ProSoft’

TECHNOLOGY

Where Automation Connects.

Prolalk’
PTQ-ADM

'C' Programmable

‘C’ Programmable Network Interface
Module for Quantum

February 20, 2013

DEVELOPER GUIDE

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,
compliments or complaints about our products, documentation, or support, please write or call us.

ProSoft Technology

5201 Truxtun Ave., 3rd Floor
Bakersfield, CA 93309

+1 (661) 716-5100

+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
support@prosoft-technology.com

Copyright © 2013 ProSoft Technology, Inc., all rights reserved.

PTQ-ADM Developer Guide

February 20, 2013

ProSoft Technology ®, ProLinx ®, inRAx ®, ProTalk ®, and RadioLinx ® are Registered Trademarks of ProSoft
Technology, Inc. All other brand or product names are or may be trademarks of, and are used to identify products
and services of, their respective owners.

In an effort to conserve paper, ProSoft Technology no longer includes printed manuals with our product shipments.
User Manuals, Datasheets, Sample Ladder Files, and Configuration Files are provided on the enclosed CD-ROM,
and are available at no charge from our web site: www.prosoft-technology.com.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of
these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate
and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or
use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. Information in this document including illustrations, specifications and
dimensions may contain technical inaccuracies or typographical errors. ProSoft Technology makes no warranty or
representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or
errors at any time without notice. If you have any suggestions for improvements or amendments or have found errors
in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including
photocopying, without express written permission of ProSoft Technology. All pertinent state, regional, and local safety
regulations must be observed when installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform repairs to components. When
devices are used for applications with technical safety requirements, the relevant instructions must be followed.
Failure to use ProSoft Technology software or approved software with our hardware products may result in injury,
harm, or improper operating results. Failure to observe this information can result in injury or equipment damage.

© 2013 ProSoft Technology. All rights reserved.

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.
North America: +1.661.716.5100

Asia Pacific: +603.7724.2080

Europe, Middle East, Africa: +33 (0) 5.3436.87.20

http://www.prosoft-technology.com/

Information for ProTalk® Product Users

The statement "power, input and output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods

Article 501-10(b) of the National Electrical Code, NFPA 70 for installations in the U.S., or as specified in section 18-

1J2 of the Canadian Electrical Code for installations within Canada and in accordance with the authority having

jurisdiction".

The following or equivalent warnings shall be included:

A Warning - Explosion Hazard - Substitution of components may Impair Suitability for Class I, Division 2;

B Warning - Explosion Hazard - When in Hazardous Locations, Turn off Power before replacing Wiring Modules,
and

C Warning - Explosion Hazard - Do not Disconnect Equipment unless Power has been switched Off or the Area is
known to be Nonhazardous.

D Caution: The Cell used in this Device may Present a Fire or Chemical Burn Hazard if Mistreated. Do not
Disassemble, Heat above 100°C (212°F) or Incinerate.

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

AVERTISSEMENT - RISQUE D'EXPLOSION - AVANT DE DECONNECTER L'EQUIPEMENT, COUPER LE
COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DESIGNE NON DANGEREUX.

Class I, Division 2 GPs A, B, C, D

N3G

ExnA lIC X

0°C<=Ta<=60°C

Il - Equipment intended for above ground use (not for use in mines).

3 - Category 3 equipment, investigated for normal operation only.

G - Equipment protected against explosive gasses.

Warnings

North America Warnings

A Warning - Explosion Hazard - Substitution of components may impair suitability for Class I, Division 2.

B Warning - Explosion Hazard - When in hazardous locations, turn off power before replacing or rewiring modules.
Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is
known to be non-hazardous.

C Suitable for use in Class |, Division 2 Groups A, B, C and D Hazardous Locations or Non-Hazardous Locations.

ATEX Warnings and Conditions of Safe Usage:
Power, Input, and Output (I/O) wiring must be in accordance with the authority having jurisdiction.

A Warning - Explosion Hazard - When in hazardous locations, turn off power before replacing or wiring modules.

B Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is
known to be non-hazardous.

C These products are intended to be mounted in an IP54 enclosure. The devices shall provide external means to
prevent the rated voltage being exceeded by transient disturbances of more than 40%. This device must be used
only with ATEX certified backplanes.

D DO NOT OPEN WHEN ENERGIZED.

Electrical Ratings

Backplane Current Load: 1100 mA maximum @ 5 Vdc + 5%

Operating Temperature: 0°C to 60°C (32°F to 140°F)

Storage Temperature: -40°C to 85°C (-40°F to 185°F)

Shock: 30 g operational; 50 g non-operational; Vibration: 5 g from 10 to 150 Hz

Relative Humidity: 5% to 95% (without condensation)

All phase conductor sizes must be at least 1.3 mm(squared) and all earth ground conductors must be at least
4dmm(squared).

Markings:

CSA/cUL C22.2 No. 213-1987
CSA CB Certified IEC61010
ATEX EN60079-0 Category 3, Zone 2
EN60079-15
& @ (€
243333

Important Notice:

CAUTION: THE CELL USED IN THIS DEVICE MAY PRESENT A FIRE
A OR CHEMICAL BURN HAZARD IF MISTREATED. DO NOT
DISASSEMBLE, HEAT ABOVE 100°C (212°F) OR INCINERATE.

Maximum battery load = 200 pA.

Maximum battery charge voltage = 3.4 VDC.
Maximum battery charge current = 500 pA.
Maximum battery discharge current = 30 pA.

PTQ-ADM ¢ 'C' Programmable Contents

‘C’ Programmable Network Interface Module for Quantum Developer Guide
Contents

YOUr FEEADACK PIEASE......ccoiiiiiie ittt ettt et e e et e e e s bt e e s snbee e e e nneeas 2

(0701 (=Y a1 T Eod P LT PRSI 2

Information for ProOTalk® PrOOUCE USEES..........c.viueeeeeeeeeeeeeeeeseeeseseeseseeseses s senes s enesess e senenens 3

RAT = Vg 11 o RS 3

T gT oo =T o o A\ 1o = SR 4

1 Start Here 11

1.1 Hardware and Software ReqUIrEMENESccoiuiiiiiiiiiie it 12

111 PACKAGE CONENESeeiieiiiiii ettt e e e e s 12

1.1.2 Recommended Compact Flash (CF) Cards.........cccouuueieiiiiiieiiiiee e 13

1.2 Information for Concept VErsion 2.6 USEISeueiiiiiieiiiiiie et 14

121 Installing MDC Configuration FilesSccuviiiiiiiiii e 14

2 Configuring the Processor with Concept 17

2.1 Create @ NEW PrOJECToviiieiiieiiieieieieee ettt ee et ae e aeeeaeaeaeasaeasessssssssesensnnnnnes 18

2.2 Add the PTQ Module to the Projectcccoooeiiiiiiiiiieccccccccee e 20

2.3 Set up Data MemoOry iN PrOJECEovviiiiiiiiieieeeeeieeeeeeeeeee e eeeeeeeeeesesesenenenenes 22

2.4 Download the Project to the ProCcessor.........cccooviiiiiiii, 24

2.5 Verify Successful DOWNIOAd.........ccoooiiiieiiiccecce s 27

3 Configuring the Processor with ProwORX 31

4 Configuring the Processor with Unity Pro 35

4.1 Create @ NEW PrOJECTiviiiiiiiiiieiiieeeieeeee ettt e e e e eeasesasaeaasssasessssssnsnnnnnes 36

4.2 Add the PTQ Module to the Projectcccooeeieiiiiiieeeeeeece e 38

4.3 BUild the Project ... 40

4.4 Connect YOUr PC t0 the PrOCESSONcciiiiiiiiiiiiiiiee ettt ee et a e e s 41

44.1 Connecting to the Processor With TCPIPoccoiiiiiiiiie e 43

4.5 Download the Project to the QuUantum ProCeSSOr..........uvvveeiiiiiiiiiiieee e eieiieeeeaeen 44

5 Setting Up the ProTalk Module 45

51 Install the ProTalk Module in the Quantum RacK..........ccccccoeviiiiiiiiiii e 46

51.1 VErify JUMPET SELHNGSveeeieiiiiee it 46

5.1.2 Inserting the 1454-9F CONNECIONccceeiiiiiieeeee e, 46

5.1.3 Install the ProTalk Module in the Quantum Rack........................l 47

5.14 Cable CONNEBCLIONS ...ttt e e e s et e e e e e e e ee s 48

6 Introduction to PTQ-ADM 53

6.1 OPEIAtiNG SYSTEIM ..ttt e e e et e e e e e e s e st et e e e e e e e e e annbeeeeeas 54

ProSoft Technology, Inc. Page 5 of 239

February 20, 2013

Contents

PTQ-ADM ¢ 'C' Programmable

Developer Guide ‘C’ Programmable Network Interface Module for Quantum
7 Understanding the PTQ-ADM API 55
7.1 F N e N o = 1= O OO R PPRR 56
7.1.1 (021110 o [OL0] V7= o1 i o] o 1R S PRRRR 56
7.1.2 HEAAET FlE ... ettt e e e e e e s e bnb e e e e e e e e s aannes 56
7.1.3 Multithreading CONSIAEIAtIONSceiiiiiiieiiiiie et 56
7.2 DevelopmENt TOOISiiiiieee e 57
7.3 THeory Of OPEIALIONccoiiiiiie i 58
7.3.1 ADM AP . b et nbb e be e naee s 58
7.3.2 ADM API AFCNITECIUIE ...ttt 58
7.3.3 PTQ Big I/0 Backplane Model Theory of Operation...........ccccccveeeeeiiiiiiieeeeeee e, 58
7.4 DALADASE ...t 60
7.5 RS-485 Programming NOEccoiiiiiiiiiieie e iiiiiiieee e e e s e sssnrne e e s e e e s ssanraeeeeeeeesennnes 61
75.1 HAIAWAE ...ttt e e n e e 61
752 SOTIWAE ...ttt 62

8 Setting Up Your Development Environment 63
8.1 Setting Up YOUr COMPIIET ..ot 64
8.1.1 Configuring Digital Mars C++ 8.49.......coiiiiiiiiiiie e 64
8.1.2 Configuring Borland C++5.02ouuiiiiiiiiiieiiiiie et 74
8.2 Creating 8 ROM DiSK IMaAQE......ccoiiuiiiiiiiiiiieiiiiie ettt 82
8.2.1 WINIMAGE - Windows Disk Image Builder ..., 82
8.3 Downloading @ ROM DiSK IMAJE........ccuuiiiiiiiiiei it 84
8.3.1 IMVIUPDAT ettt etttk e b e sk e e st e e sab e e snb e e s bn e e s beeennne s 84
8.4 PTQ SYSteM BIOS SEIUPD ..eeiivieiiieiiiie sttt sttt be e 85
8.5 Transferring Files to and from the Module with HyperTerminalccccvvvvvvveeees 87
8.5.1 [To (8T B F= U0 1= T = P PPPPPPNt 87
8.5.2 REQUIrEA SOFtWAIEeveiiiiiiiiieieiieieeieeeeeeseeeeeeeeeseessaseeseeeesaesssssssssesssssssssssssssnsssnsnennnes 87
8.5.3 Connecting to the MOAUIE s 88
8.54 Enabling the CONSOIE.........cooiiiiii et 89
8.5.5 INStalling RY.€X€ @Nd SY.EXE ..cciiiiiiiiiiiii ettt 93
8.5.6 Downloading Files From a PC to the ADM Modulecocceiiiiiiiiiiiiiieiiieeee 94
8.5.7 Uploading files from the ADM module to0 @ PC........ccooiiiiiiiiiiiiiiiieec e 95
8.6 DebUQQING SIrAtEGIESceiiiiiieeiiiiie ettt sb e sbae e e aaes 95
9 Application Development Libraries 97
9.1 ADM API FUNCLIONSoeiiiiiiiiie ittt 98
9.2 ADM API Initialization FUNCHONS...........vviiiiiiei e 100
F AN B 1 @ o 1= o PSSP 100
ADM _ClOSE ... 101
9.3 ADM API Debug POrt FUNCLIONSc.coviiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeseeeeevesenesenenes 102
ADM_ProcessDebUg ... 102
ADM_DAWIESENACT ...ttt sttt et e e bt e e e s snnneee s 103
ADM_DAWTIERECVCT ...ttt ettt e e bbb e e s annneee s 104
ADM_DAWIESENADALAceeiiuteiieeiieiee ettt ettt ettt e et bt ee s bbe e e e s aaeeeaesnbbeaesannaeee s 105
ADM_DAWTIERECVDALAcceiiieiiieiiiiie ittt sttt e s bt e e e s nnbe e e e s nnteeaesannneee s 106

F B Y o] o] = T | S P PP 107
ADM_CRECKDBPOI. ..ottt ittt et e e sttt e e s bbbt e e s anbe e e e s nnbeeeesannneeeas 108
9.4 ADM API| Database FUNCLIONScuiiiiiiiiiiiiiiiee e 109
ADM_DBOPEN ...ttt ettt ettt ettt ettt ettt h bttt b e b et h e e h bt bt e eR b e e be e e abbe e e b e e e nabeeenees 109
ADM_DBCIOSEeciiiiiiitit ettt ettt ettt ettt bttt ekt ees bt e bb e e sab e e e ke e e aa b e e e be e e nbbe e e re e e nabeeenees 110

Page 6 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Contents
‘C’ Programmable Network Interface Module for Quantum Developer Guide
F Y = 74 = o F PP R PTRPPRRTRI 111
ADM_DBGEIBIL ...ttt 112
ADM_DBSELBIL ...cuteeeietiee ittt ettt ettt bttt et e b et shb e e bt e b e e e enbeeabe e e abee e abeeeaaneeaa 113
ADM_DBCIEAIBILceutiteittteiiee ettt ettt sttt e et e e st e e shb e e sabe e e be e e sabeeabe e e ebaeesnbeeesaneeaa 114
ADM_DBGEIBYLE ...ttt eitie ettt ettt ettt ettt et et e b et ehe e e eabe e e be e e aabe e abe e e nbbeeabeeenaneeaa 115
ADM_DBSEIBYLEcciutiiiiiiieiiie ettt ettt ettt ettt et et e e b et shb e e aabe e e b e e e anbe e e bt e e nteeeabeeeaaneeaa 116
ADM_DBGEIWOIT.uteiiiiieitie ettt ettt ettt e ettt et e e ste e e s bt e e sab e e sabeeabeeesabeeabeeasbbeesnbeeesaneeans 117
ADM_DBSEIWOITc.eveiiiiiieiiie et sie ettt s e st e s e s r et e sn e e e e e e nn e e nre e e nnnee e 118
ADM DB GEILONG ..ttt a et e bt e et a e aaae 119
ADM DB SBILONG. ..ttt et e et e e aaae 120
ADM_DBGEIFIOALcuveeiiieieiiee ittt 121
ADM_DBSELFIOAL.........veiiiiiieiiee ittt nnne e 122
ADM_DBGEIDFIOAL. ... eeiieieiiie ettt 123
ADM_DBSEIDFIO@L ... eeettie ittt ettt sttt ae et e b et e e bt e nbae e nbe e e naneeaa 124
ADM_DBGEIBUTT ...ttt ettt ab et e e b be e e be e e nbee e sbe e e naaeean 125
ADM_DBSEIBUIToiiitiiiitite ettt ettt et e s bt e st e e s be e e be e e nbae e sbe e e naneean 126
ADM _ DB GEIREGS ... eettie ettt ettt e et e e et e e e 127
ADM_DBSEIREGS ... eettteiiiiittie ettt a et e e 128
ADM_DBGEEISIIING ..ttt ettt ettt ettt e e et e e bt e e e b e et e e et e e e e e e e e 129
ADM _DBSEESIING ..vuvuvtiuiiiiiiiiiiiii e —————— 130
ADM_DBSWAPWOIuuiiiiiiiiiiiiiiiiiiii s 131
ADM_DBSWEAPDWOIQ........eeiiiiiieiiiee ittt ettt ettt s et ssb e sbe e e ssbeeabeeesbneesnneeesnnee e 132
ADM_GEIDBCPLI ...ttt sttt E e a b e b r e sre e e nnneenn 133
ADM _GEIDBIDIE ..ttt b e s e e be e rr e e sre e e nnnee e 134
ADM_GEIDBINT ...ttt ettt st b e eane e b r e e sre e e nnneena 135
ADM_DBCRANGEM ...ttt ettt e bt e e e e e e e e e aneas 136
ADM_DBBItCRANGEMceiiiiiiieeiitie ettt et e e e st e et e e e aabe e e neeas 137
ADM _DBOR_BYLEcuuieieeeiiiieieeeeeee ettt e s st ettt ettt s et s s eees s s e s 138
ADM _DBNOR _BYIE.......cucueiiiieieeeeeeeeee e e e e eese s s s s et et e st e ettt ettt st s s esssssnen e s 139
ADM_DBAND_BYIEoooieieeceeeeteeeeeeeeeeete et ee et ees sttt en s eae et et ennesas st en s neeantesanenans 140
ADM_DBNAND _BYLE....ciiiiieiiieiiie ettt sttt b e s b e rn e sre e e nnneenn 141
ADM_DBXOR_BYLE ...ttt ettt b et be e naneean 142
ADM_DBXNOR _BYLEciitiiiiiieitite sttt ettt ettt ettt ettt si et sae e st e e st e e e sabe e abe e e nbeeesbeeennnee e 143
9.5 ADM API ClOCK FUNCHONS ...ttt 144
ADM _STAMTIMIEL ...ttt nnn 144
ADM _CRECKTIMIBE ... ittt s 145
9.6 ADM API Backplane FUNCHONSoiiiiiiiieiiiiie e 146
ADM B OPEN ettt et e et e e e et e e e n e s 146
ADM_BECIOSE ...ttt ettt e e bt et e e e e e e aaeas 147
ADM _BEINEXLE ... e ettt e e e e et e e e aa e e e e e e enra e aeaees 148
ADM_REAUBLCTTeeeeiiiiiee ettt ettt ettt e e e aeeas 149
ADM_BUEFUNC.. ... s 150
ADM_SEESTALUSteeeiitiee ittt ettt ettt ettt ettt ettt ekttt et et e st et e kb e e aa bt e s b e e e an e e e be e e nbre e nbe e e nnneenn 151
ADM_SEEBISTALUSc.uteieitiie ittt ettt e et e bt s b et sbb e e aa bt e st e e e shbe e abe e e nbne e abe e e nnnee e 152
9.7 ADM LED FUNCHONScutieiieiitett ettt 153
ADM_SEELEM. ...ttt bttt b e bt aa e e be e e nbr e e sbe e e nnneena 153
9.8 ADM API Miscellaneous FUNCLONSc.evviiiiiiieiiiie e 154
ADM_GEtVEISIONINTO .. uuuiiiiiiiiiiii s 154
ADM_SELCONSOIEPOMeiiiitiie ettt ettt e e e st e e e e rab e e e e nnbee e e eneeas 155
ADM_SEtCONSOIESPEEMU ... ittt e bttt e et e e et e e b e e e e 156
9.9 ADM API RAM FUNCHONS ...ttt ee e e s e e e e e e e e ssnennneeeeae e s 157
ADM_RAM _GEESIIING . teteeiiiete ettt ettt e ettt e e e et b e e e e eabe e e e e sabe e e e e smbe e e e e anbee e e e anbeeeeanreas 157
ADM_RAM_GEUNE ..ottt s e sttt a et esesessesenen e e eas 158
ADM_RAM_GEILONG ...ttt b et kb e et e e st e e e sabe e e be e e nbne e sbeeenanee e 159
ProSoft Technology, Inc. Page 7 of 239

February 20,

2013

Contents

PTQ-ADM ¢ 'C' Programmable

Developer Guide ‘C’ Programmable Network Interface Module for Quantum
ADM_RAM_GEIFIOAL. ... ettt n e 160
ADM_RAM_GEIDOUDIE ...ttt 161
ADM_RAM_GEICNAT ...ttt ettt ettt b e st e bt e et e e abe e e sbbe e e b e e nabeeenees 162
ADM_Get_BP_Data EXCRANGEcoiiiiiiiiiiiiiiiii ettt a et e e e e s 163

10 Backplane API Functions 165
10.1 Backplane API Initialization FUNCLONSc.uiiiiiiiieiiiie e 167
AV 1 o] IO o 1= o IO OO TP P P PPPPTP 167
AV 1 o] o I 1 [0 1 O PP P P PPPPP P 168
10.2 Backplane API Configuration FUNCLONScccuvviiiiee i cesiieeee e 169
Y A4 o] o I =1 11 L@ T [PPSR 169

