group 1, slot 2 */

rc = MVIsc_PLCBTWrite(Handle, buf, 1, 1, 2, 8);

if (rc != MVISC_SUCCESS)

printf("ERROR: MVIsc_PLCBTWrite failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 320 of 342 ProSoft Technology, Inc.

11.8 Side-connect API PLC Status and Control Functions

MVIsc_GetPLCStatus

Syntax

int MVIsc_GetPLCStatus(HANDLE handle, WORD *status, WORD *majfault);

Parameters

handle Handle returned by previous call to MVIsc_Open

status Pointer to variable to receive PLC-5 status word

majfault Pointer to variable to receive PLC-5 major fault word

Description

This function is used by an application to retrieve the PLC-5 status and major
fault words.

handle must be a valid handle returned from MVIsc_Open. Table 3 and Table 4
below define the bits of the status and major fault words, respectively. For
programming convenience and clarity, a definition is provided for each bit in the
API include file MVISCAPI.H.

PLC-5 Status Word

Bit Definition Description

0 MVISC_PLCSTS_RAM_BAD RAM bad

1 MVISC_PLCSTS_RUN_MODE Run mode

2 MVISC_PLCSTS_TEST_MODE Test mode

3 MVISC_PLCSTS_PROG_MODE Program mode

4 MVISC_PLCSTS_BURN_EEPROM Burning EEPROM

5 MVISC_PLCSTS_DWNLD_MODE Download mode

6 MVISC_PLCSTS_EDITS_ENAB Edits enabled

7 MVISC_PLCSTS_REM_MODE Remote modes

8 MVISC_PLCSTS_FRC_ENAB Forces enabled

9 MVISC_PLCSTS_FRC_PRES Forces present

10 MVISC_PLCSTS_EEPROM_SUCC Successful EEPROM burn

11 MVISC_PLCSTS_ONLINE_EDIT Online editing

12 MVISC_PLCSTS_DEBUG_MODE Debug mode

13 MVISC_PLCSTS_PROG_CKSM User program checksum done

14 MVISC_PLCSTS_LAST_SCAN Last scan of ladder/SFC step

15 MVISC_PLCSTS_FIRST_SCAN First scan of ladder/SFC step

PLC-5 Major Fault Word

Bit Definition Description

0 MVISC_PLCFLT_PROG_MEM_BAD Bad user program memory

1 MVISC_PLCFLT_BAD_OPRN_ADDR Illegal operand address

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 321 of 342 ProSoft Technology, Inc.

Bit Definition Description

2 MVISC_PLCFLT_PROG_ERROR Programming error

3 MVISC_PLCFLT_SFC_ERROR Function chart error

4 MVISC_PLCFLT_DUP_LABELS Duplicate labels found

5 MVISC_PLCFLT_PWR_FAIL Power loss fault

6 MVISC_PLCFLT_PERIPHERAL Peripheral fault (Chan 3)

7 MVISC_PLCFLT_USER_JSR User jsr to fault routine

8 MVISC_PLCFLT_WATCHSOG Watchdog fault

9 MVISC_PLCFLT_BAD_CONFIG System illegally configured

10 MVISC_PLCFLT_HWFAIL Hardware fault

11 MVISC_PLCFLT_NOMCP MCP file does not exist or is not
ladder/SFC

12 MVISC_PLCFLT_NOPII PII program does not exist or is not ladder

13 MVISC_PLCFLT_NOSTI STI program does not exist or is not
ladder

14 MVISC_PLCFLT_NOFLT Fault program does not exist or is not
ladder

15 MVISC_PLCFLT_NOFAULTED Faulted program does not exist or is not
ladder

Return Value

MVISC_SUCCESS Status was retrieved successfully

MVISC_ERR_NOACCESS handle does not have access

Example

HANDLE Handle;

WORD plcstat;

WORD mfault;

MVIsc_GetPLCStatus(Handle, &plcstat, &mfault);

if (plcstat & MVISC_PLCSTS_RUN_MODE)

printf("PLC is in Run Mode");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 322 of 342 ProSoft Technology, Inc.

MVIsc_GetPLCClock

Syntax

int MVIsc_GetPLCClock(HANDLE handle, MVISCCLOCK *clock);

Parameters

handle Handle returned by previous call to MVIsc_Open

clock Pointer to structure of type MVISCCLOCK

Description

MVIsc_GetPLCClock retrieves the current date and time from the PLC-5 clock.
The information is returned in the structure pointed to by clock.

handle must be a valid handle returned from MVIsc_Open. The MVISCCLOCK
structure is defined as follows:

typedef struct tagMVISCCLOCK

{

WORD year;

WORD month;

WORD day;

WORD hour;

WORD minute;

WORD second;

} MVISCCLOCK;

Return Value

MVISC_SUCCESS The clock information was read successfully.

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

Example

HANDLE Handle;

MVISCCLOCK clock;

/* print time and date from PLC */

MVIsc_GetPLCClock(Handle, &clock);

printf("Time: %d:%02d Date: %d/%d/%d",

clock.hour, clock.minute, clock.month, clock.day, clock.year);

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 323 of 342 ProSoft Technology, Inc.

MVIsc_SyncPLCClock

Syntax

int MVIsc_SyncPLCClock(HANDLE handle);

Parameters

handle Handle returned by previous call to MVIsc_Open

Description

MVIsc_SyncPLCClock sets the PLC-5 date and time to the MVI-ADM module’s
current date and time.

Return Value

MVISC_SUCCESS The PLC-5 clock was set successfully.

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

Example

HANDLE Handle;

/* Synchronize PLC-5 clock with MVI clock */

MVIsc_SyncPLCClock(Handle);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 324 of 342 ProSoft Technology, Inc.

MVIsc_ClearFault

Syntax

int MVIsc_ClearFault(HANDLE handle, BYTE fault_flag);

Parameters

handle Handle returned by previous call to MVIsc_Open

fault_flag Bit flag specifying which faults to clear (major and minor)

Description

MVIsc_ClearFault clears the PLC-5 fault words in the status file as specified by
the bits set in fault_flag. The following bit definitions are valid for fault_flag:

Flag Description

MVISC_CLRFLT_MAJOR Major fault words are cleared (S:11 to S:14)

MVISC_CLRFLT_MINOR Minor fault words are cleared (S:10, S:17)

These flags may be logically OR'ed together to clear both major and minor faults.

Return Value

MVISC_SUCCESS The fault was cleared successfully.

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

Example

HANDLE Handle;

/* Clear major and minor faults */

MVIsc_ClearFault(Handle, MVISC_CLRFLT_MAJOR|MVISC_CLRFLT_MINOR);

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 325 of 342 ProSoft Technology, Inc.

MVIsc_SetPLCMode

Syntax

int MVIsc_SetPLCMode(HANDLE handle, BYTE mode);

Parameters

handle Handle returned by previous call to MVIsc_Open

mode PLC-5 mode to set

Description

MVIsc_SetPLCMode sets the PLC-5 mode. The PLC-5 keyswitch must be in the
Remote position for this function to succeed. The valid mode definitions are
shown below:

Mode Description

MVISC_PLCMODE_RUN Run mode

MVISC_PLCMODE_PROG Program mode

MVISC_PLCMODE_TEST Test mode

Return Value

MVISC_SUCCESS The fault was cleared successfully.

MVISC_ERR_NOACCESS handle does not have access

MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

MVISC_ERR_PCCCFAIL The PLC-5 denied the request. Check the keyswitch position.

Example

HANDLE Handle;

/* Put the PLC-5 in Run mode */

MVIsc_SetPLCMode(Handle, MVISC_PLCMODE_RUN);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 326 of 342 ProSoft Technology, Inc.

11.9 Side-connect API Miscellaneous Functions

MVIsc_GetVersionInfo

Syntax

int MVIsc_GetVersionInfo(HANDLE handle, MVISCVERSIONINFO *verinfo);

Parameters

handle Handle returned by previous call to MVIsc_Open

verinfo Pointer to structure of type MVISCVERSIONINFO

Description

MVIsc_GetVersionInfo retrieves the current version of the API library. The
version information is returned in the structure verinfo.

handle must be a valid handle returned from MVIsc_Open. The
MVISCVERSIONINFO structure is defined as follows:

typedef struct tagMVISCVERSIONINFO

{

WORD APISeries; /* API Series */

WORD APIRevision; /* API Revision */

} MVISCVERSIONINFO;

Return Value

MVISC_SUCCESS The version information was read successfully.