Y A4 o] o IS T= 11 (@ 1@ o] o) o P PSSR 171
10.3 Backplane API Synchronization FUNCLIONS..........cccceeeeeiiiiiiiicece e 173
Y AVA o IV T4 o T4 [T 01U 6o o ISR 173
MVIbp_ WaitFOrOULPULSCANcceiiiiiiiiieiie e e ettt e e e e s st e e e e e e s s s e e e e e e s s snnbaaaeeeeeesesnnrenneees 174
10.4 Backplane API DIreCt /O ACCESSccoiiuieiiiiiiiiie ittt 175
MVIDP_REAAOULIPULIMEAGE.cei ittt e e e e e e 175
MVIDP_WHEEINPULIMAGE ...ttt s e e et e e e aenas 176
10.5 Backplane APl Messaging FUNCLONScocuiiiiiiiiiieiiiiee e 177
MVIDP_RECEIVEMESSAGEeeiiiiiiiieiiiei ettt e e e e bt e e e e ibe e e e e nenes 177
MVIDP_SENAMESSAGEceiiuteiiieiiieee ettt ettt e s bt e s e e e e aan b e e e anb e e e e e nbaeeeennbnas 179
10.6 Backplane API Miscellaneous FUNCHONS............uvuiiiieiiirieiieeeeeiereeeeseesesesereeeneeenene 181
Y AV o] o T 1= =T £ 1 11 (o PP PPPPNS 181

Y AV o] o T =1 11, o T [U1 1= [| (o PP PPPPPPNS 182

Y VAT o T = (0] 5] 11T PP PPPPPPRS 183

Y VAT o TS 1= (LS =T o I 5 PP PPPPPNS 184

Y VAT o] TS 11117/ T0 o [0 L=) = L L PP PPPPPPNS 185
MVIDP_GEtCONSOIEMOUEoiiiiieiieieee ettt e e 186
MVIDP_GEISEIUPMOTE ...ttt s eb et e e et e e e e 187
MVIDP _ GEtPIOCESSOISTALUS ... ciutveiieiiiiiee ittt ettt ettt s e e e st e e s e bt e e e eebe e e e e nenas 188
AV L o] oIS L= o PO PTPRTP 189
MVIDP_SEtCONSOIEMOUEooiiiiiiiieiiee ettt s e e e e e e 190
11 Serial Port Library Functions 191
111 Serial Port API Initialization FUNCHONS..........occoiiiiiiiie e 193
Y AV A 1 o @ =] o PP PTPPR 193

Y Y] o T @ = A | PPNt 195
V] o T o 1] PPNt 197
11.2 Serial Port API Configuration FUNCLIONScooiiiiiiiiicicccccc 198
Y AV] o TR @ o PP PPPPPRS 198
MVISP_SetHaNASN@KINGeiiiiiiiiiei e e 199
11.3 Serial Port APl Status FUNCLIONSoooeiiiiiieee et 200
AV S ST 1 IS T PP EPPP R PPPPPI 200
MVISP_GEERTS ..ottt e e et et e e et e e et e e e e e s e s s e et et e e e e e annrneeeeas 201
MVISP_SEIDTR .eeiiieeiiitte ettt ettt e e e e e e et e e e s e s r e et e e e s s an e e et e e e e e e e annrreneeas 202
MVISP_GEEIDTR ..ttt ettt ettt e e et ettt e e e e e e e e et e e e s e as e et e e e e e e e snnreenees 203
AV o I 1= (O 1S T OSSP O PR PUPRTOTRTRUPO 204
MVISP_GEEIDSRottt ettt ettt bt s ab e st e e ket e st e e e sbb e e et e e e abe e e snbeeennnee e 205
MVISP_GEIDCDeeiiieeeieee ettt ettt e b ekt e e s hb e et e e e kbt e st e e e sbb e e enbe e e abeeesnbeeennneena 206
MVISP_GELLINESTALUSeteeiiiieeiie ittt ettt e ettt e e e e e e s s et e e e e e e e e s e annbebeeaeaeeaeaannneeeeeas 207
114 Serial Port API COMMUNICALIONScooiiiiiiiiiieae ettt 208

Page 8 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Contents

‘C’ Programmable Network Interface Module for Quantum Developer Guide
A £ o U (o SRS 208

AV £ o 1= (] o SRR 209
IMVISP _PULS ...ttt e e e e s e s e e et e e e s e s e e e e e e e e nananen 210
MVISP_PULDALA........etriiiiiieeii et e et e e e s et et e e e e e s e e e e e e s e naaanens 212
IMVISP _GBES ..ttt ettt e e s ettt e e e s e e et e e e s e e e s e 214
MVISP_GEEDALA ...ttt e e e e st e e e e e e 216
MVISP_GEtCOUNTUNSENT ...ttt e e s e e e e s e e e e e e e e s aannns 218

Y AVA 1S oI 1= (@10] 11 41 (== Lo PRSP 219
MVISP_PUIrgeDatalUNSENTcciiieiiiiie e e et e e e e e e aa e e e e e e eeaenen 220
MVISP_PUrgeDatalUNIEad...........uuuieieiiiiiiiiieeie e e s sttt e e e e s s st r e e e e e s s ssbaeeeeeeeesesnntaneneeeeesaannnes 221

11.5 Serial Port APl Miscellaneous FUNCLONSccoiiviieiiiiiiie et 222

Y AV 1S oI 1= AV =T £ (o T 1o T PSR 222

12 Product Specifications 223
12.1 General SPECIfICALIONSuuuiiiieiii i s e s e e e et e e e e s s ennreaeees 224
12.2 Hardware SPeCifiCatioNS.cueiiiiiiiieiiie e 225
12.3 Functional SPeCIfiCAtIONS..........cuuiiiiiiiie e 226
13 DOS 6 XL Reference Manual 227
14 Support, Service & Warranty 229
141 Contacting Technical SUPPOIT........cooiiiiiiiiiie e 230
14.2 Warranty INFOrMAtIONooiiiiiiieii e 231
Glossary of Terms 233
Index 237
ProSoft Technology, Inc. Page 9 of 239

February 20, 2013

Start Here PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 10 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable

Start Here
‘C’ Programmable Network Interface Module for Quantum

Developer Guide

1 Start Here

In This Chapter

% Hardware and Software Requirementscccccceeeveviiiereeeecesciieeeeenn 12
< Information for Concept Version 2.6 USErs........c.cccccevuvvvereeeeeiiiivneneennn. 14
This guide is intended to guide you through the ProTalk module setup process,

from removing the module from the box to exchanging data with the processor. In
doing this, you will learn how to:

= Set up the processor environment for the PTQ module
View how the PTQ module exchanges data with the processor

Edit and download configuration files from your PC to the PTQ module
Monitor the operation of the PTQ module

ProSoft Technology, Inc.

Page 11 of 239
February 20, 2013

Start Here PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

1.1 Hardware and Software Requirements

1.1.1 Package Contents

ProTalk Module Null Modem Serial Cable

Profalk

Solutions

1454-9F DB-9 Female to 9 Pos Screw Terminal ~ ProSoft Solutions CD
adapter (Serial protocol modules only)

Note: The DB-9 Female to 5 Pos Screw Terminal adapter is not required on Ethernet modules and
is therefore not included in the carton with these types of modules.

Quantum Hardware

This guide assumes that you are familiar with the installation and setup of the
Quantum hardware. The following should be installed, configured, and powered
up before proceeding:

= Quantum Processor

= Quantum rack

= Quantum power supply

= Quantum Modbus Plus Network Option Module (NOM Module) (optional)
= Quantum to PC programming hardware

= NOM Ethernet or Serial connection to PC

Page 12 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Start Here
‘C’ Programmable Network Interface Module for Quantum Developer Guide

PC and PC Software

» Windows-based PC with at least one COM port

= Quantum programming software installed on machine
or

= Concept™ PLC Programming Software version 2.6

or

ProwORX PLC Programming Software
or

Unity™ Pro PLC Programming Software

Note: ProTalk modules are compatible with common Quantum programming applications,
including Concept and Unity Pro. For all other programming applications, please contact technical
support.

1.1.2 Recommended Compact Flash (CF) Cards

What Compact Flash card does ProSoft recommend using?

Some ProSoft products contain a "Personality Module", or Compact Flash card.
ProSoft recommends using an industrial grade Compact Flash card for best
performance and durability. The following cards have been tested with ProSoft’s
modules, and are the only cards recommended for use. These cards can be
ordered through ProSoft, or can be purchased by the customer.

Approved ST-Micro cards:

= 32M = SMCO032AFC6E
* 64M = SMCO64AFFGE
= 128M = SMC128AFF6E

Approved Silicon Systems cards:

= 256M = SSD-C25MI-3012
» 512M = SSD-C51MI-3012
» 2G = SSD-C02GI-3012
= 4G = SSD-C04GI-3012
ProSoft Technology, Inc. Page 13 of 239

February 20, 2013

Start Here
Developer Guide

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

1.2 Information for Concept Version 2.6 Users

This guide uses Concept PLC Programming Software version 2.6 to configure
the Quantum PLC. The ProTalk installation CD includes MDC module
configuration files that help document the PTQ installation. Although not required,
these files should be installed before proceeding to the next section.

1.2.1 Installing MDC Configuration Files

1 From a PC with Concept 2.6 installed, choose START / PROGRAMS / CONCEPT

/ MODCONNECT TOOL.

This action opens the Concept Module Installation dialog box.

iill Concept Module Installation 1= =l

File Maodules Help

1n

MDC F‘TD 1018
MOC-PTA-103M
MOC-PTE-1045
MOC-PTH-DFCM
MOC-PTU-DFNT
MDC-PTG-DNP
MOC-PTA-DNPSNET
MDC-PTG-HART
MOC-PTH-LNG

— Module Detail

in Concept

|E

IECEOR7-5-101 Slave
IECE087-5-103 M aster
IECE037-5-104 Server
Fockwell Automation DF1 Half Duplex b aster
Rockwell Automation Ethemet/P Module
DHP 3.0 Master/Slave Module

DMP 3.0 Ethemet Server

HART Module

Landiz and Gyr Protocol

Provider
Wersion:

Copyright:

ProLing Communication G atewayps
1.00.00
Copyright 2002-2003

2 Choose FILE / OPEN INSTALLATION FILE.

This action opens the Open

Installation File dialog box:

(ol x]
File: Modules Help
Installed Modules in Concept D atabase:
[Open Installation File e |
MOC-PT Bl
MOC-PT olders: -
MOC-PT c:hconcept -
MDCFT Cancel |
mgg ET Sample.mde =] [=
MOC-PT #= CONCEPT Metwork. .. |
MOC-PT 3 Ca_help
T3 CC2cAT
— Module £ Dat
Provide ﬂ £ Dib _I
Wersion:
Copurigh List files of type: Drives:
IModuIe Desc.[*mde] j I Hc J

3 If you are using a Quantum processor, you will need the MDC files. In the
Open Installation File dialog box, navigate to the MDC Files directory on the

ProTalk CD.

4 Choose the MDC file and help file for your version of Concept:

o Concept 2.6 users: select PTQ_2_ 60.mdc and PTQMDC.hlp
o Concept 2.5 users: select PTQ_2 50.mdc and PTQMDC.hlp.

Page 14 of 239

ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Start Here

‘C’ Programmable Network Interface Module for Quantum Developer Guide

Select the files that go with the Concept version you are using, and then click
OK. This action opens the Add New Modules dialog box.

iil Concept Module T 10 x|
File Modules Help

Installed p——— =
= Add New Modules

MOC-P" Available Modules in a:\ptg_2_B0.mde

r~Madul: ¥
Provide

Wersior

Copyric agdel | Add | e |

5 Click the ADD ALL button. A series of message boxes may appear during this
process. Click YES or OK for each message that appears.

6 When the process is complete, open the FILE menu and choose EXIT to save
your changes.

ProSoft Technology, Inc. Page 15 of 239
February 20, 2013

Start Here PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 16 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum Developer Guide

2 Configuring the Processor with Concept

In This Chapter

% Create a NEW PrOJECTuviiiiie et 18
< Add the PTQ Module to the ProjecCt.........ccoociiiiiiieiiiiiiieeee e 20
s Set up Data Memory in Project.........cccvieeiiiiiiiiiiee e 22
< Download the Project to the ProCeSSOrcoocuveiieeeeeiiiiiiiieee e 24
% Verify Successful DOWNIoadooouviiiiiiiiiiiiiiieee e 27

The following steps are designed to ensure that the processor is able to transfer
data successfully with the PTQ module. As part of this procedure, you will use
Concept configuration software from Schneider Electric to create a project, add
the PTQ module to the project, set up data memory for the project, and then
download the project to the processor.

Important Note: Concept software does not report whether the PTQ module is present in the rack,
and therefore is not able to report the health status of the module when the module is online with
the Quantum processor. Please consider this when monitoring the status of the PTQ module.

ProSoft Technology, Inc. Page 17 of 239
February 20, 2013

Configuring the Processor with Concept PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

2.1 Create a New Project

This phase of the setup procedure must be performed on a computer that has
the Concept configuration software installed.

1 From your computer, choose START / PROGRAMS / CONCEPT V2.6 XL.EN/
CONCEPT. This action opens the Concept window.

2 Open the File menu, and then choose NEw PROJECT. This action opens the
PLC Configuration dialog box.

E; Concept [C:4CONCEPT, TESTPR Y\ untitled]
File Configure Project Online Options Window Help

O | =T 8] 5|2 mb 0502 2| B || o (T B0

DPLC Configuration

e E
LI

BLC Solection Tppe: Unsupported contraller Available Logic Area: E5535

Config Extensions IEE URIIDEG!
B ASCI rPLC Memary Patiion—————————— loadsblese————
Coils: 000001 000001 Number irstalled: 0

Dizcrete lnputs: 100001 1000070
Input Registers: 300001 3000071
Holding Registe 400001 400001

=1olx]

=[E[s)]

5 pecial rSegment Scheduls———

Battery Coall: = Segments: 0
Timer Register. =
Time of Day: - 400007

rConfig Extenzion: —ASCI
[rata Pratection: Digabled Mumber of Meszages:

Peer Cop Disabled Message Area Size:
Hat Standby: Dizabled

]

Bl ienbir of Db

Open Dialog

[PLC Canfiguration Overview, double click in window to ecit sections | NOT CONMECTED |

3 Inthe list of options on the left side of this dialog box, double-click the PLC
SELECTION folder. This action opens the PLC Selection dialog box.

PLC Selection] x|

E Concept [C:\CONCEPT TESTPR I untitled FUE Pl

File <Configure Project Cnline Options Wi v
B s) R B

186 IEC:None 984:EqAMIO/CHS

CPLI/E recutive: rlEC
Runtime:

984 Only ¥ I

|EC Heap Size [KE]:

DPLE Configuration

rPLC
Type

T40CPU 113025
T40CPU 113022
140CPU 11303

T40CPU 113035

B Summarny:

i IEC 140 CPU 113 03¢
B Config Extensians J40cRU I3 0 = ID_ ﬂ j
B ASCH CPLE
Coils Memary 5ize: GGlobal Data (KE]
Disot 8K e [ﬂ j
Input
Haoldi
,D—KI Cancel | Help |
rSpec
Battery Cail - —]

Tirmer Register:
Time of Day,

400007

rConfig Extension A5

[rata Protection: Dizabled Murber of Messages: 0

Preer Cop: Disabled Message Aiea Size:
Hot Standby: Dizahled

Db ci s

| OpenDialog

MNOT COMNECTED

Page 18 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Configuring the Processor with Concept
Developer Guide

4 In the CPU/Executive pane, use the scroll bar to locate and select the PLC to
configure.

PLC Selection

PLLC Farnily:

I Quantum - l

586 IEC:32Bit/2500K/CHS 984:Eq/IMI0/CHS
CPU/Executive: ~IEC
140 CPU 213104 Rurtime:

140 CPL 213 045 Im

140 CPU 213 04
|IEC Heap Size [KB]:

140 CPU 424 0x
m | o

140 CPU 424 D:x
140 CPL 43412

Global D ata [KE]:

Foall 2

kemony Size:

ErT—
[o< |

Cancel | Help |

5 Click OK. This action opens the PLC Configuration dialog box, populated with
the correct values for the PLC you selected.

% Concept [C:\CONCEPT!, TESTPR Y untitled]
File Configure Project Online Options Window Help

=10 x|

o e Y e B I = = S e e = e

I:'PLC Configuration

=101 x|

B Summary:
FLC Memary Partition

PLC
Type: 140CPL 53414
IEC Enabled

C
&vwallable Logic Arear 65535
|EC Heap Size 300

Loadables
Specials

Config Extensions
10 Map
B Segment Scheduler
B Modbus Port Settings
5 ASCI

—PLC Memomny Partition
Coils: 000001
Dizcrete Inputs: 100007
Input Registers: 300007
Holding Registe 400007

r~Loadable:
MNumber installzd: 0

=

—Seagment Scheduler—————

001636
1o0e12
300812
401872

~Special
Battery Coil:
Timer Register:
Time of Day. -

Segments: 32

400007

ASCI
Mumber of Messages:

~Config Extension;
Data Protection:
Peer Cop;
Hot Standby:

|

Disabled
Disabled
Dizabled

dessage Area Size

[PV . J

| Open Dislog

|PLE Configuration Overview, double click in window to edit sections | NOT COMNECTED [

6 Make a note of the holding registers for the module. You will need this
information when you modify your application. The Holding Registers are
displayed in the PLC Memory Partition pane of the PLC Configuration dialog
box.

PLC Memomy Partiion———————————
Cails: 000001 001536
Digcrete Inputs: 1000071 100512
Input Registers: 300001 300512
Haolding Reqgiste 400001 401872

ProSoft Technology, Inc.
February 20, 2013

Page 19 of 239

Configuring the Processor with Concept PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

2.2 Addthe PTQ Module to the Project

1 Inthe list of options on the left side of the PLC Configuration dialog box,
double-click I/0 MAP. This action opens the I/O Map dialog box.

ExpansionSize: [14 4] | o me | e |
Go To: [LocalRemote (Head Skt 7) ¥] | ey | [P | Click Here
Diop | Type | Holdup {x100ms) | In bits | Outbits| Status
1 Quantum /0 30 0

|5 <'=ct this row when inserting at end of st

HeadSelq:L,.I | 0K | Camell Help |

2 Click the EDIT button to open the Local Quantum Drop dialog box. This dialog
box is where you identify rack and slot locations.

Local Quantum Drop X|
—Drop Module

Modules: 1] A5 Paort #: Inone 'l Bitz Ir: 1] Pararms |

Bits In: 0 Bits Out: 0
Bits Out: 1]
Status T able:

T
o
[
i

Frey | [t | Clear | [elete | Cuk | Copy

J Rack-Slot odule Detected I Ref InEnd Out Ref

| .
1-2

1-3

1-4

1-5

1-6

1-7

1-8

1-3

1-10

1-11

112

Out End

TR

113
114

] D

Ok | Cancel | Help | I~ Fal

Page 20 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable

Configuring the Processor with Concept

‘C’ Programmable Network Interface Module for Quantum

Developer Guide

3 Click the MODULE button next to the rack/slot position where the ProTalk
module will be installed. This action opens the I/O Module Selection dialog

box.

Local Quantum Drop

ASCI Port #

Iru:« e 'I

Modules:

140:XCP-300-00
141-MMS-425-01 (1)
141-MMS-53502 (1)

Battery backup
Sescos Motion Cirl
Sercos Motion Ctl
B087-5-101 Master
IEC6087-5-101 Slave
IEC6087-5-103 Master
|EC6087-5-104 Server
Rocks omation DF 1 Half Duple;
O themnet/IP

Ro the: 1P Mo
DNP 3.0 Mastet/Slave Modue

DNP 3.0 Ethemet Server

HART Modue

Hep | HebonModie

Ok | concsl | Heb |

Leave <all> highlighted

Select your ProTalk Q
module here

In the Modules pane, use the scroll bar to locate and select the ProTalk

module, and then click OK. This action copies the description of the ProTalk
module next to the assigned rack and slot number of the Local Quantum
Drop dialog box.

Local Quantum Drop
—Drop Module
Madules: 1 ASE Part #: Inone 'l Bits In: 1} Paramns |
Bits In: g Bits Dut: a
Bits Out: 0
Status T able:
Frew. st | Clear | Delete | ot | Lopy | Baste |
Fiack-Slat Module Detected In Fief In End Ot Ref Out End ;I
11]
2 —
|13 . N I R
IEENN FroorT | Riockwel
15 I R R B
16]
17]
18 [R R R
13]
1-10 I R R B
111]
112 I R R B
113]
114
|
1] 4 I Cancel I Help | I~ Fall

ProSoft Technology, Inc.
February 20, 2013

Page 21 of 239

Configuring the Processor with Concept PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

5 Repeat steps 3 through 5 for each ProTalk module you plan to install. When
you have finished installing your ProTalk modules, click OK to save your
settings. Click YES to confirm your settings.

Tip: Select a module, and then click the Help on Module button for help pages.

& dboul FruTalk @ i =101 x|
Fle Edt Bookmark Options Help

Help Topics| Eack Brint DOptions £ 2

&7
Prolalk O

The ProTalk @ DMP Server Bthernet Communications Module (PTG-DRPSNET) supports the implementation of the DNP 3.0 (Distributed
Metwork Profocal) over Ethernet, alowing Guartum processors to easity communicate with host systems supporting the protocd. The
modue supports B Subset Level 2 features and some Level 3 feahures

The module supparts DNP Subt Levd 2 festures and same of the Level 3 features allowing the many SCADA systems supporting
the CHP protocalta be integrsted inta the Quantum platform. The module scts s2 = getewsy betwesn the DNP netwark and the
Guartum processor, The data transfer from the Quanium processor is asynchronous fromthe actions onthe DMP netowork.
Databases are user defined and stored inthe moduleto bold the data required by the protocol

The PTQ-DMPSNET module & & powerful communication intertace for Guantum platform processors. Developed under license from
Schnelter EIBCTIC, e MOGUlE INCOOrates proprietary backpiane Technology that ENakies pOWErTul data acCess 10 the QUANTUM
processor

General Specitications

Funclionel Specificetions

Hardrvare Speciictions

NP SURSE DETNion =l

2.3 Set up Data Memory in Project

1 Inthe list of options on the left side of the PLC Configuration dialog box,
double-click SPECIALS.

E Concept [C:4CONCEPT, TESTPR Y untitled] - | Dlﬂ
File Configure Project Online Options Window Help

D | PEes|Te 0] 020 =t @) B o] B | 3|EH| 2 [TalBRl0] 2B G

DPLE Configuration

Sumrnary: fLCe- 140 CPU 534 14 Avallable Logic Area. B5535
PLC Selection YPE: :

PLC Memory Partition IEC Enabled IEC Heap Size 300

Dadab‘es —PLC Memary Partition—————— Loadables—

Specials Coils: 000001 001536 MNumber installed: i]
Caonfig Extensions Discrete [mputs: 100007 100512

10 bap Input Fegisters: 300001 300512

Segment Schadular Holding Registe400001 401872
B Modbus Port Settings

B ASCI

—Special Segment Scheduler———————
Battery Coil: - Segments: 32
Timer Register: -
Time of Day: - 400007

—LCanfig Extensian —ASCI

[Data Protection: Dizabled Mumber of Meszages:
Peer Cop: Disabled
Hat Standhy: Disabled

4| |

tezzage Area Size;
hlornkme mF Dimbos

G). DOpen Dialog

|PLC Configuration Cwverviewy, double click in window to edit sections NOT COMMECTED

Page 22 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable

Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum

Developer Guide

2 This action opens the SPECIALS dialog box.

Iy
i
I Battery Col m[1536
[~ Timer R egister 4 l— 1872
I Time OF Day s 400007 1865

[Allow Duplicate Coils (LLI24 anly)

First Coil Address: 0= I

‘wiatchdog Timeout [ma=10]: ISD

Online Editing Timeslice [ms): |2D

ok | Cancel | Help |

Selecting the Time of Day

1 Select (check) the Time of Day box, and then enter the value 00001 as
shown in the following illustration. This value sets the first time of day register

to 400001.
x|
b aximum
I~ Batlery Cail m[1536
™ Timer Register A l— 1872
¥ Time Of Day 43 |00001 - 400008 1865

I &llow Duplicate Coils [LL984 only)

First Coil Address: Oz

‘Watchdog Timeout [ms™10]: 30
Online E diting Timeslice [me] 20

Ok I Cancel | Help |

2 Click OK to save your settings and close the Specials dialog box.

ProSoft Technology, Inc. Page 23 of 239
February 20, 2013

Configuring the Processor with Concept PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Saving your project
1 Inthe PLC Configuration dialog box, choose FILE / SAVE PROJECT AS.

EZ: Concept [C:\CONCEPT, TESTPRI\untitled]

File Configure Project Onlne Options ‘Window Help

g:::ﬂim l‘ B EIEI

Close project

Sai Chr+s

Optitize project.:, -
archiving. .. 140 CPU 53414 Awaile
Enabled IECH

New sectian. . e
Open section. oty Partition———————— Loada
[T— oooom 001536 Murnbs
Section properties. .. B Inputs: 100001 100512 r
Soction Memory egisters: 300001 300512

Flegited0000 401872
Import...
EXpOIt... o—
Pk, Coil Sz
Printer setup... ecister -

Day 400007 400008
view Logfile

Extension: - ASCI
B AR lotection Disabled Humbe

J o Disabled

1 CH{CONCEPT|TESTPRIWEWDFNT 3 e Messa

T M
I (P
®y Open Dislog

Sawe currert project using a different detabase name

2 This action opens the Save Project As dialog box.

Save Project As llll

File name: Folders:
Im c:hooncepthtestpr
Cancel |

NEWDFNTPRI & [b —
NEWFROJ PR
NEWTEST PR %CTDENSETi: Network... |

testpr prii = dib

£ MEWDFNT B&K
= O NEWDFNT.DIA x|

Save file as lype: Dirivves:
IConcapt Projects [*.pri] LI I Hc j

3 Name the project, and then click OK to save the project to a file.

2.4 Download the Project to the Processor

Next, download (copy) the project file to the Quantum Processor.

Page 24 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable

Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum

Developer Guide

1 Use the null modem cable to connect your PC’s serial port to the Quantum
processor, as shown in the following illustration.

Note: You can use a Modbus Plus Network Option Module (NOM Module) module in place of the
serial port if necessary.

2 Open the PLC menu, and then choose CONNECT.
3 Inthe PLC Configuration dialog box, open the ONLINE menu, and then
choose CONNECT. This action opens the Connect to PLC dialog box.

Conneck ko PLC ll
Protocol type:
Protocol zettings: Modbu

= Mod

Tcogﬁgs Plus PLE Nods: (__° c Device: 9500.e.8.1
* RTU

IEC Sirmulatar (32-b nom ICDM1 vl Part Settings... |

_I 7 ASCI

—Access Level

List of nodes an Modbus Flus network:

=l
" Monitor anly
" Change Data
" Change Program

* Change Canfiguration j

Huast adapter:

QK I Cancel I Fescan | <Previ0us| et > | Help I

4 Leave the default settings as shown and click OK.

Note: Click OK to dismiss any message boxes that appear during the connection process.

ProSoft Technology, Inc.

Page 25 of 239
February 20, 2013

Configuring the Processor with Concept PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

5 Inthe PLC Configuration window, open the ONLINE menu, and then choose
DoOwNLOAD. This action opens the Download Controller dialog box.

Download Controller x|

¥ | Configuration
[State Bk will be cleared]

I~ |EC program sections
[W pload infarmation)
I~ 384 ladder logic
[~ &5E messages
[State RaM
I nitial alues oty

All

[~ Extended memory

Select parts to download, then press <Download:

Diawnload | Cloze | Help |

6 Click ALL, and then click DOWNLOAD. If a message box appears indicating
that the controller is running, click YES to shut down the controller. The
Download Controller dialog box displays the status of the download as shown
in the following illustration.

Download Controller x|

¥ | Configuration

I~ |EC program sections
[Me U pload infamrmation]
I~ 984 ladder lagic
= 5500 messages
[State Rt
I Iritial jalues anly
[Extended memany

Al

Downloading extended mermory files...
Registers [Bx): 3360 of 98303

Downloadl Cancel I Help |

7 When the download is complete, you will be prompted to restart the
controller. Click YES to restart the controller.

Page 26 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum Developer Guide

2.5 Verify Successful Download
The final step is to verify that the configuration changes you made were received
successfully by the module, and to make some adjustments to your settings.

1 Inthe PLC Configuration window, open the ONLINE menu, and then choose
ONLINE CONTROL PANEL. This action opens the Online Control Panel dialog
box.

Online Control Panel |

Controller Executive 1D iz 883, Version 0120, [EC 0260.

Time of D'ay clock
Stop controller. .. |
clock nok et
] troller... .
&l — Constant sweep setting:
Irvoke constant sweep. . | reqgister for target scan time -
target scan time (ms) e
Invoke single sweep.. | fres-urning sean time (rms]
Set clock... | . .
— Single sweep setting
[rvake optimized solve | single sweep time base [ms)]
sweep tigger count
Flazh program... |

Set PLE password)., |
|

2 Click the SET CLOCK button to open the Set Controller’s Time of Day Clock
dialog box.

Online Control

] B
Stop cor Day of week
[Clear zal Wit -2
Day [1-31)
Invoke const
_— ‘Year
Invioke sing Haur [0-23)
cotoh Minute [0-55) Jo
Second (0-59 1]
Irvake optin ! ! I u]
Flash pr ‘wiite Panel -» PLC: 7/15/2003 16:06:08 | L
Set U ok | cancel | Help |
Cloze | Help |

3 Click the WRITE PANEL button. This action updates the date and time fields in
this dialog box. Click OK to close this dialog box and return to the previous
window.

4 Click CLOSE to close the Online Control Panel dialog box.

5 Inthe PLC Configuration window, open the ONLINE menu, and then choose
REFERENCE DATA EDITOR. This action opens the Reference Data Editor
dialog box. On this dialog box, you will add preset values to data registers
that will later be monitored in the ProTalk module.

ProSoft Technology, Inc. Page 27 of 239
February 20, 2013

Configuring the Processor with Concept
Developer Guide

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

6 Place the cursor over the first address field, as shown in the following

illustration.

ERDE Template {untitled) - Animation ON 1ol x|
Variable Name I Data Type | Address Value | Set Value | ﬂ
1 | |
T2 |
3]
| |
5
[
[
8
"9 |
)
1]
12 -
A i

7 Inthe PLC Configuration window, open the TEMPLATES menu, and then
choose INSERT ADDRESSES. This action opens the Insert addresses dialog

box.

8 On the Insert Addresses dialog box, enter the values shown in the following

illustration, and then click OK.

Insert Addresses

First Reference To Inzert:
Last Reference To Inserk:

Mumber of References to

Dizplay Format:

Inzert:

Dec

ok I Cancel |

x|
[200001

400010

[id”

-

Help I

9 Notice that the template populates the address range, as shown in the
following illustration. Place your cursor as shown in the first blank address
field below the addresses you just entered.

Place cursor here

ERDE Template (untitled) - Animation OFF _ ;lglil
Variable Name I Data Type l Address VYalue | Set Value | =
2 | 400002 —
= 400003 [
A 400004 [
"5 | 400005 [
6 400006 L
7 400007 t
8 400008 (
9 | 400009 [
10| [
[T < ﬁ
12 {
3] —— —
4 = = [

Page 28 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum Developer Guide

10 Repeat steps 6 through 9, using the values in the following illustration:

x
First Reference To Insert: I 400020
Last Reference To lnsert: 400023
Mumber of References to Inzert: I‘]U
Dizplay Format: Dec b

Ok | Cancel | Help |

11 In the PLC Configuration window, open the ONLINE menu, and then choose
ANIMATE. This action opens the RDE Template dialog box, with animated
values in the Value field.

ERDE Template {untitled) - Animation ON =181l
Variable Name Data Type I Address I Value | Set Value | ;I

_3 400003 7 [—I
_4] 400004 17 I
5 400005 3 I
_ 6B | A00006 15 I
_ 7 A00007 I

8 A00008 49 I
g | 400009 I
10 400010 0 [
I
12 A00020 24576 I
13 A00021 5 I

14

400022 7
3|

12 Verify that values shown are cycling, starting from address 400065 and up.

13 In the PLC Configuration window, open the TEMPLATES menu, and then
choose SAVE TEMPLATE AS. Name the template ptqclock, and then click OK
to save the template.

14 In the PLC Configuration window, open the ONLINE menu, and then choose
DISCONNECT. At the disconnect message, click YES to confirm your choice.

At this point, you have successfully

= Created and downloaded a Quantum project to the PLC
» Preset values in data registers that will later be monitored in the ProTalk
module.

You are now ready to complete the installation and setup of the ProTalk module.

]

ProSoft Technology, Inc. Page 29 of 239
February 20, 2013

Configuring the Processor with Concept PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 30 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Configuring the Processor with ProWORX
‘C’ Programmable Network Interface Module for Quantum Developer Guide

3 Configuring the Processor with ProWORX

When you use ProwORX 32 software to configure the processor, use the
example SAF file provided on the ProTalk Solutions CD-ROM.

Important Note: ProWORX software does not report whether the PTQ module is present in the
rack, and therefore is not able to report the health status of the module when the module is online
with the Quantum processor. Please consider this when monitoring the status of the PTQ module.

1

Run the SCHNEIDER_ALLIANCES.EXE application that is installed with the
ProwORX 32 software:

fi ProwORX 32 € Authorization

|35 CodeGen

ﬁ ExeclLoader

33 ProwoRX 32

Og Schneider Alliances

Click on IMPORT...

£. Schneider, Alliances

140 zeries Module
200 Geries =

Add Delete.. | Impart... | Export... |

[ame Y alug -
Card ID

Card Description

b edium Description
Long Description
Power [+5]

Power [+4.3]
Power [-5]

In Buytes

Out Bytes

Module Type

Doc Only

Fack Wiew Bitmap
Dirop View Bitmap
Hasz Multiple
Catalog Mumber
Terminal Stip j

ProSoft Technology, Inc. Page 31 of 239
February 20, 2013

Configuring the Processor with ProWORX PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

3 Select the .SAF File that is located on the CD-ROM shipped with the PTQ
module.

Select Import File @

Laok in: | (5 S4F Files ~ «e@mekE-

" (C)bmp
‘ ProtalkQ_v1_0.5AF

My Recent
Documents

My Metwork File name: ProtalkQ_v1_0.54F = DOpen
lace: I J |—I
Files of type: | Schneider lliance File (*.saf) ~| Cancel
|

4 After you click on OPEN you should see the PTQ modules imported (select
I/O SERIES as QUANTUM):

1/0 series Module
[Quartum Seres =l -
Add | Delete... | Import.... I Export... |

Name Value I
Card ID 0424H

Card Description PTO-AFC

Medium Description Flow Computer Module

Long Description Gas/Liquid Flow Computer Communication ...
Power 800

Number of Parameters Used 0

Default Number of Parameters 0

In Bytes 0

Out Bytes 0

Module Type O0-Discrete

Doc Only 1-True

MCS Simple 1 0-Ordinary ||
MCS Simple 2 0000-0000

Default Parameter Data

Rack View Bitmap PTOAFC.bmp

Drop View Bitmap PTOAFC.bmp -

Edit Update Cancel Help
Page 32 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Configuring the Processor with ProWORX
‘C’ Programmable Network Interface Module for Quantum Developer Guide

Now you can close the Schneider alliances application and run the ProwORX 32
software. At the Traffic Cop section, select the PTQ module to be inserted at the

slot:
DroWORX 32 - [SAFTESTTEST] Offline - [Traffic Cop [SAFTESTTEST]] LEX)
£ Fle Edt Vew Window Help sl x|

DEH SRM oo Bl Mt DN, [$e=elsn e 00082k a0
i P ‘ ; J-HI-#A - Wi -w-@-F-E [@E

v : i Tratfic Cop Diop Rack1 | Rack2 | | I sckd |
,E Direct To Online | llead 00 (Local)
4 ﬂ%ompdutev Drop 01 (Quantum Serel [(11 2 1 3 T 4 [5 [6] 7 81 0[] f2] 3] 4] 16] 6
xt_demo
= [SAFTESTTEST <Offlin o SECIEF?§114.ZU
(] Configuration cPus3s
ﬁ Traffic Cop PTR-1015
}‘}5 Communications &
ﬁ Logic
* Data Editors

Configuration Estensior
!] ASCIl Messages
[+ PLC Status
Analyze Device
EA Knowledge Base

cooooooooaaaas

Il Rack 02
ead 02 (Distributed) —— — .
Froperties - Slat (03] E3 || Froperties - Drop (01] |
Module PTQ-1018 4| | Drop Series Quantum Series
Description IEC-60870-5-101 Slave Module Hold Up Time 3
< | @ Power Rating 800 mé&

_IProjects Utilities

Status Reaister [3x]

&) Documents WPant <) B | {Input Paints 0000 /1024 =l
x - - x
ISAthl TEST [Editc Summary & Traffic Cop ;I A
Head Diop Rack Slat i1 ProWORX 32 Tracking Help E
|U _'J [1 _'_] |1 ﬂ |3 L] ‘Welcome to the Tracking Help! Here you will find relevant information that
Short Comments directly pertains to the current instruction or I/0 module being accessed. <
; | e e M
Al | I ﬂ Tracking Help L Message Central
[Logged in user: Ni& PROGRAM [SAFTESTTEST - <Quantum 534 @ TCPIP:192.168.0.139> Offline 3

ProSoft Technology, Inc. Page 33 of 239
February 20, 2013

Configuring the Processor with ProWORX PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 34 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Configuring the Processor with Unity Pro
‘C’ Programmable Network Interface Module for Quantum Developer Guide

4 Configuring the Processor with Unity Pro

In This Chapter

% Create a NEW PrOJECTuviiiiie et 36
< Add the PTQ Module to the Project.........ccccccuvievieeiiiiiiiieiie e 38
% BUIld the PrOJECT ..uuviiiiie e 40
% Connect Your PC t0 the ProCeSSOrcuiiiiiiiiiiiiiieee e 41
< Download the Project to the Quantum ProCessor..........cccvveveeeeeeinieneen. 44

The following steps are designed to ensure that the processor (Quantum or
Unity) is able to transfer data successfully with the PTQ module. As part of this
procedure, you will use Unity Pro to create a project, add the PTQ module to the

project, set up data memory for the project, and then download the project to the
processor.

ProSoft Technology, Inc. Page 35 of 239
February 20, 2013

Configuring the Processor with Unity Pro PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

4.1 Create a New Project

The first step is to open Unity Pro and create a new project.

1 Inthe New Project dialog box, choose the CPU type. In the following
illustration, the CPU is 140 CPU 651 60. Choose the processor type that
matches your own hardware configuration, if it differs from the example. Click
OK to continue.

New Project [5__(|
PLC | Wersion | Description | | ak. |
+I- Premium 02.00 | Premium
= Quartum 02.00 | Quartum %

140 CPU 31110 02.00 | 486 CPU, 400Kb Program, MB, MB+ Help

140 CPU 434 12A... 02.00 | 486CPU, 800Kb Program, MB, MB+ g
140 CPU 534 14A .. 02.00 | 586CPU, 2.7Mb Program, ME, MB+

140 CPU 651 50 0200 | P166CPU, 512Kb Program + PCMCIA, Ethemet-TC...

140CPUGS160 | 0200 | P266CPU. IMb Program + PCMCIA, Ethemet-TCP

140 CPU 671 60 02.00 | P266 CPU Hot-Standby, 1Mb Program + PCMCIA, ...

2 Next, add a power supply to the project. In the Project Browser, expand the
Configuration folder, and then double-click the 1:LocALBuUS icon. This action
opens a graphical window showing the arrangement of devices in your
Quantum rack.

Q Unity Pro XL : <No name>*
File Edit View Services Tools Buid PLC Debug Window Help

i 24 B8 & T i
e M B
Q stadon A Bus: T [awcrusmie 2w <

o B« Configuration
o - 1: Local Bus|
e G, 1 Lotal Quantul
G || PRETE
-], Derived Data Types
-], Derived FB Types
= {3, ¥ariables & FB instan
<, Elementary Variables
(@), Derived Varisbles
[, 10 Derived ¥ariables
s v
W Flementam FR Instan
|

¥

|l

=~ Local Quantum Drop -
- Analog Il
- Communication
B Counting
=+ Discrate
S [|
% oton < | =
- Rack A

T _Locaae |

x|

|
[AT - TFT Build A_Impoiexpor _Userermors A_Search/Resiace £

Ready HMI R/\W mode |[OFFLINE MODBUSO1:1

Page 36 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Configuring the Processor with Unity Pro
‘C’ Programmable Network Interface Module for Quantum Developer Guide

3 Select the rack position for the power supply, and then click the right mouse
button to open a shortcut menu. On the shortcut menu, choose NEw DEVICE.

|A
|

4 Expand the Supply folder, and then select your power supply from the list.
Click OK to continue.

New Device f'5_<|
i —
ress:
Cancel
Part Number Description I; Help
+-- Counting
+I Discrete
+ Expert
+|-- Motion
=1 Supply
140 CP5 111 00 AC Standalone PS5 115/230V 3A
140CPS 114 X0 AC Standalone PS5 115/230V 8A
140CP5 12400 AC Redundant PS5 115/230V 8A
140CP5 124 20 AC Redundart PS5 120/230V
140CPS 211 00 DC Standalone PS 24V 3A
140CPS 214 00 DC Summable PS 24V 10A
140CP5 224 00 DC Redundart P5 24V 8A
140CPS £14 00 DC Summable PS 48V 84
140CPS £24 00 DC Redundant PS5 48V 8A
140CP5 51100 DC Standalone PS5 125V 3A
140 CP5 524 00 DC Redundant P5 125V 8A 5

5 Repeat these steps to add any additional devices to your Quantum Rack.

ProSoft Technology, Inc. Page 37 of 239
February 20, 2013

Configuring the Processor with Unity Pro

Developer Guide

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

4.2

Add the PTQ Module to the Project

1 Expand the Communication tree, and select GEN NOM. This module type
provides extended communication capabilities for the Quantum system, and
allows communication between the PLC and the PTQ module without
requiring additional programming.