MVISC_ERR_NOACCESS handle does not have access

Example

HANDLE Handle;

MVISCVERSIONINFO verinfo;

/* print version of API library */

MVIsc_GetVersionInfo(Handle,&verinfo);

printf("Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 327 of 342 ProSoft Technology, Inc.

MVIsc_ErrorStr

Syntax

int MVIsc_ErrorStr(int errcode, char *buf);

Parameters

errcode Error code returned from an API function

buf Pointer to user buffer to receive message

Description

MVIsc_ErrorStr returns the text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value

MVISC_SUCCESS Message returned in buf

MVISC_ERR_BADPARAM Unknown error code

Example

char buf[80];

int rc;

/* print error message */

MVIsc_ErrorStr(rc, buf);

printf("Error: %s", buf);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 328 of 342 ProSoft Technology, Inc.

MVIsc_GetLastPcccError

Syntax

int MVIsc_GetLastPcccError(HANDLE handle, BYTE *status, BYTE *extstatus);

Parameters

handle Handle returned by previous call to MVIsc_Open

status Pointer to byte to receive PCCC status code

extstatus Pointer to byte to receive PCCC extended status code

Description

MVIsc_GetLastPcccError retrieves the status and extended status from the last
PCCC error response received from the PLC-5. This function should only be
called after a previous function call has returned MVISC_ERR_PCCCFAIL.

If status is equal to 0xF0, then extstatus contains an extended error code.

Return Value

MVISC_SUCCESS status and extstatus have been retrieved

MVISC_ERR_NOACCESS handle does not have access

Example

HANDLE Handle;

int rc;

BYTE status, extstatus;

/* assume rc is set to the return code from a function such */

/* as MVIsc_PLCBTRead */

if (rc == MVISC_ERR_PCCCFAIL) /* debug the PCCC failure */

{

MVIsc_GetLastPcccError(Handle, &status, &extstatus);

printf("\nStatus: %x Extended Status: %x\n", status, extstatus);

}

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
'C' Programmable Application Development Module Developer's Guide

Page 329 of 342 ProSoft Technology, Inc.

MVIsc_BCD2BIN

Syntax

WORD MVIsc_BCD2BIN(WORD bcd);

Parameters

bcd BCD value to be converted into binary

Description

MVIsc_BCD2BIN converts a 4-digit BCD value to binary. The BCD value must be
within the range 0 to 9999.

Return Value

Binary representation of BCD value.

Example

WORD bcd, bin;

/* Convert the value in bcd to binary */

bin = MVIsc_BCD2BIN(bcd);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 330 of 342 ProSoft Technology, Inc.

MVIsc_BIN2BCD

Syntax

WORD MVIsc_BIN2BCD(WORD bin);

Parameters

bin Binary value to be converted into BCD

Description

MVIsc_BIN2BCD converts a binary value to BCD. The value must be within the
range 0 to 9999 decimal.

Return Value

BCD representation of binary value.

Example

WORD bcd;

WORD bin;

/* Convert the value in binary to BCD */

bcd = MVIsc_BIN2BCD(bin);

MVI-ADM ♦ 'C' Programmable DOS 6 XL Reference Manual
'C' Programmable Application Development Module Developer's Guide

Page 331 of 342 ProSoft Technology, Inc.

12 DOS 6 XL Reference Manual

The DOS 6 XL Reference Manual makes reference to compilers other than
Digital Mars C++ or Borland Compilers. The MVI-ADM and ADMNET modules
only support Digital Mars C++ and Borland C/C++ Compiler Version 5.02.
References to other compilers should be ignored.

DOS 6 XL Reference Manual MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 332 of 342 ProSoft Technology, Inc.

MVI-ADM ♦ 'C' Programmable Support, Service & Warranty
'C' Programmable Application Development Module Developer's Guide

Page 333 of 342 ProSoft Technology, Inc.

13

13.1

Support, Service & Warranty

Contacting Technical Support
ProSoft Technology, Inc. is committed to providing the most efficient and effective support
possible. Before calling, please gather the following information to assist in expediting this
process:

1 Product Version Number
2 System architecture
3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any
2 Module operation and any unusual behavior
3 Configuration/Debug status information
4 LED patterns
5 Details about the serial, Ethernet or Fieldbus devices interfaced to the module, if any.

Note: For technical support calls within the United States, ProSoft’s 24/7 after-hours phone support is
available for urgent plant-down issues.

North America (Corporate Location) Europe / Middle East / Africa Regional Office
Phone: +1.661.716.5100
info@prosoft-technology.com
Languages spoken: English, Spanish
REGIONAL TECH SUPPORT
support@prosoft-technology.com

Phone: +33.(0)5.34.36.87.20
france@prosoft-technology.com
Languages spoken: French, English
REGIONAL TECH SUPPORT
support.emea@prosoft-technology.com

Latin America Regional Office Asia Pacific Regional Office
Phone: +52.222.264.1814
latinam@prosoft-technology.com
Languages spoken: Spanish, English
REGIONAL TECH SUPPORT
support.la@prosoft-technology.com

Phone: +60.3.2247.1898
asiapc@prosoft-technology.com
Languages spoken: Bahasa, Chinese, English,
Japanese, Korean
REGIONAL TECH SUPPORT
support.ap@prosoft-technology.com

13.2

For additional ProSoft Technology contacts in your area, please visit:
https://www.prosoft-technology.com/About-Us/Contact-Us.

Warranty Information
For complete details regarding ProSoft Technology’s TERMS & CONDITIONS OF SALE,
WARRANTY, SUPPORT, SERVICE AND RETURN MATERIAL AUTHORIZATION
INSTRUCTIONS please see the documents at:
www.prosoft-technology/legal

Support, Service & Warranty MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 334 of 342 ProSoft Technology, Inc.

http://www.prosoft-technology/warranty
http://www.prosoft-technology/warranty

MVI-ADM ♦ 'C' Programmable Glossary of Terms
'C' Programmable Application Development Module Developer's Guide

Page 335 of 342 ProSoft Technology, Inc.

Glossary of Terms

A

API

Application Program Interface

B

Backplane

Refers to the electrical interface, or bus, to which modules connect when inserted
into the rack. The module communicates with the control processor(s) through
the processor backplane.

BIOS

Basic Input Output System. The BIOS firmware initializes the module at power
up, performs self-diagnostics, and provides a DOS-compatible interface to the
console and Flashes the ROM disk.

Byte

8-bit value

C

CIP

Control and Information Protocol. This is the messaging protocol used for
communications over the ControlLogix backplane. Refer to the ControlNet
Specification for information.

Connection

A logical binding between two objects. A connection allows more efficient use of
bandwidth, because the message path is not included after the connection is
established.

Consumer

A destination for data.

Controller

The PLC or other controlling processor that communicates with the module
directly over the backplane or via a network or remote I/O adapter.

D

DLL

Dynamic Linked Library

Glossary of Terms MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 336 of 342 ProSoft Technology, Inc.

E

Embedded I/O

Refers to any I/O which may reside on a CAM board.

ExplicitMsg

An asynchronous message sent for information purposes to a node from the
scanner.

H

HSC

High Speed Counter

I

Input Image

Refers to a contiguous block of data that is written by the module application and
read by the controller. The input image is read by the controller once each scan.
Also referred to as the input file.

L

Library

Refers to the library file containing the API functions. The library must be linked
with the developer’s application code to create the final executable program.

Linked Library

Dynamically Linked Library. See Library.

Local I/O

Refers to any I/O contained on the CPC base unit or mezzanine board.

Long

32-bit value.

M

Module

Refers to a module attached to the backplane.

Mutex

A system object which is used to provide mutually-exclusive access to a
resource.

MVI Suite

The MVI suite consists of line products for the following platforms:

 Flex I/O
 ControlLogix
 SLC
 PLC

MVI-ADM ♦ 'C' Programmable Glossary of Terms
'C' Programmable Application Development Module Developer's Guide

Page 337 of 342 ProSoft Technology, Inc.