“» Unity Pro

XL : <No name>*

Eile Edit Yiew Services Tools Buld PLC Debug ‘window Help

IEE = e

Derived FB Types
Variables & FB instand
e, Elementary Varisbles

Dierived Varizbles
| 10 Derived ariables

Analog

- Expett
Motion

= Local Quantum Drop

#- Communication
- Courting

- Discrete
¢
o)

Rack <
] 4] 5[5 Jus) Local Bus A RID Bus

<

AsES | |EsdoaMes (BN
B =Rl
Project Browser [%]

Ty el e

{3, Station A

=) {3, Confi

- B8R, 1:Lovaleus

H o Ge, 1:Loosl Quantu —

M, 1: 10 xeF

oK I

Address: 1.4
Cancel |
Part Number Desciption [~ Hep |
= Local Quantum Drop Local Quantum Drop
Analog

= Communication

140 CRP 93X 00

RIO HEAD 5308

140 EIA 521 00

AS- 1CHANNEL

140 NOE 31100

QUANTUM SY/MAX ETHERNET MODULE ...

140 NOE 351 00

QUANTUM SY/MAX ETHERNET MODULE ...

] @ Local Bus

140 NOE 771 00

ETHERNET TCP IP. BASIC WEB SERVER ...

140 NOE T D1

ETHERNET TCP IP. BASIC WEB SERVER ...

x|
&=

140 NOE 77110

ETHERNET TCP IP, CONFIGURABLE WEBR

T4DNOE 771 11

ETHERNET TCP IP, CONFIGURABLE WEBR

140 NOM 2X¢ 00

N1 MB+

140 NWM 100 00

FACTORYCAST HMI WEB SERVER MODULE

‘ AT DI Buite

Impartiexport

User emors A Search/Replace

Ready

140 XBE 100 0D
GEN NOM
FTQ PDP MV1

EXPANDER

NOM type generic module
ProfiBus DP/DPV1 Master Module

- Courting

Page 38 of 239

ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Configuring the Processor with Unity Pro
‘C’ Programmable Network Interface Module for Quantum Developer Guide

2 Next, enter the module personality value. The correct value for ProTalk
modules is 1060 decimal (0424 hex).

4 Unity Pro XL : <No name>* |’._H’ENZ|
File Edit ¥iew Services Tools Buld PLC Debug Window Help
aEHE © B S = A il
B Smucturalview 4 0 =]
3, Station ~ HOM type generic module
=3, Configuration]
= B, 1iLocalBus - - - N
il Overview | |f3] Config | ([T 1O otjects
= 2, 1:Local Quantu = = =
) ml 1. 40 KEF Parameter Name Value
- D, Derived Data Types

- [‘_‘L Derived FB Types
= -+, Yariables & FB instans
i, Elementary Variables
- (@, Derived ¥arisbles
[, 10 Derived Yarisbles
A Flementam FR Instan

|~

dware catalog

= Local Quantum Drop .
+- Analog
B Communication
E- Counting
- Discrete
- Expert —

El- Mation
- R

-
i [Local Bus RO / M0 LocalBus BB 14 GEN

&

Ll

[AT - TF T Build £_Imposiexpor }_Useremore A_Searcn/Reolace /.

Value between: 1 - 65535 HMI R/W mode |OFFLINE MODBUSD1: 1

3 Before you can save the project in Unity Pro, you must validate the
modifications. Open the EDIT menu, and then choose VALIDATE. If no errors
are reported, you can save the project.

4 SAVE the project.

ProSoft Technology, Inc. Page 39 of 239
February 20, 2013

Configuring the Processor with Unity Pro PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

4.3 Build the Project

Whenever you update the configuration of your PTQ module or the processor,
you must import the changed configuration from the module, and then build
(compile) the project before downloading it to the processor.

Note: The following steps show you how to build the project in Unity Pro. This is not intended to
provide detailed information on using Unity Pro, or debugging your programs. Refer to the
documentation for your processor and for Unity Pro for specialized information.

To build (compile) the project:

1 Review the elements of the project in the Project Browser.

2 When you are satisfied that you are ready to download the project, open the
BuUILD menu, and then choose REBUILD ALL PROJECT. This action builds
(compiles) the project into a form that the processor can use to execute the
instructions in the project file. This task may take several minutes, depending
on the complexity of the project and the resources available on your PC.

3 As the project is built, Unity Pro reports its process in a Progress dialog box,
with details appearing in a pane at the bottom of the window. The following
illustration shows the build process under way.

a=HE By & (=] B =B m

Project Browse
%a Structural wiew
....... £ Station
e @ Configuration
=]emsnpg &_m 1:Local Bus
] } 1: Local Quantur
........ M 1:uoxer
........ D Derived Data Types
........ 2] Derived FB Types
- a Yariables & FB instan
-------- % Elementary Variables
-------- Derived Yariables
-------- 10 Derived Variables

|*

Bus: |140CPU E51 B0 0200 |

|*

Rebuild All Project

Generating ariables...

ardware catalog
=l Local Quantum Drop
+- Analog
+|- Communication
+-- Counting D
+- Discrete 3
+ Bt | ¥z e
+- Mation —
@ Local Bus J
HMI R\ mode |OFFLINE MODEUS01:1

After the build process is completed successfully, the next step is to download
the compiled project to the processor.

Page 40 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Configuring the Processor with Unity Pro
‘C’ Programmable Network Interface Module for Quantum Developer Guide

4.4 Connect Your PC to the Processor

The next step is to connect to the processor so that you can download the project
file. The processor uses this project file to communicate over the backplane to
modules identified in the project file.

Note: If you have never connected from the PC to your processor before, you must verify that the
necessary port drivers are installed and available to Unity Pro.

To verify address and driver settings in Unity Pro:

1 Open the PLC menu, and choose STANDARD MODE. This action turns off the
PLC Simulator, and allows you to communicate directly with the Quantum or
Unity hardware.

erug Window Help

Connect Cirl+K
Set Address...
m Standard Mode

B simulation Mode

Project Backup... 4

Memory Consumption...

2 Open the PLC menu, and choose SET ADDRESS... This action opens the Set
Address dialog box. Open the MEDIA dropdown list and choose the
connection type to use (TCPIP or USB).

Set Address X

v PLC Simulatar -
Bandwidth...
Address Address
Test Connection

[127.001 [127.001
Media Media
[TCRIP | |[TCFIP | aK

Cancel

LCommunication Parameters |
Help
ProSoft Technology, Inc. Page 41 of 239

February 20, 2013

Configuring the Processor with Unity Pro PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

3 If the MEDIA dropdown list does not contain the connection method you wish
to use, click the COMMUNICATION PARAMETERS button in the PLC area of the
dialog box. This action opens the PLC Communication Parameters dialog
box.

PLC Communication Parameters E|

Request failure recoveny

Mumber of ties: E J;I
Timeout [mz]: 2000

r @ Driiver Settings

0K | Cancel | Help |

4 Click the DRIVER SETTINGS button to open the SCHNEIDER Drivers
management Properties dialog box.

SCHNEIDER. Drivers management Properties

MODBUS SERIAL Driver | MODBUSTest | XWAYTest |
DRIVERS Manager | PLC USE Driver |
Drrivers Manager V2.1 1E14 %
Dirivers System info
2installed drivers Windaws NT WE.1 [Build 2600)

MODEBLUS Extended info: Service Pack 3

Wingock : V2.2
Ingtall / update
DLLg 3008y 0 WE, 1,23, 5
Unitstall this driver Nettcoess: W1, 0,8, 14

OK

5 Click the INSTALL/UPDATE button to specify the location of the Setup.exe file
containing the drivers to use. You will need your Unity Pro installation disks
for this step.

Driver installation/update

Inzert the driver installation dizk in the selected
device then click OF.

Cancel
Install the driver from :
|A:\setup.exe Browse...

6 Click the BROWSE button to locate the Setup.exe file to execute, and then
execute the setup program. After the installation, restart your PC if you are
prompted to do so. Refer to your Schneider Electric documentation for more
information on installing drivers for Unity Pro.

Page 42 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Configuring the Processor with Unity Pro
‘C’ Programmable Network Interface Module for Quantum Developer Guide

4.4.1 Connecting to the Processor with TCPIP

The next step is to download (copy) the project file to the processor. The
following steps demonstrate how to use an Ethernet cable connected from the
Processor to your PC through an Ethernet hub or switch. Other connection
methods may also be available, depending on the hardware configuration of your
processor, and the communication drivers installed in Unity Pro.

1 If you have not already done so, connect your PC and the processor to an

Ethernet hub.
2 Open the PLC menu, and then choose SET ADDRESS.

= |mportant: Notice that the Set Address dialog box is divided into two areas. Enter the address
and media type in the PLC area of the dialog box, not the SIMULATOR area.

3 Enter the IP address in the address field. In the MEDIA dropdown list, choose
TCPIP.
4 Click the TEST CONNECTION button to verify that your settings are correct.

Set Address PIx
. Bandwidth...

LCommunication Parameters LCommunication Parameters |

ProSoft Technology, Inc. Page 43 of 239
February 20, 2013

Configuring the Processor with Unity Pro PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

45 Download the Project to the Quantum Processor

1 Open the PLC menu and then choose CONNECT. This action opens a
connection between the Unity Pro software and the processor, using the
address and media type settings you configured in the previous step.

2 Onthe PLC menu, choose TRANSFER PROJECT TO PLC. This action opens
the TRANSFER PROJECT TO PLC dialog box. If you would like the PLC to go to
"Run" mode immediately after the transfer is complete, select (check) the
PLC RUN AFTER TRANSFER check box.

Transfer Project to PLC &l

PC Project o itten PLC Project

Marme: IStation Marme: IStation

Wersion: IU-U-'I Wersion: IU- 0.1
Last Build: |September 25, 2006 3:37:26 P Laszt Build: |September 25, 2006 3:37.26 Pt

| Transfer I Cancel |

3 Click the TRANSFER button to download the project to the processor. As the
project is transferred, Unity Pro reports its process in a PROGRESS dialog box,
with details appearing in a pane at the bottom of the window.

When the transfer is complete, place the processor in Run mode. The processor
will start scanning your process logic application.

Page 44 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up the ProTalk Module
‘C’ Programmable Network Interface Module for Quantum Developer Guide

5 Setting Up the ProTalk Module

In This Chapter
Install the ProTalk Module in the Quantum RacKccccocvveeeeeninns 46

After you complete the following procedures, the ProTalk module will actively be
transferring data bi-directionally with the processor.

ProSoft Technology, Inc. Page 45 of 239
February 20, 2013

Setting Up the ProTalk Module PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

5.1 Install the ProTalk Module in the Quantum Rack

5.1.1 Verify Jumper Settings

ProTalk modules are configured for RS-232 serial communications by default. To
use RS-422 or RS-485, you must change the jumpers.

The jumpers are located on the back of the module as shown in the following
illustration:

Jumpers et Jumpeer || 1 #— Do not mowve this jumper
...... - I: IZZI unless instructed to do so by
App Port 1| 0”0 FroSoft Technical Support
..
App Pasl 8- o o

5.1.2 Inserting the 1454-9F connector
Insert the 1454-9F connector as shown. Wiring locations are shown in the table:

Pribs mrann

| +—— Config/Debug Port

.'.'J +—— Ethamet Port

B G
1454-0F 2¢0
installed an H i Port 1
Port 1 o
=
si— Port 2
Page 46 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up the ProTalk Module
‘C’ Programmable Network Interface Module for Quantum Developer Guide

5.1.3 Install the ProTalk Module in the Quantum Rack

1 Place the Module in the Quantum Rack. The ProTalk module must be placed
in the same rack as the processor.

2 Tilt the module at a 45° angle and align the pegs at the top of the module with
slots on the backplane.

Caution: The PTQ module is hot-swappable, meaning that you can install and remove it while the
rack is powered up. You should not assume that this is the case for all types of modules unless the
user manual for the product explicitly states that the module is hot-swappable. Failure to observe
this precaution could result in damage to the module and any equipment connected to it.

ProSoft Technology, Inc. Page 47 of 239
February 20, 2013

Setting Up the ProTalk Module PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

5.1.4 Cable Connections

The application ports on the PTQ-ADM module support RS-232, RS-422, and
RS-485 interfaces. Please inspect the module to ensure that the jumpers are set
correctly to correspond with the type of interface you are using.

Note: When using RS-232 with radio modem applications, some radios or modems require
hardware handshaking (control and monitoring of modem signal lines). Enable this in the
configuration of the module by setting the UseCTS parameter to 1.

RS-232 Configuration/Debug Port

This port is physically a DB-9 connection. This port permits a PC based terminal
emulation program to view configuration and status data in the module and to
control the module. The cable for communications on this port is shown in the
following diagram:

RS-232 Config/Debug Port Cable

DB-9 Male Config/Debug Port
RxD | 2 TxD
™D | 3 RxD
COM| 5 COM

The Ethernet port on this module (if present) is inactive.

RS-232 Application Port(s)

When the RS-232 interface is selected, the use of hardware handshaking
(control and monitoring of modem signal lines) is user definable. If no hardware
handshaking will be used, the cable to connect to the port is as shown below:

RS-232 Application Port Cable
(No Handshaking)

DB-9 Male RS-232 Device
RxD | 2 TxD
T™xD | 3 RxD
COM| 5 COM
Page 48 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

Setting Up the ProTalk Module
Developer Guide

RS-232: Modem Connection

This type of connection is required between the module and a modem or other

communication device.

RS-232 Application Port Cable
{(Modem Connection)

RS-232 Device
TxD

RxD

RTS

CTS

Signal

DB-9 Male
TxD 3
RxD 2
RTS 7
CTS 8
Signal 5
Common
DTR 4

Common

DTR

The "Use CTS Line" parameter for the port configuration should be set to "Y' for

most modem applications.

RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module
requires hardware handshaking (control and monitoring of modem signal lines).

RS-232 Application Port Cable

DB-9 Male

TxD

RxD

RTS

CTS

Signal
Common

DTR

3

(Hardware Handshaking)
RS-232 Device

RxD

TxD

CTs

RTS

Signal

Commaon

DSR

——DCD

ProSoft Technology, Inc.
February 20, 2013

Page 49 of 239

Setting Up the ProTalk Module PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field
device communication port.

RS-232 Application Port Cable
(No Handshaking)

DB-9 Male RS-232 Device
TxD 3 RxD
RxD 2 TxD
RTS 7 RTS-CTS jumper must

be installed if CTS line
cTS 8 maonitoring enabled,
Signal 5 Signal
Cormmon Common
DTR 4

Note: If the port is configured with the "Use CTS Line" set to 'Y", then a jumper is required between
the RTS and the CTS line on the module connection.

RS-485 Application Port(s)

The RS-485 interface requires a single two or three wire cable. The Common
connection is optional and dependent on the RS-485 network. The cable required
for this interface is shown below:

RS-485 Application Port Cable

DB-9 Male RS-485 Device
TxD+RxD+ | 1 TxD+/RxD+
TxD-/RxD- | 8 TxD-/RxD-
Signal 5 Signal
Common Common

Note: Terminating resistors are generally not required on the RS-485 network, unless you are
experiencing communication problems that can be attributed to signal echoes or reflections. In
these cases, installing a 120-ohm terminating resistor between pins 1 and 8 on the module
connector end of the RS-485 line may improve communication quality.

Page 50 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

Setting Up the ProTalk Module
Developer Guide

RS-422 Application Port Cable

RS-422
DB-9 Male
TxD+ 1
TxD- 8
Signal 5
Common
RxD+ 2
RxD- 6
RS-485 and RS-422 Tip

RS-422 Device

RxD+

RxD-

Signal

Common

TxD+

TxD-

If communication in the RS-422/RS-485 mode does not work at first, despite all
attempts, try switching termination polarities. Some manufacturers interpret +/-

and A/B polarities differently.

ProSoft Technology, Inc.
February 20, 2013

Page 51 of 239

Setting Up the ProTalk Module PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 52 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Introduction to PTQ-ADM
‘C’ Programmable Network Interface Module for Quantum Developer Guide

6 Introduction to PTQ-ADM

In This Chapter

% Operating SYSIEM .. .cii i 54

This document provides information needed for the development of application
programs for the PTQ-ADM Serial Communication Module. The PTQ suite of
modules is designed to allow devices with a serial port to be accessed by a
Quantum PLC. The ProTalk module is the platform used.

ProTalk modules are programmable to accommodate devices with unique serial
protocols. Included in this document is information about the available software
APl libraries and tools, module configuration and programming information, and
example code for the module. For the Quantum PLC, refer to ProTalk Setup
Guide Phase 1 and 2 for more information. This document assumes the reader is
familiar with software development in the 16-bit DOS environment using the 'C'
programming language. This document also assumes that the reader is familiar
with Quantum PLC platform.

ProSoft Technology, Inc. Page 53 of 239
February 20, 2013

Introduction to PTQ-ADM PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

6.1 Operating System

The PTQ module includes General Software Embedded DOS 6-XL. This
operating system provides DOS compatibility along with real-time multi-tasking
functionality. The operating system is stored in Flash ROM and is loaded by the
BIOS when the module boots.

DOS compatibility allows user applications to be developed using standard DOS
tools, such as Digital Mars C++ and Borland compilers. User programs may be
executed automatically by loading them from either the CONFIG.SYS file or an
AUTOEXEC.BAT file.

Note: DOS programs that try to access the video or keyboard hardware directly will not function
correctly on the PTQ module. Only programs that use the standard DOS and BIOS functions to
perform console 1/O are compatible.

Refer to the General Software Embedded DOS 6-XL Developer’s Guide
(page 227) on the PTQ-ADM CD-ROM for more information.

Page 54 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Understanding the PTQ-ADM AP
‘C’ Programmable Network Interface Module for Quantum Developer Guide

7 Understanding the PTQ-ADM API

In This Chapter

% AP LIDIAIIES et 56
s DevelopmeNt TOOIS . ..o 57
s Theory of OPerationccvveiiieiiiiiiiiie e 58
D B T\ 7= o - Y= PPNt 60

0

< RS-485 Programming Note

The PTQ-ADM API Suite allows software developers to access the PLC
backplane and serial ports without needing detailed knowledge of the module’s
hardware design. The PTQ-ADM API Suite consists of three distinct components:
the Serial Port API, the Backplane/CIP API and the ADM API. The Backplane
API provides access to the PLC, the Serial Port API provides access to the serial
ports and the ADM API provides functions designed to ease development.

Applications for the PTQ-ADM module may be developed using industry-
standard DOS programming tools and the appropriate APl components.

This section provides general information pertaining to application development
for the PTQ-ADM module.

ProSoft Technology, Inc. Page 55 of 239
February 20, 2013

Understanding the PTQ-ADM AP PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

7.1 APl Libraries

Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars or Borland development tools.

Note: The following compiler versions are intended to be compatible with the PTQ module API:
Digital Mars C++ 8.49

Borland C++ V5.02

More compilers will be added to the list as the APl is tested for compatibility with them.

7.1.1 Calling Convention

The API library functions are specified using the 'C' programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

7.1.2 Header File

A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard 'C' format.

7.1.3 Multithreading Considerations

The DOS 6-XL operating system supports the development of multi-threaded
applications.

Note: The multi-threading library kernel.lib in the DOS folder on the distribution CD-ROM is
compiler-specific to Borland C++ 5.02. It is not compatible with Digital Mars C++ 8.49. ProSoft
Technology, Inc. does not support multi-threading with Digital Mars C++ 8.49.