 CompactLogix

MVI46

MVI46 is sold by ProSoft Technology under the MVI46-ADM product name.

MVI56

MVI56 is sold by ProSoft Technology under the MVI56-ADM product name.

MVI69

MVI69 is sold by ProSoft Technology under the MVI69-ADM product name.

MVI71

MVI71 is sold by ProSoft Technology under the MVI71-ADM product name.

MVI94

MVI94 and MVI94AV are the same modules. The MVI94AV is now sold by
ProSoft Technology under the MVI94-ADM product name

O

Originator

A client that establishes a connection path to a target.

Output Image

Table of output data sent to nodes on the network.

P

Producer

A source of data.

PTO

Pulse Train Output

PTQ Suite

The PTQ suite consists of line products for Schneider Electronics platforms:

Quantum (ProTalk)

S

Scanner

A DeviceNet node that scans nodes on the network to update outputs and inputs.

Side-connect

Refers to the electronic interface or connector on the side of the PLC-5, to which
modules connect directly through the PLC using a connector that provides a fast
communication path between the - module and the PLC-5.

Glossary of Terms MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 338 of 342 ProSoft Technology, Inc.

T

Target

The end-node to which a connection is established by an originator.

Thread

Code that is executed within a process. A process may contain multiple threads.

W

Word

16-bit value

MVI-ADM ♦ 'C' Programmable Index
'C' Programmable Application Development Module Developer's Guide

Page 339 of 342 ProSoft Technology, Inc.

Index

A

ADM • 116
ADM API • 29
ADM API Architecture • 59
ADM API Backplane Functions • 169
ADM API Clock Functions • 167
ADM API Database Functions • 132
ADM API Debug Port Functions • 125
ADM API Files • 60
ADM API Flash Functions • 177
ADM API Functions • 120
ADM API Initialization Functions • 123
ADM API Miscellaneous Functions • 185
ADM API RAM Functions • 193
ADM Functional Blocks • 30
ADM Interface Structure • 60
ADM LED Functions • 176
ADM Side-Connect Functions • 188
ADM_BtClose • 169, 170
ADM_BtFunc • 173
ADM_BtNext • 171
ADM_BtOpen • 169, 170, 171, 172, 173
ADM_CheckDBPort • 131
ADM_CheckTimer • 167, 168
ADM_Close • 123, 124
ADM_ConPrint • 130
ADM_DAWriteRecvCtl • 126, 127
ADM_DAWriteRecvData • 128, 129
ADM_DAWriteSendCtl • 126, 127
ADM_DAWriteSendData • 128, 129
ADM_DBAND_Byte • 163
ADM_DBBitChanged • 160
ADM_DBChanged • 159
ADM_DBClearBit • 136, 137
ADM_DBClose • 132, 133
ADM_DBGetBit • 135
ADM_DBGetBuff • 148, 149
ADM_DBGetByte • 138, 139
ADM_DBGetDFloat • 146, 147
ADM_DBGetFloat • 144, 145
ADM_DBGetLong • 142, 143
ADM_DBGetRegs • 150, 151
ADM_DBGetString • 152, 153
ADM_DBGetWord • 140, 141
ADM_DBNAND_Byte • 164
ADM_DBNOR_Byte • 162
ADM_DBOpen • 132, 133, 134
ADM_DBOR_Byte • 161
ADM_DBSetBit • 136, 137
ADM_DBSetBuff • 148, 149
ADM_DBSetByte • 138, 139
ADM_DBSetDFloat • 146, 147
ADM_DBSetFloat • 144, 145

ADM_DBSetLong • 142, 143
ADM_DBSetRegs • 150, 151
ADM_DBSetString • 152, 153
ADM_DBSetWord • 140, 141
ADM_DBSwapDWord • 155
ADM_DBSwapWord • 154
ADM_DBXNOR_Byte • 166
ADM_DBXOR_Byte • 165
ADM_DBZero • 134
ADM_EEPROM_ReadConfiguration • 193
ADM_FileGetChar • 177, 178, 179
ADM_FileGetInt • 177, 178, 179
ADM_FileGetString • 177, 178, 179
ADM_Getc • 180, 181, 182, 184
ADM_GetChar • 180, 181, 182, 184
ADM_GetDBCptr • 156
ADM_GetDBInt • 158
ADM_GetDBIptr • 157
ADM_GetStr • 180, 181, 182, 184
ADM_GetVal • 180, 181, 182, 184
ADM_GetVersionInfo • 185
ADM_Open • 123, 124
ADM_ProcessDebug • 125
ADM_RAM_Find_Section • 194
ADM_RAM_GetChar • 200
ADM_RAM_GetDouble • 199
ADM_RAM_GetFloat • 198
ADM_RAM_GetInt • 196
ADM_RAM_GetLong • 197
ADM_RAM_GetString • 195
ADM_ReadBtCfg • 172
ADM_ReadScCfg • 191
ADM_ReadScFile • 190
ADM_ScClose • 188, 189
ADM_ScOpen • 188, 189, 190, 191, 192
ADM_ScScan • 192
ADM_SetBtStatus • 174, 175
ADM_SetConsolePort • 186, 187
ADM_SetConsoleSpeed • 186, 187
ADM_SetLed • 176
ADM_SetStatus • 174, 175
ADM_SkipToNext • 183
ADM_StartTimer • 167, 168
API • 335
API Libraries • 26
Application Development Function Library - ADM API •

119

B

Backplane • 335
Backplane API Architecture • 64
Backplane API Configuration Functions • 206
Backplane API Direct I/O Access • 214
Backplane API Files • 64
Backplane API Functions • 201
Backplane API Initialization Functions • 203
Backplane API Messaging Functions • 216
Backplane API Miscellaneous Functions • 220
Backplane API Synchronization Functions • 210

Index MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 340 of 342 ProSoft Technology, Inc.

Backplane Communications • 30
Backplane Device Driver • 269
Battery Life Advisory • 4
BIOS • 335
Block Identification Codes • 52
Block Request from the Processor to the Module • 35,

39, 45
Block Response from the Module to the Processor •

35, 39, 45
Block Transfer • 303
Block Transfer Interface • 109
Block Transfer Routine • 110
Boot • 114
Building an Existing Borland C++ 5.02 ADM Project •

80
Building an Existing Digital Mars C++ 8.49 ADM

Project • 70
Byte • 335

C

Cable Connections • 19
Calling Convention • 26
CIP • 335
CIP API Architecture • 269
CIP API Initialization Functions • 270
CIP Callback Functions • 278
CIP Messaging API Files • 268
CIP Messaging Library Functions • 267
CIP Miscellaneous Functions • 292
CIP Object Registration • 272
CIP Special Callback Registration • 289
CIPConnect® Data Transfer • 275
Cold Boot Block (9999) • 33, 48, 53
Command Interpreter • 94
Commdrv.c • 56
CONFIG.SYS File • 92
Configuration Data Transfer Block (9000) • 32
Configuring Borland C++5.02 • 80
Configuring Digital Mars C++ 8.49 • 70
connect_proc • 273, 278
Connection • 335
Consumer • 335
Contacting Technical Support • 333
Controller • 335
Creating a New Borland C++ 5.02 ADM Project • 82
Creating a New Digital Mars C++ 8.49 ADM Project •

72
Creating a ROM Disk Image • 97
Creating Ladder Logic • 103

D

Data Transfer • 50, 64, 67
Database • 30
DB9 to RJ45 Adaptor (Cable 14) • 23
Debugging Strategies • 102
Debugprt.c • 54
Development Tools • 28
Direct I/O Access • 64
DLL • 335

DOS 6 XL Reference Manual • 13, 331
Downloading the Sample Program • 70, 80

E

Embedded I/O • 336
ExplicitMsg • 336

F

fatalfault_proc • 286, 289
flashupdate_proc • 287, 291

H

Hardware • 57
Header File • 26
HSC • 336

I

Important Installation Instructions • 3
Initialization • 302
Input Image • 336
Installing and Configuring the Module • 88
Introduction • 13

J

Jumper Locations and Settings • 18

L

Library • 336
LIMITED WARRANTY • 334
Linked Library • 336
Local I/O • 336
Long • 336