Note: The ADM DOS 6-XL operating system has a system tick of 5 milliseconds. Therefore, thread
scheduling and timer servicing occur at 5ms intervals. Refer to the DOS 6-XL Developer’s Guide
on the distribution CD-ROM for more information.

Multi-threading is also supported by the API.

» DOS and cipapi libraries have been tested and are thread-safe for use in
multi-threaded applications.

= MVIbp and MVIsp libraries are safe to use in multi-threaded applications with
the following precautions: If you call the same MVIbp or MVIsp function from
multiple threads, you will need to protect it, to prevent task switches during
the function's execution. The same is true for different MVIbp or MVisp
functions that share the same resources (for example, two different functions
that access the same read or write buffer).

Page 56 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Understanding the PTQ-ADM AP
‘C’ Programmable Network Interface Module for Quantum Developer Guide

WARNING: ADM and ADMNET libraries are not thread-safe. ProSoft Technology, Inc. does not
support the use of ADM and ADMNET libraries in multi-threaded applications.

7.2 Development Tools

An application that is developed for the PTQ-ADM module must be stored on the
module’s Flash ROM disk to be executed. Tools are provided with the API to
build the disk image and download it to the module via the programming port
PRT1.

ProSoft Technology, Inc. Page 57 of 239
February 20, 2013

Understanding the PTQ-ADM AP PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

7.3

Theory of Operation

7.3.1 ADM API

The ADM API is one component of the PTQ-ADM API Suite. The ADM API
provides a simple module level interface for the ProLinx, MVI and PTQ Families.
This is useful when developing an application that implements a serial protocol
for a particular device, such as a scale or bar code reader. After the application
has been developed, it can be used on any of the PTQ family modules.

7.3.2 ADM API Architecture

The ADM API is composed of a statically-linked library (called the ADM library).
Applications using the ADM API must be linked with the ADM library. The ADM
API encapsulates the hardware, making it possible to design PTQ applications
that can be run on any of the PTQ family of modules.

The following illustration shows the ADM API architecture:

Application
ADM API

SP APl | BP or CIP API

7.3.3 PTQ Big I/O Backplane Model Theory of Operation

When the PLC has data to write to the PTQ module it will write to the backplane
and pass the lock to the PTQ module. The module program must call
MVIbp_ReadOutputimage to see if data is available for reading. If data is
available the function will return MVI_SUCCESS. If not, it will return
MVI_TIMEOUT. The call to MVIbp_ReadOutputimage should be called often
until MVI_SUCCESS is returned. As soon as MVI_SUCCESS is returned, action
should be taken on the data. Once this is completed, a call to
MVIbp_Writelnputimage should be made.

Page 58 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

Understanding the PTQ-ADM API

Developer Guide

The lock is not returned to the PLC until the call to MVIbp_Writelnputimage is
made. The program time between a successful MVIbp_ReadOutputimage and
the call to MVIbp_Writelnputimage is added to the PLC scan time. Itis
recommended to keep this time to a minimum to avoid unduly lengthening the

PLC scan time.

Total PLC
Scan Time

PLC Writes Output
Image

MVIbp_ReadOutputimag
e

If SUCCESS then:
Copy data to buffer and
goto
MVIbp_Writelnputimage

MVIbp_Writelnputlmage

PLC Writes Output
Image

This time is added
to the PLC Scan

This time is added
to the PLC Scan

PLC program logic
executes during
this time

Other processing
must occur during
this time in order
to not lengthen the
PLC scan time

ProSoft Technology, Inc.
February 20, 2013

Page 59 of 239

Understanding the PTQ-ADM AP PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

7.4 Database

The database functions of the ADM API allow the creation of a database in
memory to store data to be accessed via the backplane interface and the
application ports. The database consists of word registers that can be accessed
as bits, bytes, words, longs, floats or doubles. Functions are provided for reading
and writing the data in the various data types. The database serves as a holding
area for exchanging data with the processor on the backplane, and with a foreign
device attached to the application port. Data transferred into the module from the
processor can be requested via the serial port. Conversely data written into the
module database by the foreign device can be transferred to the processor over
the backplane.

Page 60 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Understanding the PTQ-ADM AP
‘C’ Programmable Network Interface Module for Quantum Developer Guide

7.5

RS-485 Programming Note

7.5.1 Hardware

The serial port has two driver chips, one for RS-232 and one for RS-422/485.
The Request To Send (RTS) line is used for hardware handshaking in RS-232
and to control the transmitter in RS-422/485.

In RS-485, only one node can transmit at a time. All nodes should default to
listening (RTS off) unless transmitting. If a node has its RTS line asserted, then
all other communication is blocked. An analogy for this is a 2-way radio system
where only one person can speak at a time. If someone holds the talk button,
then they cannot hear others transmitting.

In order to have orderly communication, a node must make sure no other nodes
are transmitting before beginning a transmission. The node needing to transmit
will assert the RTS line then transmit the message. The RTS line must be de-
asserted as soon as the last character is transmitted. Turning RTS on late or off
early will cause the beginning or end of the message to be clipped resulting in a
communication error. In some applications it may be necessary to delay between
RTS transitions and the message. In this case RTS would be asserted, wait for
delay time, transmit message, wait for delay time, and de-assert RTS.

RS-485 Transmit ! Receive

RTECn RTR Off
Linit A RTS | |
. Transmit [ot e o e P e 1)
it D3 SRERINIRININ
Unit B RTZ
. Transmit orror o e
]
Hnit & Data ettt ettt tatetatet
Cplonal Cptionel
ETHOR TR O
Dalny Culny
ProSoft Technology, Inc. Page 61 of 239

February 20, 2013

Understanding the PTQ-ADM AP PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

7.5.2 Software

The following is a code sample designed to illustrate the steps required to
transmit in RS-485. Depending on the application, it may be necessary to handle
other processes during this transmit sequence and to not block. This is simplified
to demonstrate the steps required.

int length = 10; // send 10 characters

int CharsLeft;

BYTE buffer[10];

// Set RTS on

MVIsp SetRTS (COM2, ON) ;

// Optional delay here (depends on application)
// Transmit message

MVIsp PutData (COM2, buffer, &length, TIMEOUT ASAP);
// Check to see that message is done
MVIsp_GetCountUnsent(COMZ, &CharsLeft) ;

// Keep checking until all characters sent
while (CharsLeft)

{

MVIsp GetCountUnsent (COM2, &CharsLeft);

}

// Optional delay here (depends on application)
// Set RTS off

MVIsp SetRTS (COM2, OFF);

Page 62 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

8 Setting Up Your Development Environment

In This Chapter

s Setting Up YOUr COMPIIET......cviiiiiiiieic e 64
s Creating a ROM DisK IMage.........ccccuviiiiieiiiiiiiiiiiee e 82
< Downloading a ROM Disk IMagecccccovvviiiiiiec e 84
& PTQ SyStem BIOS SEIUPD ...ceveiiiriieeiiiiieiiieee et 85
< Transferring Files to and from the Module with HyperTerminal............. 87
% Debugging Strat@gieScoeiiuiiiiiiee e 95
ProSoft Technology, Inc. Page 63 of 239

February 20, 2013

Setting Up Your Development Environment
Developer Guide

8.1

Setting Up Your Compiler

There are some important compiler settings that must be set in order to
successfully compile an application for the PTQ platforms. The following topics
describe the setup procedures for each of the supported compilers.

8.1.1 Configuring Digital Mars C++ 8.49

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note: This procedure assumes that you have successfully installed Digital Mars C++ 8.49 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_PTQ.ZIP file. This zip file
is available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. When you unzip the file, you will find the
sample code files in \ADM_TOOL_PTQ\SAMPLES\.

Important: The sample code and libraries in the 1756-MVI-Samples folder are not compatible with,
and are not supported for, the Digital Mars compiler.
Building an Existing Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project — Open from the Main
Menu.

Open Project 2] x|

File name: Folders

= pii .. \mviS6-adm-serial-in

: C, |
SBadrm-si.prj = = ch =] .ﬂl

(= 4DM_TOOL_MVI
(= SAMPLES
(= MVI56-Samples
(= MVISE-ADM

_‘J S MVISE-ADM-Serifig

List files of type: Drives:

lF’roiect [*.pri) zl I c ZI Network... |

2 From the Folders field, navigate to the folder that contains the project
(C:\\ADM_TOOL_PTQ\SAMPLES\...).
3 Inthe File Name field, click on the project name (56adm-si.prj).

Page 64 of 239

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

4 Click OK. The Project window appears:

[Froieot B G|
=| Pase View Trace
B} Badn—=i.pri |

[Hame | Ext [path
MYISEADN-Serial -C C:\ADM TOOL_ - |
Seadn-si.0EF .DEF C:\ADH TOOL

adnapi. h Lh CahADM_TOOL_
cipapi.h Lo CavaDM_TOOL
MYISEADM-Serial .H C:%ADM_TOOL_
myibpapi.h .h C:ADM_TOOL_
mvizcapi.h Jh CrhvADM_TOOL_
mvispapi.h Lh CruADM_TOOL_

[E] ADMAPI.LIE .LIB
[E] cIPePl.LIB .LIB
[E] MvIBPiPI.LIE .LIB
[E] MvISCiPI.LIE .LIB
[E] MvISPiPI.LIE .LIB

5 Click Project — Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

Output

= | Edit _Stop!
| setup_module _‘J
shutdour

MY ISE-ADM-SERTAL-THYMYIBPAPT.LIB(util) (1232576): Previous Definition Oifferent : HOelay_x_ImsSqus
Errﬂr C:%ADM_TOOL_| MVI\SAMPLES\MVISE -SAMPLES\ MY 156-A0M\HY IS6-ADM-SERTAL-INAMY IBPART. LIB{util) (1232576): Previous Definition Different : Q0elay_x 10us$qul

ren WNSSCHS.EXE SBadn-s1.EXE

«\B6adn-s1.EXE built

Lines Processed: 3069 Errors: 2 Marnings: O

Build failed j

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

ProSoft Technology, Inc. Page 65 of 239
February 20, 2013

Setting Up Your Development Environment
Developer Guide

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be
accessed by clicking Project — Settings from the Main Menu.

Project Settings

Target I Build | Option Sets

Include Directaries:

Library Directories:;

Compiler Dutput Directarny:

Target Output Directony:

Browser E xclude Directonies:

Source Search Path:
QK I Cancel

Page 66 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

Creating a New Digital Mars C++ 8.49 ADM Project
1 Start Digital Mars C++ 8.49, and then click Project — New from the Main

Menu.
w Froject Name: Directories:
2. Set project type - = e
3. Add files to project lSBadm-sdpn b hmviBE-adm-zerial-in
4. Initial zettings EBadm-si.pr :J = ot ;]
(= ADM_TOOL_MYI
== SAMPLES
(= MVIBE-S amples
(= MYISE-ADM

H = MvISE-ADM-Se - |

List Filez of T ype: Dirives:

I Project [*.prj] L! | Hc j

LiztEiles |
Mew Directory... |

™ Use AppEspress to create new application

4 Previousl Mext > I Finish | Cancel I

|T_l,lpe a name for your project and either press Mest, or check Use AppExpress and press Finish. |

2 Select the path and type in the Project Name.
3 Click Next.

1. Mame project

project type [~ Project Settings

3. Add files to project " Debug
4. Initial settings ' Pelease
Flatform Target Type
I Los LI I Executable L!
—Use: i~ Character Type
T OLE " MFC & Single Byte
™ oo R LE]T = Multi Byte
" ODBC I EE L | Uricate
¥ allow Project o be Bl W Autornaticaly Parze
I Parse System Files

<Previ0us| Mext = | Finish | Cancel |

|Choose the type of project you would like to create and press Mest. |

4 In the Platform field, choose DOS.
5 In the Project Settings choose Release if you do not want debug information
included in your build.

ProSoft Technology, Inc. Page 67 of 239
February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable

H ‘ ’
Developer Guide C’ Programmable Network Interface Module for Quantum
6 Click Next.
ProjectExpress
1. Name D_[DiECt File Mame: Directories:
2. Set project type -
o smviSE-adm-senial-in
= et ;I
W1 BEADM-S enalln.C [4DM_TOOL MvI
[SAMPLES
[MYISE-SAMPLES
(= MWISE-ADM
=l B MYISE-ADM-SERL < |
List Files of Type: Drives:
IDefauIt filez [".cpp;".cxx;".c.;l I Hco j
Froject Files:
Add Hemove Select Al Unzelect Al I
< Previous I Mest > I Finizh | Cancel |
i |If you would like to add existing files to the project, add them here. “When done, press Mest. |

7 Select the first source file necessary for the project.

8 Click Add.

9 Repeat this step for all source files needed for the project.

10 Repeat the same procedure for all library files (.lib) needed for the project.
11 Choose Libraries (*.lib) from the List Files of Type field to view all library files:

ProjectExpress [x|
1. Name proiect File Marne: Directaries:
2. Set project type _—
3. Add files to project Al b \mviSE-adm-serialkin
4. Initial zettings AOMAFLLE ;I B ot ;I
CIP&FI.LIB [E= ADM_TOOL_MyI
MVIBPAPILIE [SAMPLES
MyISCAPILIE
MYISPAPLLIE [MVISE-SAMPLES
[MWIEB-ADM
= = MVISEADMSERL |
List Files of Type: Drives:
|Library (2 1] =l (= =l
Project Files:
Add Hemaye Select All Wrseleatsl |
< Previous | Mext » | Finizh | Cancel I
|If you would like to add existing files to the project, add them here. ‘When done, press Mest. |

Page 68 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

12 Click Next.

1. Mame project
2. Set project type
3. Add files to project

4.

Project
Express

13 Add any defines or include directories desired.

14 Click Finish.

15 The Project window should now contain all the necessary source and library
files as shown in the following window:

Project

EEEEEE |

ProSoft Technology, Inc. Page 69 of 239
February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

16 Click Project — Settings from the Main Menu.

Project Settings

Talgell Build | Option Sets | Diirectaries |

i Project Settings
= Debug
* Release

Platform Target Tupe
| pos _vJ | Executable j
~lUses——————— ~Character Type

I= e [~ MFC % Single Bute

oo L EE LR © Multi Byte

[ODBC U MEEEELLL |) Unicode

V' Allow Project to be Buil V' Automnatically Parse

[Parse System Files

ok I Cancel |

17 These settings were set when the project was created. No changes are
required. The executable must be built as a DOS executable in order to run
on the PTQ platform.

18 Click the Directories tab and fill in directory information as required by your
project’s directory structure.

Project Settings

Target | Build | Option Sets :

Include Directories:

Library Directories:

Compiler Dutput Directarny:
T arget Output Directary:

Browser Exclude Directories:

Source Search Path:

oK I Cancel |

19 If the fields are left blank then it is assumed that all of the files are in the
same directory as the project file. The output files will be placed in this
directory as well.

Page 70 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable

Setting Up Your Development Environment

‘C’ Programmable Network Interface Module for Quantum

Developer Guide

20 Click on the Build tab, and choose the Compiler selection. Confirm that the
settings match those shown in the following screen:

Project Settings

Target Bl-lildl Option Sets | Directories |

=
de Generation
Header Files
Mermomn Modelz
Code Optimizations
‘windows Prolog/E pilog
Output
Wwarnings
Debug Information
Linker
Packing & Map File
Defiritions
Segmentz
Imports/E sports
Fesource Compiler
Make
External Make
Librarian

Current Option Set:
’Eadm-so.DF'N

|rtrent o Biojest |

- char Behavior
% signed
" unsigned

" Enforce ANSI Campatibility
[Treat Source as C++

" Relax Type Checking ' char==unsigned char

™ Suppress Predefined Macros ~ Protatyping
™ Exception handling * Standard
™ Fiur tirme type information T Autoprototype
; £ Shict
™ Enable new(]. delete]] overlnading
International Characters
& None Taiwanese/Chinese
" Japanese = Korean
Defines I

Include Filename: I

Instantiate Template !

(] I Cancel

21 Click Code Generation from the Topics field and ensure that the options
match those shown in the following screen:

temony Models
Code Optimizations

Output
‘Warmings
Debug Information
Linker
Packing & Map File
Drefinitions
Segments
Imports/E=porks
Fesource Compiler
Make
Extemal Make
Librarian

Current Option Set:

‘windows Prolog/Epilog

" Pointer Yalidation
™ Generate Stack Frame
™ Check Stack Overflow

™ lse Pascal Caling Corvention
™ Use Stdzall Caling Corvention
I" Gen IrvLine S087 Cods

™ Fast Floating Paint

™ Use DLL run time library ™ Wit Func. Tables in Far Data
™ Embed Library Mamed: ™ Set Data Threshold:

I EBG35

¥ Erable Function-Level Link
" No Default Library

Target CPLI - Code Segment
386 - ™ Generate New Segment for Each Function

™ Owverride D efault Mame |_TE><T

Struct Alignment 3 -
™ Put Switch Tables in Code Segment

| et from Erapect |

I Byte LI " Put Expression Stings in Code Segment

oK | Cancel |

ProSoft Technology, Inc.
February 20, 2013

Page 71 of 239

Setting Up Your Development Environment
Developer Guide

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

22 Click Memory Models from the Topics field and ensure that the options

match those shown in the following screen:

Project Settings

Target Bl-lildl Option Sets | Directories |

Compiler
Code Generation
Header Files

Memorny Models
Code Optimizations

Output
Wiarmings
[rebug Information
Linker
Facking & Map File
D efinitions
Segments
Imports/E xports
Resource Compiler
Make
External Make
Librariar

Current Option Set:

‘windows Prolog/E pilog

—Memory Model

' Tiny " Compact
£ Small & Laige
= Medium € Flat

—Data Segment-
W Assume 55 == D5
[Always Reload DS

| BBadm-si 0PN

|t o Ermect |

o]

Cancel |

23 Click Linker from the Topics field and ensure that the options match those

shown in the following

Project Settings

screen:

Target BUildl Option Sets | Directaries |

Compiler

Code Generation
Header Files
temony Models
Code Optimizations

Output
‘Warmings
Clebug Infarmation

Drefinitions
Segments
Imports/E=porks

Fesource Compiler
Make

Extemal Make
Librarian

Current Option Set:

‘windows Prolog/Epilog

Packing % Map File

™ Debug Information
™ No Default Library
[T Case Sersitive

[T Far Call Translation
" Reorder Segments
" Export By Ordinal
I~ Don't Export Mames

— Exports
£ Brmont: Baze Sensitive
& vt [ppercase

¥ DOSSEG Ordering
[~ Mo Mul DOSSEG

[‘wamnif Dups

" Delete EXE/DLL on Enor
" Create ImpDef

" Fix DS
i~ Resource Options

= [Keen Seaments i BER ey
I PRequires Windows 3.0
™ Requires Windows 2.1

I | Gererate mpart Litiran

™ Impart Lib Page Size: |1B

Aligrment I

Bases I

Bty Eafrts I

| et from Erapect |

o]

Cancel |

Page 72 of 239

ProSoft Technology, Inc.

February 20, 2013

Setting Up Your Development Environment

PTQ-ADM ¢ 'C' Programmable
Developer Guide

‘C’ Programmable Network Interface Module for Quantum

24 Click Packing & Map File from the Topics field and ensure that the options
match those shown in the following screen:

Project Settings

Target Bl-lildl Option Sets | Directories |

Cocrm;ilerG . - Packing
ode Generation
Header Files ™ win Pack IV Pack Code: I81 92
Memory Models
Code Dyptimizations [ExePack ¥ Pack Data: IE1 92
\ami?tws Fiolog/Epiag W Smart Linking
Wiarmings
D ebug Informati i
Linkee[ug nformation ~Map File
“acking & Ma NoMap © Segment Map & Detailed Segment Map
D efinitions
Segments
Imports/E xports Wap File Opti
- p File Optiar
Resource Compiler
Make [Cross Reference = naslitd=n
External Make % " Sorted by Address
Librarian ™ Lire Mumbers
£+ Sorted by Address and Mame

™ Group Information

Current Option Set:

[BBadm-si 0PN
|t o Ermect |
oK I Cancel |

25 Click Make from the Topics field and ensure that the options match those
shown in the following screen:

Project Settings

Target BUildl Option Sets | Directaries |
1

Compiler :
Code Generation % ze IDDE Make " Usze External Make File
Header Files —|DDE Make Option:

Memon, Modcle ¥ Track Dependencies

Code Optimizations o |
\g’indows Prolog/E pilog Bl el ™ Track System Includes
wu;:jnﬁgs Link Order... ™ On Emor Continue Unrelated

Debug Infarmation ¥ lgnore Enars in Build
Linker e
i~ Multitazking

Packing & Map File
Diefiritions | " Frequent ' Moderate " Naone

Segments
Imparts/E=ports — MetBuild

Fesource Compiler

™ Use HetBuid = se Femote Headers
Extemal Make
Libwarian it Direstany

Current Option Set: Hemate Passwend

| SEadm-sa. 0PN |

| et from Erapect |
0K I Cancel |

26 Click OK.
27 Click Parse — Update All from the Project Window Menu. The new settings

may not take effect unless the project is updated and reparsed.
28 Click Project — Build All from the Main Menu.

ProSoft Technology, Inc. Page 73 of 239

February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

29 When complete, the build results will appear in the Output window:

=] Edit_Stop!

5C .. WMVISE-ADM-SERIAL-OUT MY ISOADM-SerialOut.c -p -ml -otonp —o+cp -o+da -o+dc -o+dv -odcse -o4li -o+liv -ot+loop -ot+reg —o+vbe -3 -al -Ho -c -0, \HYISE-ADM-SERIAL-OUT MY IS6ADM-Serialiut,
link /PACKD:8192 /PAC:B192 D0 /PACKF /XN BSGadu-s0.LHK
E
E
I

rror: C:AADM_TOOL_HyIASAWPLES MY IS6-SANMPLES WY 156 -ADMHY IS6-ADM-SERTAL-INY. . \Mv [SE—ADM-SERIAL-OUTWMVIBPAPL. LIB(util) : Previous Definition Different : @Delay_x_lms$gus

rror: C:\ADM_TOOL_HyIASAWHPLES\MY ISE-SANMPLES WY 156 -ADW\HY ISE-ADM-SERTAL-IHY. . \MWIS6-ADM-SERTAL-OUTWMYIBPAPL. LIB(util) : Previous Definition Different : @Delay x_10usSqul
en . \SSCUS.EXE Sbadm-so.EXE

« \36adn-50.EXE built

Lines Processed: 3108 Errors: 2 MWarnings: 0

BUild failed]

I_‘J_I | I &

The executable file will be located in the directory listed in the Compiler Output
Directory box of the Directories tab (that is, C\ADM_TOOL_PTQ\SAMPLES\...).
The Project Settings window can be accessed by clicking Project — Settings
from the Main Menu.

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

8.1.2 Configuring Borland C++5.02

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology. using Borland C++ 5.02. After verifying that the
sample code can be successfully compiled and built, you can modify the sample
code to work with your application.

Note: This procedure assumes that you have successfully installed Borland C++ 5.02 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_PTQ.ZIP file. This zip file
is available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. One the file is unzipped, you can find the
sample code files in \ADM_TOOL_PTQ\Samples\

Page 74 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

Setting Up Your Development Environment
Developer Guide

Building an Existing Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, then click Project - Open Project from the Main

Menu.
Open Project File d B
File Mame: Directalies:
c:“admisample
Cancel |
- [o
ADM.PRJ (= ADM
= SAMPLE
£ inc
b
Wiewer Drives:
I-Default Wiewer- j I (=13 j Metwork... |
List Files of Type:
| Praject files [.ide;* pri |

From the Directories field, navigate to the directory that contains the project
(C:\adm\sample).

In the File Name field, click on the project name (adm.ide).

Click OK. The Project window appears:

e

[libscipapi. lib [.1lib]
[lib~avibpspi.lib [.1ik]
[lib~aviscapz.lib [.lik]

[lib“mwispapi.lib [.1ib]
O commdry .= [.c]

[debugprt .c [.c]
~0 mvicfg.c [.c]

0 main_app.c [.cl

Click Project - Build All from the Main Menu to create the .exe file. The
Building ADM window appears when complete:

_C'*! Building ADM - Complete

=101

Status: Success |

Fiunning

Frogram: C:ABCEABIM Hink, exe

Command line: @C:AADMASAMPLENADM. i$p
Infarmation: Elapsed Time: 2.531 Seconds
Statistic:s Total Current
Lines: 17535 1}
‘warnings: u] 1]
Ermars: 0 1}

6 When Success appears in the Status field, click OK.

ProSoft Technology, Inc.
February 20, 2013

Page 75 of 239

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

The executable file will be located in the directory listed in the Final field of
the Output Directories (that is, C:\adm\sample). The Project Options window
can be accessed by clicking Options - Project Menu from the Main Menu.

& Project Options 2l

Topics: Directories

5 16-bit Compiler

o 32-bit Compiler Thiz section letz you tell Barland C++ where ta laok for source,
4]:C++. D_Ptl?ns include, and library files. The output directories contral where
= Optimizations intermediate files .0BJ, .RES) and final files [.EXE, DLL,
dAMessages .RES] are placed.

S Linker

o Librarian — Source Directaories:

]

B BSiIScT:[tct:r.iabsutes Include: Ic:\ch\incIude;c:\adm\sample\inc j

© Make Library: Ic:\ch\Iib;c:\adm\sample\lib j

Saurce: Ic:\adm_wrkg\sample ﬂ

— Output Drectanies:

Intermediate: Ic:\adm\sample j
Final: |c:\adm\sample j

Set pathz far input and output files

v oK I‘UndoF’agEI x Cancell ? Hep |

Creating a New Borland C++ 5.02 ADM Project
1 Start Borland C++ 5.02, then click File — Project from the Main Menu.

&7 New Target 21X
— Project Path and Mame:
- v K
Ic::\adm\sample\my_prm.lde
[|
— Target Mame: x Ance |
Imy_proi rl‘.a_ Browse |
— Target Type: T8 Advanced |
Frameworks:
Dynamics Library [] " Class Library 2 hHep |

E azy'in [.exe]
Static Libramy (for .exe) [b] Math Suppert: ——————————
Static Library [for .dll] [.lib] " Floating Paint

Irnport Library [lib] LI & Emulation
 Mone

Libraries:
I~ MoEsceptions [~ BGI

| [Alemate Statup [Diagnaostic |

I Large j

N

Type in the Project Path and Name. The Target Name is created
automatically.

In the Target Type field, choose Application (.exe).

In the Platform field, choose DOS (Standard).

In the Target Model field, choose Large.

Ensure that Emulation is checked in the Math Support field.

(o2 &) BE SN @S]

Page 76 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

7 Click OK. A Project window appears:

ject : c:\adm' sampleimy_pi

Click on the .cpp file created and press the Delete key. Click Yes to delete
the .cpp file.

Right click on the .exe file listed in the Project window and choose the Add
Node menu selection. The following window appears:

& Add to Project List 21xl
Look in: | 3 S4MPLE rl & B kB
. Jinc
) _iib
istory (] COMMDRY.C
- | DEBLIGPRT.C
@] MAIN_APP.C
] MyIcFE.C
My Documnents
File name: Imy_proi.cpp j Open I
" Files of type: |C++ source [*.cpp:tc) j Cancel |
7|

10 Click source file, then click Open to add source file to the project. Repeat this
step for all source files needed for the project.

11 Repeat the same procedure for all library files (.lib) needed for the project.

ProSoft Technology, Inc. Page 77 of 239
February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

12 Choose Libraries (*.lib) from the Files of Type field to view all library files:

Lok in: [3 1 | & ® ok E-

ADMAPLLIE
CIPAPLLIB
MYIEPAPLLIE
MYISCAPLIE
MYISPAPLLIE

File name: j Open I
Files of bype: Libraries = lib] Cancel |
v

13 The Project window should now contain all the necessary source and library
files as shown in the following window:

. [lib~admapi.lib [.1lib]

. ~[lib“cipapi.lib [.lib]

. ~[lib“mvibpapi.lib [.lib]
. ~[lib“mviscapi.lib [.lib]
. ~[lib“mvispapi.lib [.lib]
. [commdrv.c [.c]

. ~[debugprt.c [.c]

. [mwicfg.c [.c]

R [main_app.c [.c]

Page 78 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Setting Up Your Development Environment

Developer Guide

14 Click Options — Project from the Main Menu.

& Project Options

Topics:

- Diirectonies

SR Comipiler

=71 6-bit Compiler
or 32-hit Compiler
e C++ Options
qr O ptimizations
qrbessages

T Linker

= Librarian
PResources

° Build Attributes
= Make

Set paths for input and output files

Directories

21X

.RES] are placed.

This section lets you tell Borland C++ where to look for source,
include. and library files. The output directaries control where
intermediate files [.0OBJ, RES] and final filez [.EXE, DLL,

— Source Directories:

Irelude: Ic: “beShinclude j
Library: [c:4bc5ib |
Saurce: I j

— Output D rectories:
Intermediate: I j
Final: I j

v 0K I‘UndoF’agEl x Eancell ? Help |

15 Click Directories from the Topics field and fill in directory information as
required by your project’s directory structure.

&7 Project Options 21xl

Topics: Directaries

+ Directories

2 Compiler

qr16-bit Compiler

o 32-bit Eo_mpller This section lets pou tell Borland C++ where to look for source,

‘1}"5""_ Options include, and library filez. The output directories control where

52 Optimizations intermediate files .0BJ, .RES] and final files [.EXE, DLL,

qhMessages .RES] are placed,

SLinker

= Librarian Source Directories:

R

B BSiISdD;[tT:bSutes Irclude: Ic:\bcE\incIude;c:\adm\sample\inc j

° Make Library: Ic:\ch\Iib:c:\adm\sample'\lib j
Saource: Ic:\adm\sample\my_proi j

The output directory for pour EXE,
.DLL, and .M&P filez

— Output D rectories;

Intermediate: |c:\adm\sample\my_proi\out ﬂ

Final: IC:\adm\sample\my_proi\ouﬂ j

V (0] 3 I‘UndoPageI x Eancell ? Help |

ProSoft Technology, Inc.

February 20, 2013

Page 79 of 239

Setting Up Your Development Environment

Developer Guide

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

16 Double-click on the Compiler header in the Topics field, and choose the
Processor selection. Confirm that the settings match those shown in the

following

screen:

s;'+‘ Project Options

Topics:

= Directonies
=R Compiler
=1 E-bit Cornpiler

@ Calling Convention
= Memory Model
= Segment Mames Data
= Segment Mames Far Data
= Segment Mames Code
@ Entry/Exit Code

o 32-Lil Connpile

R C++ Optiong

on Optimizations

qPMessages

TLinker

= Librarian

qrResources

= Build Attributes

= Make

Select a target processor

Processor

g 3

r Instruction set:
L1
L)
 o0zaE
80285
486

—Data alignment:
= Byte
" woed

V ak I‘UndoF’agEI x Eancell 2 Hep |

17 Click Memory Model from the Topics field and ensure that the options match
those shown in the following screen:

18 Click OK.

g:ﬁ? Project Options

Topics:

= Directories

qr Compiler

=71 E-bit Cornpiler
= Processor

° Eallini Caonvertion

= Segment Mamez Data
= Segment Narmes Far Data
= Segment Mames Code
@ Entry/Exit Code

2 32-bit Compiler

qRC++ Options

S O ptimizations

qrhessages

ShLink er

= Librarian

PR esources

= Build Attributes

@ Make

Select a memorny model [refer o
TargetExpert for application madel]

Memary Madel

21

[~ Far virtual tables
[Fast huge pointers
[~ Automatic far data

— Mixed Madel Override: Azsume 55 Equal: D5 ——
" Tiny 7+ Default
= Small Newer
 Medium Always
" Compact
&+ Lage
" Huge
— Optionz:

[~ Put constant strings in code seaments

Far Data Threshold: |32?B? 'l

V oK I‘UndoF‘agEl x Eancell 2 Hep |

19 Click Project — Build All from the Main Menu.

Page 80 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

20 When complete, the Success window appears:

&7 Building ADM - Complete o] |

Status: Success |

Fiunning

Frogram: C:ABCEMBINMink. exe

Command line: @C:AADMASAMPLENADM. i$p
Infarmation: Elapsed Time: 2.531 Seconds
Statiztics Tatal Current
Lines: 17535 1}
‘warnings: u] 1]
Ermars: 0 1}

21 Click OK. The executable file will be located in the directory listed in the Final
box of the Output Directories (that is, C:\adm\sample). The Project Options
window can be accessed by clicking Options — Project from the Main Menu.

ProSoft Technology, Inc. Page 81 of 239
February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

8.2

Creating a ROM Disk Image

To change the contents of the ROM disk, a new disk image must be created
using the WINIMAGE utility.

The WINIMAGE utility for creating disk images is described in the following
topics.

8.2.1 WINIMAGE - Windows Disk Image Builder

WINIMAGE is a Win9x/NT utility that may be used to create disk images for
downloading to the PTQ module. It does not require the use of a floppy diskette.
Also, it is not necessary to estimate the disk image size, since WINIMAGE does
this automatically and can truncate the unused portion of the disk. In addition,
WINIMAGE will de-fragment a disk image so that files may be deleted and added
to the image without resulting in wasted space.

To install WINIMAGE, unzip the winima40.zip file in a subdirectory on your PC
running Win9x or NT 4.0. To start WINIMAGE, run WINIMAGE.EXE.

Follow these steps to build a disk image:

1 Start WINIMAGE.

2 Select File, New and choose a disk format as shown in the following
diagram. Any format will do, as long as it is large enough to contain your files.
The default is 1.44Mb, which is fine for our purposes. Click on OK.

Dizkette Format

— Format
Standard format:
 1E0KE
 180KE
& F20KE
 3E0KE

 720KB

Mor-standard format:
 g20KE
© 172ME
 1E3ME
" DMF [cluster 1024)
" DMF [cluster 2048

Cancel |

3 Drag and drop the files you want in your image to the WINIMAGE window.

Page 82 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable

Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum

Developer Guide

4 Click on Options, Settings and make sure the Truncate unused image part
option is selected, as shown in the following figure. Click on OK.

Settings HE

Disk Image IExlractI File: I Nolificalionl Generall

W Truncate unused image: part

¥ Use incremented open/save wizard

¥ Merify disk contents before writing image to disk.

LCompression:

1
Momal [E]

QK I Cancel | Help |

5 Click on File, Save As, and choose a directory and filename for the disk
image file. The image must be saved as an uncompressed disk image, so be
sure to select Save as type: Image file (*.IMA) as shown in the following

figure.
Save Az HE
Save in: I 3 images j il Ir =
[= Ty
= iz ima
Filz name: Imvi3 Save I
Save 2 bupe: [Image fil [* M) =l Cancel |

Comment:

Check the disk image file size to be sure it does not exceed the maximum
size of the PTQ module’s ROM disk (896K bytes). If it is too large, use
WINIMAGE to remove some files from the image, then de-fragment the
image and try again (Note: To de-fragment an image, click on Image, Defrag
current image.

The disk image is now ready to be downloaded to the PTQ module.
For more information on using WINIMAGE, refer to the documentation included
with it.

Note: WINIMAGE is a shareware utility. If you find this program useful, please register it with the
author.

ProSoft Technology, Inc. Page 83 of 239
February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

8.3 Downloading a ROM Disk Image

8.3.1 MVIUPDAT

MVIUPDAT.EXE is a DOS-compatible utility for downloading a ROM disk image
from a host PC to the PTQ-ADM module. MVIUPDAT.EXE uses a serial port on
the PC to communicate with the module. Follow the steps below to download a
ROM disk image:

1

2

(G2 N~

Connect a null-modem serial cable between the serial port on the PC and
PRT1 on the PTQ module.

If you are using HyperTerm or a similar terminal program for the PTQ-ADM
module console, exit or disconnect from the serial port before running the
MVI Flash Update tool.

Turn off power to the PTQ module. Install the Setup Jumper as described in
the Installation Instructions.

Click the START button, and then choose RUN.

In the OPEN: field, enter mviuepaT. Specify the PC port on the command line
as shown in the following illustration. The default is COM1.

Run B3

= Type the name of a program, folder, document, or
Internet resource, and Windows will open it for you.

Open: | MVIUPDAT /PORT=COMZ =l

QK I Cancel | Browse. .. |

Turn on power to the PTQ module. You should see the following menu shown
on the host PC.

| Verify Module Connection |
| Update Flash Disk Image |
| Reboot Module |

Select VERIFY MODULE CONNECTION to verify the connection to the PTQ
module. If the connection is working properly, the message "Module
Responding" will be displayed.

Note: If an error occurs, check your serial port assignments and cable connections. You may also
need to cycle power more than once before the module responds.

8

9

Select UPDATE FLASH Disk IMAGE to download the ROM disk image. Type the
image file name when prompted. The download progress is displayed as the
file is being transmitted to the module.

After the disk image has been transferred, reboot the PTQ module by
selecting the REBOOT MODULE menu item.

10 Exit the MVIUPDAT.EXE utility by pressing [ESC].

Page 84 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

8.4 PTQ System BIOS Setup

The BIOS Setup for the PTQ products contains module configuration settings
and allows for placing the PTQ module in a flash update mode. To access the
BIOS Setup, attach a null modem cable from the PC COM port to the
Status/Debug port on the PTQ module. Start Hyper Term with the appropriate
communication settings for the Debug port. Press [CTRL][C] during the memory
test portion in the booting of the module.

...........

2 PoaLirw - Ry
Fin Edi Veen Cal Ture Hab

|D & 53| o] F
=
General Sof tware BOC386-EX Embedded BIDS (tn) Version 4.1
| Copyright (C} 1998 General Softmare, Lnc.
Il {Prosaft Technalogy WVTSE Co
| [Prosaft Technical Suppar
WVT BI0S w101
Copyright (c) 19992000 Online Development, Tnc.
i
| |oes12 ke ok
Hit “C if vou want to run SETUP,
| BOCIB6-EN-4 1-0160-500 :I

| Becerracie Wi [mmesna ram

It may be necessary to install the setup jumper in order to access the BIOS
Setup. The setup jumper will be necessary if the Console is disabled. The
following illustration shows the BIOS Setup screen.

............

2 PoaLirw - Ry
Fia Edt Viea Cal Tursin Hap

|D|s @3] ol @
=]
| |
Wit Systen Bios Setup - Utility of. 001 |
i I (C] 199 General Software, Inc. AL rights reserved |
Resel
| | <Esck to continue | :I

| Corvmcted 0120 Wiy [mmesna M

The PTQ module can be placed in a mode where it is waiting to receive a new
flash image by selecting the Begin Flash ROM Update Mode option.

ProSoft Technology, Inc. Page 85 of 239
February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Select PTQ Module Configuration to set the Console, Console Baud Rate and
Compact Flash mode. The Console allows keyboard entry and text output to the
debug port. The baud rate of the console port is selected by the Console Baud
Rate option. In order to use a Compact Flash disk in the PTQ module the
Compact Flash option must be set to CHS mode.

...........

2 PraLirw - B
Fin Edt Ve Cal Turche Hep

|D 3| =3 ol E
El
| |
Wit System BIDS Setup - Custom Configuration |
i | (C) 1998 General Software, Inc. ALl rights reserved |
Conzale on Part 1 sDisabled Compact Flash CHS Made
[le Bawd Rate 115208
I “E/RiCTob o select or /- to modify |
<Esck ta return to main menu EI
| Corrucid 203 L T [
Page 86 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

8.5 Transferring Files to and from the Module with HyperTerminal

You can transfer individual files to and from the Compact Flash drive on the
ADMNET module using the utilities RY.exe (Receive Ymodem) and SY.exe
(Send Ymodem). These two programs work with a terminal client (for example
HyperTerminal) on your desktop PC to connect to the module and transfer files.

RY.exe and SY.exe are included in the sample ADM_TOOL.zip file for your
hardware platform (inRAx, ProLinx or ProTalk).

Important: The embedded operating system in the ADM/ADMNET module restricts file names to
eight "DOS legal" characters or fewer, with a three character extension. For more information on

creating filenames in the proper format refer to pages 17 through 20 of the DOS 6-XL Reference

manual.

8.5.1 Required Hardware

You can connect directly from your computer’s serial port to the serial port on the
module to send (upload) or receive (download) files.

ProSoft Technology recommends the following minimum hardware to connect
your computer to the module:

= 80486 based processor (Pentium preferred)

= 1 megabyte of memory

= Atleast one UART hardware-based serial communications port available.
USB-based virtual UART systems (USB to serial port adapters) often do not
function reliably, especially during binary file transfers, such as when
uploading/downloading configuration files or module firmware upgrades.

= A null modem serial cable.

8.5.2 Required Software

In order to send and receive data over the serial port (COM port) on your
computer to the module, you must use a communication program (terminal
emulator).

A simple communication program called HyperTerminal is pre-installed with
recent versions of Microsoft Windows operating systems. If you are connecting
from a machine running DOS, you must obtain and install a compatible
communication program. The following table lists communication programs that
have been tested by ProSoft Technology.