M

Main Routine • 104, 105, 106, 109, 115
Main_app.c • 53
Messaging • 65
Messaging Protocol • 65
Miscellaneous • 303
Module • 336
Module Configuration Data Block (9001) • 32
Module Configuration Data Transfer Block (9000) • 36,

46
Mutex • 336
MVI (Multi Vendor Interface) Modules • 3
MVI Suite • 336
MVI System BIOS Setup • 101
MVI46 • 54, 92, 337
MVI46 Backplane Data Transfer • 30
MVI46 Ladder Logic • 104
MVI56 • 54, 94, 337
MVI56 Backplane Data Transfer • 33
MVI56 Ladder Logic • 105
MVI69 • 55, 94, 337
MVI69 Backplane Data Transfer • 37
MVI69 Ladder Logic • 106
MVI71 • 55, 94, 337

MVI-ADM ♦ 'C' Programmable Index
'C' Programmable Application Development Module Developer's Guide

Page 341 of 342 ProSoft Technology, Inc.

MVI71 Backplane Data Transfer • 43
MVI71 Ladder Logic • 109
MVI94 • 56, 94, 337
MVI94 Backplane Data Transfer • 48
MVI94 Ladder Logic • 115
MVIbp_Close • 203, 204
MVIbp_ErrorString • 222
MVIbp_GetConsoleMode • 225
MVIbp_GetIOConfig • 206, 209
MVIbp_GetModuleInfo • 221
MVIbp_GetProcessorStatus • 227
MVIbp_GetSetupMode • 226
MVIbp_GetVersionInfo • 220
MVIbp_Open • 203, 204
MVIbp_ReadModuleFile (MVI46) • 230
MVIbp_ReadOutputImage • 64, 214, 215
MVIbp_ReceiveMessage • 216, 219
MVIbp_SendMessage • 217, 218
MVIbp_SetConsoleMode • 229
MVIbp_SetIOConfig • 65, 207, 208, 214, 215, 217, 219
MVIbp_SetModuleInterrupt (MVI46) • 232
MVIbp_SetModuleStatus • 224
MVIbp_SetUserLED • 223
MVIbp_Sleep • 228
MVIbp_WaitForInputScan • 210, 213
MVIbp_WaitForOutputScan • 211, 212
MVIbp_WriteInputImage • 64, 214, 215
MVIbp_WriteModuleFile (MVI46) • 231
MVIcfg.c • 54
MVIcip_Close • 270, 271
MVIcip_ErrorString • 296
MVIcip_GetConsoleMode • 298
MVIcip_GetIdObject • 292
MVIcip_GetSetupMode • 297
MVIcip_GetVersionInfo • 293
MVIcip_Open • 270, 271
MVIcip_ReadConnected • 275, 276, 281
MVIcip_RegisterAssemblyObj • 272, 274, 281, 283,

285
MVIcip_RegisterFatalFaultRtn • 286, 289
MVIcip_RegisterFlashUpdateRtn • 287, 291
MVIcip_RegisterResetReqRtn • 290
MVIcip_SetModuleStatus • 295
MVIcip_SetUserLED • 294
MVIcip_Sleep • 299
MVIcip_UnregisterAssemblyObj • 273, 274
MVIcip_WriteConnected • 275, 277
MVIsc_BCD2BIN • 329
MVIsc_BIN2BCD • 330
MVIsc_ClearFault • 324
MVIsc_Close • 305
MVIsc_ErrorStr • 327
MVIsc_GetLastPcccError • 328
MVIsc_GetPLCClock • 322
MVIsc_GetPLCFileInfo • 306
MVIsc_GetPLCStatus • 320
MVIsc_GetVersionInfo • 326
MVIsc_Open • 304
MVIsc_PLCBTRead • 318
MVIsc_PLCBTWrite • 319

MVIsc_PLCMsgRead • 315
MVIsc_PLCMsgWait • 317
MVIsc_PLCMsgWrite • 316
MVIsc_ReadPLC • 310
MVIsc_RMWPLC • 312
MVIsc_SetPLCMode • 325
MVIsc_SyncPLCClock • 323
MVIsc_WaitForEos • 314
MVIsc_WritePLC • 308
MVIsp_Close • 236, 239
MVIsp_Config • 240
MVIsp_Getch • 251, 252, 258, 260, 262
MVIsp_GetCountUnread • 262
MVIsp_GetCountUnsent • 261
MVIsp_GetCTS • 247
MVIsp_GetData • 259, 262
MVIsp_GetDCD • 249
MVIsp_GetDSR • 248
MVIsp_GetDTR • 245, 246
MVIsp_GetLineStatus • 250
MVIsp_GetRTS • 243, 244
MVIsp_Gets • 252, 254, 257, 260, 262
MVIsp_GetVersionInfo • 265
MVIsp_Open • 235, 238, 239, 241
MVIsp_OpenAlt • 237
MVIsp_PurgeDataUnread • 263, 264
MVIsp_PurgeDataUnsent • 263, 264
MVIsp_Putch • 251, 252, 254, 256, 261
MVIsp_PutData • 254, 255, 258, 260, 261
MVIsp_Puts • 251, 253, 256, 258, 261
MVIsp_SetDTR • 245, 246
MVIsp_SetHandshaking • 242
MVIsp_SetRTS • 243, 244
MVIUPDAT • 99

N

Normal Data Transfer • 31, 35, 38, 45

O

Operating System • 13
Originator • 337
Output Image • 337

P

Package Contents • 16
Pinouts • 3, 19, 23
Platform Specific Functions • 230
PLC Data Table Access • 302
PLC Message Handling • 303
PLC Status and Control • 303
PLC-5 Data File Types • 306
PLC-5 Major Fault Word • 320
PLC-5 Status Word • 320
Port 1 and Port 2 Jumpers • 18
Preparing the MVI-ADM Module • 15
Producer • 337
Programming the Module • 91
PTO • 337
PTQ Suite • 337

Index MVI-ADM ♦ 'C' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 342 of 342 ProSoft Technology, Inc.

R

Read Routine • 105, 107
Recommended Compact Flash (CF) Cards • 17
resetrequest_proc • 288, 290
ROM Disk Configuration • 92
RS-232

Modem Connection (Hardware Handshaking
Required) • 20

Null Modem Connection (Hardware Handshaking)
• 20

Null Modem Connection (No Hardware
Handshaking) • 21

RS-232 Application Port(s) • 19
RS-232 Configuration/Debug Port • 19
RS-422 • 22
RS-485 and RS-422 Tip • 22
RS-485 Application Port(s) • 22
RS-485 Programming Note • 57
rxdata_proc • 284

S

Sample Code • 26
Sample Ladder Logic • 109
Sample ROM Disk Image • 95
Scanner • 337
Serial API Architecture • 66
Serial API Files • 66
Serial Communications • 53
Serial Port API Communications • 251
Serial Port API Configuration Functions • 240
Serial Port API Initialization Functions • 235
Serial Port API Miscellaneous Functions • 265
Serial Port API Status Functions • 243
Serial Port Library Functions • 233
service_proc • 273, 282
Setting Up WINIMAGE • 87
Setting Up Your Compiler • 70
Setting Up Your Development Environment • 69
Setup Jumper • 18
Side-connect • 337
Side-Connect API Architecture • 67
Side-connect API Block Transfer Functions • 318
Side-Connect API Files • 67
Side-connect API Initialization Functions • 304
Side-Connect API Library Functions • 301
Side-connect API Miscellaneous Functions • 326
Side-connect API PLC Data Table Access Functions •

306
Side-connect API PLC Message Handling Functions •

315
Side-connect API PLC Status and Control Functions •

320
Side-connect API Synchronization Functions • 314
Side-Connect Interface • 113
Software • 58
Special Function Blocks • 32, 46
Support, Service & Warranty • 333
Synchronization • 302

T

Target • 338
Theory of Operation • 29
Thread • 338

U

Understanding the MVI-ADM API • 25
Using Compact Flash Disks • 58
Using Side-Connect (Requires Side-Connect Adapter)

(MVI71) • 88

W

Warm Boot Block (9998) • 33, 42, 48, 53
Warnings • 3
WINIMAGE

Windows Disk Image Builder • 97
Word • 338
Write Configuration Block (-9000) • 47
Write Configuration Block (9997) • 32
Write Routine • 108

Y

Your Feedback Please • 2