DOS ProComm, as well as several other terminal emulation programs
Windows 3.1 Terminal
Windows 95/98 HyperTerminal

Windows NT/2000/XP HyperTerminal

The RY and SY programs use the Ymodem file transfer protocol to send (upload)
and receive (download) configuration files from your module. If you use a
communication program that is not on the list above, please be sure that it
supports Ymodem file transfers.

ProSoft Technology, Inc. Page 87 of 239
February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

8.5.3 Connecting to the Module

To connect to the module’s Configuration/Debug port:

1 Connect your computer to the module’s port using a null modem cable.

2 Start the communication program on your computer and configure the
communication parameters with the following settings:

Baud Rate 19200

Parity None

Data Bits 8

Stop Bits 1

Software Handshaking None

3 Open the connection. Send the necessary command to terminate the

module’s program.

If there is no response from the module, follow these steps:

1 Verify that the null modem cable is connected properly between your
computer’s serial port and the module. A regular serial cable will not work.

2 Verify that your communication software is using the correct settings for baud
rate, parity and handshaking.

3 On computers with more than one serial port, verify that your communication
program is connected to the same port that is connected to the module.

4 If you are still not able to establish a connection, you can contact ProSoft
Technology Technical Support for further assistance.

Page 88 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

8.5.4 Enabling the Console

Before you can use RY and SY from the command prompt, you must enable the
console in the ADM module’s BIOS.

To change BIOS settings
1 Remove the module from the rack and install the Setup jumper.
2 Return the module to the rack.

3 Connect to the module using HyperTerminal at 19,200 bps, and then cycle
power to reboot the module.

(COM1 Properties H

Port Settings I

Bits per second: =
Data bits: lﬁ
Barty: [Nore 7]

Stop bits: lﬁ

Fow cortrol: lﬁ

Bestore Defaults |
ok | cancel | ooy |

ProSoft Technology, Inc. Page 89 of 239
February 20, 2013

Setting Up Your Development Environment

Developer Guide

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

4 During the memory check portion of the module’s boot sequence, press
[CtrI][C] to enter the BIOS configuration menu.

General Software 80C386-EX Embedded BIOS {tm) VYersion 4.1
Copyright (C) 1998 General Software, Inc.

Prosoft Technology MYIS6 Communications Module
Prosoft Technical Support B81-661-664-7208

MYI BIOS v1.01
Copyright (c) 1999-2000 Online Development, Inc.

@@38& KB OK
Hit “C if you want to run SETUP.

80C386-EX-4.1-0160-0800

ystem Bios Setup - Utility v4.001

S
{C} 1998 General Software, Inc. All rights reserved

>MYI Module Configuration
Begin Flash ROM Update Mode
Reset configuration to factory defaults
Exit

<Esc> to continue

Page 90 of 239

ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

5 Press [Enter] to enter the PTQ-ADM module Configuration menu.

Sustem BIOS Setup - Custom Configuration
{C) 1998 General Software, Inc. All rights reserved

—_— —_—— _

Console on Port 1 >Disabled Compact Flash CHS Mode
Console Baud Rate 19200

| “E/"R/<Tab> to select or +/- to modify |
<Esc> to return to main menu

6 On the BIOS configuration menu, use the [Tab] key to navigate through the
menu options, and then use the [+] key to toggle the choices.

The options to change are:

o Console on Port 1: change to Enabled

o Console Baud Rate: change to 57600
7 Press [Esc] to return to the Main Menu.
8 Press [Esc] again to apply your changes and reboot the module.
9 Remove the module from the rack and disable the Setup jumper.

To communicate with the module in Console mode

ProSoft Technology, Inc. Page 91 of 239
February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

1 Change the connection settings in HyperTerminal from 19200 to 57600, and
then reconnect to the module.

COM1 Properties [|
Port Settings |
Bits per seconc: [CHETINIINNE ~ |
Data bits: IE j
Barity: | None =l
Stop bits: I'I j
Flow contral; INone j
Restore Defaults |
ok | Cancd | ooy |

2 Press[Esc] to exit the program and return to the command prompt.

M¥I DOS vl.08
Copyright {c) 1999-20008 Online Development, Inc.
Copyright (C) 1998-1997 General Software, Inc. All Rights Reserwved.

MYIS6 Backplane Device Driver ¥1.05

Copyright {c) 1999-2000 Online Development, Inc.
Copyright {c) 1997-2000 Allen-Bradley Company
LowMem/HiMem = 766k/0k

General Software mini-COMMAND.COM Y2.0.
Copyright (C) 19989-1993 General Software, lnc.

A>path a:\;a:\dos

A>56ADH-SI
Press Esc to Exit.

Closing Backplane Driver....
Closing Serial Port Driver....

A>

Important: The autoexec.bat in the image file must allow the application to exit to a DOS prompt.

Page 92 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

8.5.5 Installing RY.exe and SY.exe

To install RY.exe and SY.exe on the module, remove the Compact Flash card
from the module, and then use a Compact Flash card reader on your PC to copy
the files to the root directory of the Compact Flash card. When you reinsert the
Compact Flash card in the module, use the following syntax to send or receive
files.
C:\RY

or

C:\SY "filename.ext"

The filename and path must be in quotes.

Important: You cannot copy files directly to the A:\ drive on the module. To update files on the A
drive, you must create a new ROM image and download the image to the module using
MVIFlashUpdate. (page 84) The following procedures show how to send and receive files from the
module’s Compact Flash card (drive C:\).

ProSoft Technology, Inc. Page 93 of 239
February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

8.5.6 Downloading Files From a PC to the ADM Module

In order to download files to the module, the ADM module’s running program
must be interrupted. To transfer files to the module, run the RY.EXE program
which uses the YModem protocol.

1 In HyperTerminal, connect to the module at 57600 baud and type the
command to halt the program (for example [Esc] or [Ctrl][C]; your
application must be written to allow itself to exit to the command prompt on

request).
2 At the command prompt, type
C:\RY

3 In HyperTerminal, open the Transfer menu, and then choose Send File.

File Edit WView Call @ Transfer Help

= sl Send File. ..
glgl Ql&l = Receive File...
Capture Text...
|_ Send Text File...

4 Click the Browse button to navigate to the folder and file to send to the
module.
5 Chose Ymodem from the Protocol dropdown list, and then click Send.

Folder: C:\Documents and Settings\mrodrigues

Filename:

Browse...

PFrotocol:

[LCloze][Cancel]

6 The Ymodem File Send dialog box shows the file transfer size and remaining
time.

Ymodem file send

Sending: |C:AMMVINFILECFG

Packet; 7 Error checking: |CRC File size: |BK
Retries: 1] Total retries: [0 Files: |1 of 1
Last emor:

File: ERRRRRRRRR RN RN RN RN RN B of B
Elapsed: 00:00:01 Remaining; Throughput:

| Cancel | cps/bps

When the file has been transferred to the module, the dialog box will indicate
that the transfer is complete.

Page 94 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

8.5.7 Uploading files from the ADM module to a PC

In order to upload files from the module, the ADM module’s running program
must be interrupted. You must run the SY.EXE program which uses the YModem
protocol.

1 In HyperTerminal, connect to the module at 57600 baud and type the
command to halt the program (for example [Esc] or [Ctrl][C]; your
application must be written to allow itself to exit to the command prompt on
request).

2 At the command prompt, type

C:\SY "filename.ext"

The filename and path must be in quotes.

File Edit View Call @ Transfer Help

QIEI = gl _{ Send File...

Receive File...
Capture Text,..
Send Text File. ..
Capture to Printer

3 From the Transfer menu in HyperTerminal, select Receive File. This action
opens the Receive File dialog box.

4 Use the Browse button to choose a folder on your computer to save the file,

5 Select Ymodem as the receiving protocol, and then click the Receive button.

M Receive File

Flace received file in the following folder:

Usze receiving protocal:

rmadem v

[Receive H LCloze H Cancel]

When the file has been transferred to your PC, the dialog box will indicate
that the transfer is complete.

8.6 Debugging Strategies

For simple debugging, printf’'s may be inserted into the module application to
display debugging information on the console connected to PRT1.

ProSoft Technology, Inc. Page 95 of 239
February 20, 2013

Setting Up Your Development Environment PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 96 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Application Development Libraries

Developer Guide

9

Application Development Libraries

In This Chapter

% ADM API FUNCHONScoooiieieieeeeeeeeeeeeeeeeeee
< ADM API Initialization FUNCLONSccoovvviiiiiiiiiiiii

< ADM API Debug Port Functions

< ADM API Database FUNCHONS.............cuvvieiiiiieiiiie e
< ADM API CIOCK FUNCHONSoovviiieeeeeeeeee e
< ADM API Backplane FUNCHONScccuviiiiiaiiiiiiiiieee e

< ADM LED Functions

s ADM API Flash FUNCLIONSccoovviiiiiiiiii
< ADM API Miscellaneous FUNCLioNSccccccvvvviiiiiiii

< ADM API RAM Functions

ProSoft Technology, Inc.
February 20, 2013

Page 97 of 239

Application Development Libraries

Developer Guide

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

9.1 ADM API Functions

This section provides detailed programming information for each of the ADM API
library functions. The calling convention for each API function is shown in 'C'

format.

API library routines are categorized according to functionality.

Function Function Name Description

Category

Initialization ADM_Open Initialize access to the API
ADMClose Terminate access to the API

Debug Port ADM_ProcessDebug Debug port user interface
ADM_DAW riteSendCtl Writes a data analyzer Tx control symbol
ADM_DAWr riteRecvCitl Writes a data analyzer Rx control symbol
ADM_DAW riteSendData Writes a data analyzer Tx data byte
ADM_DAWriteRecvData Writes a data analyzer Rx data byte
ADM_ConPrint Outputs characters to Debug port
ADM_CheckDBPort Checks for character input on Debug

port

Database ADM_DBOpen Initializes database
ADM_DBClose Closes database
ADM_DBZero Zeros database

ADM_DBGetBit

Read a bit from the database

ADM_DBSetBit

Write a 1 to a bit to the database

ADM_DBClearBit

Write a 0 to a bit to the database

ADM_DBGetByte

Read a byte from the database

ADM_DBSetByte

Write a byte to the database

ADM_DBGetWord

Read a word from the database

ADM_DBSetWord

Write a word to the database

ADM_DBGetLong

Read a double word from the database

ADM_DBSetLong

Write a double word to the database

ADM_DBGetFloat

Read a floating-point number from the
database

ADM_DBSetFloat

Write a floating-point number to the
database

ADM_DBGetDFloat

Read a double floating-point number
from the database

ADM_DBSetDFloat

Write a double floating-point number to
the database

ADM_DBGetBuff

Reads a character buffer from the
database

ADM_DBSetBuff

Writes a character buffer to the database

ADM_DBGetRegs

Read multiple word registers from the
database

ADM_DBSetRegs

Write multiple word registers to the
database

ADM_DBGetString

Read a string from the database

ADM_DBSetString

Write a string to the database

ADM_DBSwapWord

Swaps bytes within a word in the
database

ADM_DBSwapDWord

Swaps bytes within a double word in the
database

Page 98 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable

Application Development Libraries

‘C’ Programmable Network Interface Module for Quantum Developer Guide
Function Function Name Description
Category
ADM_GetDBCptr Get a pointer to a character in the
database
ADM_GetDBIptr Get a pointer to a word in the database
ADM_GetDBInt Returns an integer from the database
ADM_DBChanged Tests a database register for a change
ADM_DBBitChanged Tests a database bit for a change
ADM_DBOR_Byte Inclusive OR a byte with a database byte
ADM_DBNOR_Byte Inclusive NOR a byte with a database
byte
ADM_DBAND_Byte AND a byte with a database byte
ADM_DBNAND_Byte NAND a byte with a database byte
ADM_DBXOR_Byte Exclusive OR a byte with a database
byte
ADM_DBXNOR_Byte Exclusive NOR a byte with a database
byte
Timer ADM_StartTimer Initialize a timer
ADM_CheckTimer Check current timer value
Backplane ADM_BtOpen Opens and initializes backplane interface
ADM_BtClose Closes backplane interface
ADM_BtNext Sets next write block number
ADM_ReadBtCfg Reads configuration from the processor
ADM_BtFunc Handles backplane transfers
ADM_SetStatus Writes status to Error/Status table
ADM_SetBtStatus Writes status to processor
LED ADM_SetLed Turn user LED indicators on or off
Flash ADM_FileGetString Searches for a string in a config file

ADM _FileGetint

Searches for an integer in a config file

ADM_FileGetChar

Searches for a char in a config file

ADM_GetVal Gets an integer from a buffer
ADM_GetStr Gets a string from a buffer
ADM_Getc Gets a char from a buffer

ADM_SkipToNext

Skips white space

Miscellaneous

ADM_GetVersioninfo

Get the ADM API version information

ADM_SetConsolePort

Enable the console on a port

ADM_SetConsoleSpeed

Set the console port baud rate

RAM

ADM_EEPROM_ReadConfiguration

Read configuration file.

ADM_RAM_Find_Section

Find section in the configuration file.

ADM_RAM_GetString

Get String under topic name.

ADM_RAM_Getint

Get Integer under topic name.

ADM_RAM_GetLong

Get Long under topic hame.

ADM_RAM_GetFloat

Get Float under topic name.

ADM_RAM_GetDouble

Get Double under topic name.

ADM_RAM_GetChar

Get Char under topic name.

ADM_Get_BP_Data_Exchange Get Control Data Exchange

ProSoft Technology, Inc.
February 20, 2013

Page 99 of 239

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

9.2 ADM API Initialization Functions

ADM_Open

Syntax
int ADM Open (ADMHANDLE *adm handle);

Parameters
adm_handle Pointer to variable of type ADMHANDLE

Description

ADM_Open acquires access to the ADM API and sets adm_handle to a unique
ID that the application uses in subsequent functions. This function must be called
before any of the other API functions can be used.

IMPORTANT: After the API has been opened, ADM_Close should always be called before exiting
the application.

Return Value

ADM SUCCESS API was opened successfully
ADM_ERR_REOPEN APl is already open
ADM_ERR_NOACCESS API cannot run on this hardware

Note: ADM_ERR_NOACCESS will be returned if the hardware is not from ProSoft Technology.

Example
ADMHANDLE adm_handle;

if (ADM_Open (&adm_handle) != ADM SUCCESS)

{
printf ("\nFailed to open ADM API... exiting program\n");
exit (1) ;

}

See Also

ADM_Close (page 101)

Page 100 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_Close

Syntax
int ADM Close (ADMHANDLE adm handle) ;

Parameters
adm_handle Handle returned by previous call to ADM_Open

Description

This function is used by an application to release control of the API. adm_handle
must be a valid handle returned from ADM_Open.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

ADM SUCCESS API was closed successfully
ADM_ERR_NOACCESS adm_handle does not have access
Example

ADMHANDLE adm handle;

ADM Close (adm handle) ;

See Also
ADM_Open (page 100)

ProSoft Technology, Inc. Page 101 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

9.3 ADM API Debug Port Functions

ADM_ProcessDebug

Syntax

int ADM ProcessDebug (ADMHANDLE adm handle, ADM INTERFACE
*adm_interface ptr);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
- N structures

Description

This function provides a module user interface using the debug port. adm_handle
must be a valid handle returned from ADM_Open.

Return Value

ADM SUCCESS No errors were encountered

ADM ERR NOACCESS adm_handle does not have access or user pressed Esc to exit
- - program

Example

ADMHANDLE adm handle;

ADM INTERFACE *interface ptr;

ADM INTERFACE interface;
interface ptr = &interface;

ADM ProcessDebug(adm handle, interface ptr);

Page 102 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DAWriteSendCtl

Syntax

int ADMiDAWriteSendCtl(ADMHANDLE admﬁhandle, ADM INTERFACE
*adm interface ptr, int app port, int marker);

Parameters

adm handle Handle returned by previous call to ADM_Open

adm:interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

marker Flow control symbol to output to the data analyzer screen

Description

This function may be used to send a transmit flow control symbol to the data
analyzer screen. The control symbol will appear between two angle brackets:
<R+>, <R->, <CS>.

adm_handle must be a valid handle returned from ADM_Open.
Valid values for marker are:

RTSOFF <R->
RTSON <R+>
CTSRCV <CS>

Return Value

MVI _SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access
MVI_ERR_BADPARAM Value of marker is not valid
Example
ADMHANDLE adm_handle;
ADM INTERFACE *interface ptr;
ADM INTERFACE interface;

interface ptr = &interface;

ADM DAWriteSendCtl (adm handle, interface ptr, app port, RTSON);

See Also
ADM_DAWTriteRecvCtl (page 104)

ProSoft Technology, Inc. Page 103 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DAWriteRecvCitl

Syntax

int ADMiDAWriteRechtl(ADMHANDLE admﬁhandle, ADM INTERFACE
*adm interface ptr, int app port, int marker);

Parameters

adm handle Handle returned by previous call to ADM_Open

adm:interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

marker Flow control symbol to output to the data analyzer screen

Description

This function may be used to send a receive flow control symbol to the data
analyzer screen. The control symbol will appear between two square brackets:
[R+], [R-], [CS].

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF [R-]
RTSON [R+]
CTSRCV [CS]

Return Value

MVI SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access
MVI_ERR_BADPARAM Value of marker is not valid
Example
ADMHANDLE adm_handle;
ADM INTERFACE *interface ptr;
ADM INTERFACE interface;

interface ptr = &interface;

ADM DAWriteRecvCtl (adm handle, interface ptr, app port, RTSON);

See Also
ADM_DAWTriteSendCtl (page 103)

Page 104 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DAWriteSendData

Syntax

int ADM DAWriteSendData (ADMHANDLE adm handle, ADM INTERFACE
*adm_interface ptr, int app port, int length, char *data buff);

Parameters

adm handle Handle returned by previous call to ADM_Open

adm:interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

length The number of data characters to send to the data analyzer

data_buff The buffer holding the transmit data

Description

This function may be used to send transmit data to the data analyzer screen. The
data will appear between two angle brackets: <data>.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

MVI SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;
ADM INTERFACE *interface ptr;
ADM PORT ports [MAX APP PORTS];
Int app_port;
ADM INTERFACE interface;
interface ptr = &interface;
ADM DAWriteSendData (adm handle, interface ptr, app port,
ports[app port].len, ports[app port].buff);

See Also
ADM_DAWriteRecvData (page 106)

ProSoft Technology, Inc. Page 105 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DAWriteRecvData

Syntax

int ADM DAWriteRecvData (ADMHANDLE adm handle, ADM INTERFACE
*adm interface ptr, int app port, int length, char *data buff);

Parameters

adm handle Handle returned by previous call to ADM_Open

adm:interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

length The number of data characters to send to the data analyzer

data_buff The buffer holding the receive data

Description

This function sends receive data to the data analyzer screen. The data will
appear between two square brackets: [data].

adm_handle must be a valid handle returned from ADM_Open.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access

Example
ADMHANDLE adm_handle;
ADM INTERFACE *interface ptr;
ADM PORT ports [MAX APP PORTS];
Int app_port;
ADM INTERFACE interface;
interface ptr = &interface;
ADM DAWriteRecvData (adm handle, interface ptr, app port,
ports[app port].len, ports[app port].buff);

See Also
ADM_DAWriteSendData (page 105)

Page 106 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_ConPrint

Syntax
nt ADM ConPrint (ADMHANDLE adm handle, ADM INTERFACE *adm interface ptr);
Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

B - structures
Description

This function outputs characters to the debug port. This function will buffer the
output and allow other functions to run. The buffer is serviced with each call to
ADM_ProcessDebug and can be serviced by the user's program. When sending
data to the debug port, if printf statements are used, other processes will be held
up until the printf function completes execution. Two variables in the interface
structure must be set when data is loaded. The first, buff_ch is the offset of the
next character to print. This should be set to 0. The second is buff_len. This
should be set to the length of the string placed in the buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_ERR_NOACCESS adm_handle does not have access
Number of characters left in the buffer

Example

ADMHANDLE adm_handle;

ADM INTERFACE *interface ptr;

ADM INTERFACE interface;
interface ptr = &interface;

sprintf (interface.buff,"MVI ADM\n");
interface.buff ch = 0;
interface.buff len = strlen(interface.buff);
/* write buffer to console */
while (interface.buff len)
{
interface.buff len = ADM ConPrint (adm handle, interface ptr);

}

ProSoft Technology, Inc. Page 107 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_CheckDBPort

Syntax

int ADM CheckDBPort (ADMHANDLE adm handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open
Description

This function checks for input characters on the debug port. adm_handle must be
a valid handle returned from ADM_Open.

Return Value
ADM ERR_NOACCESS adm_handle does not have access

Returns the character input to the debug port

Example

int key;

key = ADM CheckDBPort (adm handle) ;
printf ("key = %$i\n", key);

Page 108 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

94 ADM API Database Functions

ADM_DBOpen

Syntax
int ADM DBOpen (ADMHANDLE adm handle, unsigned short max size)

Parameters
adm_handle Handle returned by previous call to ADM_Open
max_size Maximum number of words in the database

Description
This function creates a database in the RAM area of the PTQ-ADM module.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM SUCCESS No errors were encountered

ADM_ERR NOACCESS adm_handle does not have access
ADM_ERR_DB MAX SIZE max_size has exceeded the maximum allowed
ADM_ERR_REE; RAKIGE max_size requested was zero
ADM_ERR_OPEQ Database already created
ADM:ERR:MEMORY Insufficient memory for database

Example

ADMHANDLE adm handle;

if (ADM DBOpen (adm_handle, ADM MAX DB REGS) != ADM SUCCESS)

printf ("Error setting up Database!\n");

See Also
ADM_DBClose (page 110)

ProSoft Technology, Inc. Page 109 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBClose

Syntax
int ADM DBClose (ADMHANDLE adm handle)

Parameters
adm_handle Handle returned by previous call to ADM_Open

Description
This function closes a database previously created by ADM_DBOpen.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
Example

ADMHANDLE adm_handle;

ADM DBClose (adm handle) ;

See Also
ADM_DBOpen (page 109)

Page 110 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBZero

Syntax

int ADM DBZero (ADMHANDLE adm_ handle)

Parameters
adm_handle Handle returned by previous call to ADM_Open

Description
This function writes zeros to a database previously created by ADM_DBOpen.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM _ SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
Example

ADMHANDLE adm handle;

ADM DBZero (adm handle) ;

See Also
ADM_DBOpen (page 109)

ProSoft Technology, Inc. Page 111 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBGetBit

Syntax

int ADM DBGetBit (ADMHANDLE adm handle, unsigned short offset)
Parameters

adm handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description

This function reads a bit from the database at a specified bit offset.
adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested bit

ADM ERR NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM:ERR:REG_RANGE offset is out of range

Example

ADMHANDLE adm handle;

unsigned short offset;

if (ADM DBGetBit (adm handle, offset))
printf ("bit is set");

else
printf ("bit is clear");

Page 112 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBSetBit

Syntax

int ADM DBSetBit (ADMHANDLE adm handle, unsigned short offset)
Parameters

adm handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description

This function sets a bit to a 1 in the database at a specified bit offset.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM SUCCESS No errors were encountered
ADM_ERR NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM:ERR:REG_RANGE offset is out of range

Example

ADMHANDLE adm handle;

unsigned short offset;

ADM DBSetBit (adm handle, offset);

See Also
ADM_DBClearBit (page 114)

ProSoft Technology, Inc. Page 113 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBClearBit

Syntax

int ADM DBClearBit (ADMHANDLE adm handle, unsigned short offset)
Parameters

adm handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description

This function clears a bit to a 0 in the database at a specified bit offset.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM SUCCESS No errors were encountered
ADM_ERR NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM:ERR:REG_RANGE offset is out of range

Example

ADMHANDLE adm handle;

unsigned short offset;

ADM DBClearBit (adm handle, offset);

See Also
ADM_DBSetBit (page 113)

Page 114 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBGetByte

Syntax

char ADM DBGetByte (ADMHANDLE adm handle, unsigned short offset)
Parameters

adm handle Handle returned by previous call to ADM_Open
offset Byte offset into database

Description

This function reads a byte from the database at a specified byte offset.
adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested byte

Example

ADMHANDLE adm_handle;
unsigned short offset;
int i

i = ADM DBGetByte (adm handle, offset);

See Also
ADM_DBSetByte (page 116)

ProSoft Technology, Inc. Page 115 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBSetByte

Syntax

int ADM DBSetByte (ADMHANDLE adm handle, unsigned short offset, const char
val)

Parameters

adm handle Handle returned by previous call to ADM_Open

offset Byte offset into database

val Value to be written to the database

Description

This function writes a byte to the database at a specified byte offset.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM _ SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM ERR REG RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const char val;

ADM DBSetByte (adm handle, offset, val);

See Also
ADM_DBGetByte (page 115)

Page 116 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBGetWord

Syntax

int ADM DBGetWord (ADMHANDLE adm handle, unsigned short offset)
Parameters

adm handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description

This function reads a word from the database at a specified word offset.
adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested word

Example

ADMHANDLE adm_handle;
unsigned short offset;
int i

i = ADM DBGetWord(adm handle, offset);

See Also
ADM_DBSetWord (page 118)

ProSoft Technology, Inc. Page 117 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBSetWord

Syntax

int ADM DBSetWord (ADMHANDLE adm handle, unsigned short offset, const short
val)

Parameters

adm handle Handle returned by previous call to ADM_Open

offset Word offset into database

val Value to be written to the database

Description

This function writes a word to the database at a specified word offset.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM _ SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM ERR REG RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const short val;

ADM DBSetWord(adm handle, offset, val);

See Also
ADM_DBGetWord (page 117)

Page 118 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBGetLong

Syntax

long ADM DBGetLong (ADMHANDLE adm handle, unsigned short offset)
Parameters

adm handle Handle returned by previous call to ADM_Open
offset Long int offset into database

Description

This function reads a long int from the database at a specified long int offset.
adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested long int

Example

ADMHANDLE adm_handle;
unsigned short offset;
long 1;

1 = ADM DBGetLong (adm handle, offset);

See Also
ADM_DBSetLong (page 120)

ProSoft Technology, Inc. Page 119 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBSetLong

Syntax

int ADM DBSetLong (ADMHANDLE adm handle, unsigned short offset, const long
val)

Parameters

adm handle Handle returned by previous call to ADM_Open

offset Long int offset into database

val Value to be written to the database

Description

This function writes a long int to the database at a specified long int offset.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM _ SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM ERR REG RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const long val;

ADM DBSetLong (adm handle, offset, val);

See Also
ADM_DBGetLong (page 119)

Page 120 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBGetFloat

Syntax

float ADM DBGetFloat (ADMHANDLE adm handle, unsigned short offset)
Parameters

adm_handle Handle returned by previous call to ADM_Open

offset float offset into database

Description

This function reads a floating-point number from the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested floating-point number.

Example

ADMHANDLE adm_handle;
unsigned short offset;
float £;

f = ADM DBGetFloat (adm handle, offset);

See Also
ADM_DBSetFloat (page 122)

ProSoft Technology, Inc. Page 121 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBSetFloat

Syntax

int ADM DBSetFloat (ADMHANDLE adm handle, unsigned short offset, const float
val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset float offset into database

val Value to be written to the database

Description

This function writes a floating-point number to the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const float val;

ADM DBSetFloat (adm handle, offset, wval);

See Also
ADM_DBGetFloat (page 121)

Page 122 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBGetDFloat

Syntax

double ADM DBGetDFloat (ADMHANDLE adm handle, unsigned short offset)
Parameters

adm handle Handle returned by previous call to ADM_Open

offset double float offset into database

Description

This function reads a double floating-point number from the database at a
specified double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested double floating-point number

Example

ADMHANDLE adm_handle;
unsigned short offset;
double d;

d = ADM DBGetDFloat (adm handle, offset);

See Also
ADM_DBSetDFloat (page 124)

ProSoft Technology, Inc. Page 123 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBSetDFloat

Syntax

int ADM DBSetDFloat (ADMHANDLE adm handle, unsigned short offset, const
double val)

Parameters

adm handle Handle returned by previous call to ADM_Open

offset double float offset into database

val Value to be written to the database

Description

This function writes a double floating-point number to the database at a specified
double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const double val;

ADM DBSetDFloat (adm handle, offset, val);

See Also
ADM_DBGetDFloat (page 123)

Page 124 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBGetBuff

Syntax

char * ADM DBGetBuff (ADMHANDLE adm handle, unsigned short offset, const
unsigned short count, char * str)

Parameters

adm handle Handle returned by previous call to ADM_Open
offse_t Character offset into database where the buffer starts
count Number of characters to retrieve

str String buffer to receive characters

Description

This function copies a buffer of characters in the database to a character buffer.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG RANGE offset is out of range

Example

ADMHANDLE adm handle;

unsigned short offset;

const unsigned short char count;

char *string buff;

ADM DBGetBuff (adm handle, offset, char count, string buff);

See Also
ADM_DBSetBuff (page 126)

ProSoft Technology, Inc. Page 125 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBSetBuff

Syntax

int ADM DBSetBuff (ADMHANDLE adm handle, unsigned short offset, const
unsigned short count, char * str)

Parameters

adm handle Handle returned by previous call to ADM_Open
offse_t Character offset into database where the buffer starts
count Number of characters to write

str String buffer to copy characters from

Description

This function copies a buffer of characters to the database.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

NULL adm_handle has no access, the database is not allocated, or count
+ offset is beyond the max size of the database

Characters from buffer

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short char count;

char *string buff = "MVI ADM";
char count = strlen(string_buff);

ADM DBSetBuff (adm handle, offset, char count, string buff);

See Also
ADM_DBGetBuff (page 125)

Page 126 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBGetRegs

Syntax

unsigned short * ADM DBGetRegs (ADMHANDLE adm handle, unsigned short offset,
const unsigned short count, unsigned short * buff)

Parameters

adm handle Handle returned by previous call to ADM_Open
offse_t Character offset into database where the buffer starts
count Number of integers to retrieve

buff Register buffer to receive integers

Description

This function copies a buffer of registers in the database to a register buffer.
adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.
Returns buff if successful.

Example

ADMHANDLE adm handle;
unsigned short offset;

const unsigned short reg count;
unsigned short *reg buff;

ADM DBGetRegs (adm handle, offset, reg count, reg buff);

See Also
ADM_DBSetRegs (page 128)

ProSoft Technology, Inc. Page 127 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBSetRegs

Syntax

int ADM DBSetRegs (ADMHANDLE adm handle, unsigned short offset, const
unsigned short count, unsigned short * buff)

Parameters

adm handle Handle returned by previous call to ADM_Open
offse_t Character offset into database where the buffer starts
count Number of integers to write

buff Register buffer from which integers are copied
Description

This function copies a buffer of registers to the database.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM _ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm handle;

unsigned short offset;

const unsigned short reg count;

unsigned short *reg buff;

ADM DBSetRegs (adm handle, offset, reg count, reg buff);

See Also
ADM_DBGetRegs (page 127)

Page 128 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBGetString

Syntax

char * ADM DBGetString (ADMHANDLE adm handle, unsigned short offset, const
unsigned short maxcount, char * str)

Parameters

adm handle Handle returned by previous call to ADM_Open
offse_t Character offset into database where the buffer starts
maxcount Maximum number of characters to retrieve

str String buffer to receive characters

Description

This function copies a string from the database to a string buffer.
adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.
Returns str if string is copy is successful.

Example

ADMHANDLE adm handle;
unsigned short offset;
const unsigned short maxcount;
char *string buff;

ADM_DBGetString(adm_handle, offset, maxcount, str);

See Also
ADM_DBSetString (page 130)

ProSoft Technology, Inc. Page 129 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBSetString

Syntax

int ADM DBSetString (ADMHANDLE adm handle, unsigned short offset, const
unsigned short maxcount, char * str)

Parameters

adm handle Handle returned by previous call to ADM_Open
offse_t Character offset into database where the buffer starts
maxcount Maximum number of characters to write

str String buffer to copy string from

Description

This function copies a string to the database from a string buffer.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG RANGE offset is out of range

Example

ADMHANDLE adm handle;

unsigned short offset;

const unsigned short maxcount;

char *string buff;

ADM DBSetString(adm handle, offset, maxcount, str);

See Also
ADM_DBGetString (page 129)

Page 130 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBSwapWord

Syntax

int ADM DBSwapWord (ADMHANDLE adm handle, unsigned short offset)
Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database where swapping is to be performed
Description

This function swaps bytes within a database word.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM SUCCESS No errors were encountered
ADM_ERR NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM:ERR:REG_RANGE offset is out of range

Example

ADMHANDLE adm handle;

unsigned short offset;

ADM DBSwapWord (adm handle, offset);

ProSoft Technology, Inc. Page 131 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBSwapDWord

Syntax

int ADM DBSwapDWord (ADMHANDLE adm handle, unsigned short offset, int type)
Parameters

adm_handle Handle returned by previous call to ADM_Open

offset long offset into database where swapping is to be performed

type If type = 3 then bytes will be swapped in pairs within the long.
Description

This function swaps bytes within a database long word.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM SUCCESS No errors were encountered
ADM_ERR NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM:ERR:REG_RANGE offset is out of range

Example

ADMHANDLE adm handle;

unsigned short offset;

ADM DBSwapDWord (adm handle, offset, 3);

Page 132 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_GetDBCptr

Syntax

char * ADM GetDBCptr (ADMHANDLE adm handle, int offset)
Parameters

adm handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description

This function obtains a pointer to char corresponding to the database + offset
location. Because offset is a word offset, the pointer will always reference a
character on a word boundary.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.
Returns pointer to char if successful.

Example

ADMHANDLE adm_handle;
int offset;

char c;

c = *(ADM GetDBCptr (adm handle, offset));

ProSoft Technology, Inc. Page 133 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_GetDBIptr

Syntax

int * ADM GetDBIptr (ADMHANDLE adm handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains a pointer to int corresponding to the database + offset
location.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.
Returns pointer to int if successful.

Example

ADMHANDLE adm_handle;
int offset;

int i;

i = *(ADM GetDBIptr (adm handle, offset));

Page 134 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_GetDBInt

Syntax

int ADM GetDBIptr (ADMHANDLE adm handle, int offset)
Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description

This function obtains an int corresponding to the database + offset location.
adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns 0 if not successful.
Returns int requested if successful.

Example

ADMHANDLE adm handle;
int offset;

int i;

i = ADM GetDBInt (adm handle, offset);

ProSoft Technology, Inc. Page 135 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBChanged

Syntax

int ADM DBChanged (ADMHANDLE adm handle, int offset)
Parameters

adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description

This function checks to see if a register has changed since the last call to
ADM_DBChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

0 No change

1 Register has changed
Example

ADMHANDLE adm handle;

int offset;

if (ADM DBChanged (adm handle, offset))
printf ("Data has changed");

else
printf ("Data is unchanged");

Page 136 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBBitChanged

Syntax

int ADM DBBitChanged (ADMHANDLE adm handle, int offset)
Parameters

adm handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description

This function checks to see if a bit has changed since the last call to
ADM_DBBitChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

0 No change

1 Bit has changed
Example

ADMHANDLE adm handle;

int offset;

if (ADM DBBitChanged (adm handle, offset))
printf ("Bit has changed");

else
printf ("Bit is unchanged");

ProSoft Technology, Inc. Page 137 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBOR_Byte

Syntax

int ADM DBOR Byte (ADMHANDLE adm handle, int offset, unsigned char bval)
Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be ORed with the byte at offset

Description

This function ORs a byte in the database with a byte-long bit mask.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM ERR REG RANGE offset is out of range

Example

ADMHANDLE adm handle;

int offset;

unsigned char bval = 0x55;

ADM DBOR Byte (adm handle, offset, bval);

Page 138 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBNOR_Byte

Syntax

int ADM DBNOR Byte (ADMHANDLE adm handle, int offset, unsigned char bval)
Parameters

adm handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be NORed with the byte at offset

Description

This function NORs a byte in the database with a byte-long bit mask.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM ERR REG RANGE offset is out of range

Example

ADMHANDLE adm handle;

int offset;

unsigned char bval = 0x55;

ADM DBNOR Byte (adm handle, offset, bval);

ProSoft Technology, Inc. Page 139 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBAND_Byte

Syntax

int ADM DBAND Byte (ADMHANDLE adm handle, int offset, unsigned char bval)
Parameters

adm handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be ANDed with the byte at offset

Description

This function ANDs a byte in the database with a byte-long bit mask.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM ERR REG RANGE offset is out of range

Example

ADMHANDLE adm handle;

int offset;

unsigned char bval = 0x55;

ADM DBAND Byte (adm handle, offset, bval);

Page 140 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBNAND_Byte

Syntax

int ADM DBNAND Byte (ADMHANDLE adm handle, int offset, unsigned char bval)
Parameters

adm handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be NANDed with the byte at offset

Description

This function NANDs a byte in the database with a byte-long bit mask.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_ SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM ERR REG RANGE offset is out of range

Example

ADMHANDLE adm handle;

int offset;

unsigned char bval = 0x55;

ADM DBNAND Byte (adm handle, offset, bval);

ProSoft Technology, Inc. Page 141 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_DBXOR_Byte

Syntax

int ADM DBXOR Byte (ADMHANDLE adm handle, int offset, unsigned char bval)
Parameters

adm handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be XORed with the byte at offset

Description

This function XORs a byte in the database with a byte-long bit mask.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM ERR REG RANGE offset is out of range

Example

ADMHANDLE adm handle;

int offset;

unsigned char bval = 0x55;

ADM DBXOR Byte (adm handle, offset, bval);

Page 142 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_DBXNOR_Byte

Syntax

int ADM DBXNOR Byte (ADMHANDLE adm handle, int offset, unsigned char bval)
Parameters

adm handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be XNORed with the byte at offset

Description

This function XNORs a byte in the database with a byte-long bit mask.
adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

ADM ERR REG RANGE offset is out of range

Example

ADMHANDLE adm handle;

int offset;

unsigned char bval = 0x55;

ADM DBXNOR Byte (adm handle, offset, bval);

ProSoft Technology, Inc. Page 143 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

95 ADM API Clock Functions

ADM_StartTimer

Syntax

unsigned short ADM StartTimer (ADMHANDLE adm handle)
Parameters

adm_handle Handle returned by previous call to ADM_Open
Description

ADM_StartTimer can be used to initialize a variable with a starting time with the
current time from a microsecond clock. A timer can be created by making a call
to ADM_StartTimer and by using ADM_CheckTimer to check to see if timeout
has occurred. For multiple timers call ADM_StartTimer using a different variable
for each timer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Current time value from millisecond clock

Example

Initialize 2 timers.

ADMHANDLE adm_handle;

unsigned short timerl;

unsigned short timer2;

timerl = ADM StartTimer (adm handle) ;
timer2 = ADM StartTimer (adm handle) ;
See Also

ADM_CheckTimer (page 145)

Page 144 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_CheckTimer

Syntax

int ADM CheckTimer (ADMHANDLE adm handle, unsigned short *adm tmlast, long
*adm_ tmout)

Parameters

adm_handle Handle returned by previous call to ADM_Open.
adm_tmlast Starting time of timer returned from call to ADM_StartTimer.
adm_tmout Timeout value in microseconds.

Description

ADM_CheckTimer checks a timer for a timeout condition. Each time the function
is called, ADM_CheckTimer updates the current timer value in adm_tmlast and
the time remaining until timeout in adm_tmout. If adm_tmout is less than 0, then
a 1 is returned to indicate a timeout condition. If the timer has not expired, a 0 will
be returned.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Timer not expired.
Timer expired.

Example

Check 2 timers.

ADMHANDLE adm_handle;

unsigned short timerl;

unsigned short timer2;

long timeoutl;

long timeout?2;

timeoutl = 10000000L; /* set timeout for 10 seconds */

timerl = ADM StartTimer (adm handle);

/* wait until timer 1 times out */

while (!ADM CheckTimer (adm handle, &timerl, &timeoutl))
timeout2 = 5000000L; /* set timeout for 5 seconds */
timer2 = ADM StartTimer (adm handle);

/* wait until timer 2 times out */

while (!ADM CheckTimer (adm handle, &timer2, &timeout2))

See Also
ADM_StartTimer (page 144)

ProSoft Technology, Inc. Page 145 of 239
February 20, 2013

Application Development Libraries
Developer Guide

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

9.6 ADM API Backplane Functions

ADM_BtOpen
Syntax
int ADM BtOpen (ADMHANDLE adm handle, ADM INTERFACE * adm interface ptr, int
verbose)
Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
B - structures
verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.
Description

This function opens and initializes the backplane interface.

Return Value

ADM SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
Backplane error number If there is an error writing to the backplane during initialization,

the error code is returned.

Example
ADMHANDLE adm_handle;

ADM INTERFACE *interface ptr;

int verbose = 1;
ADM INTERFACE interface;
interface ptr = &interface;

ADM BtOpen (adm handle, interface_ptr, verbose) ;

See Also
ADM_BtClose (page 147)

Page 146 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries

‘C’ Programmable Network Interface Module for Quantum Developer Guide
ADM_BtClose
Syntax
int ADM BtClose (ADMHANDLE adm handle, ADM INTERFACE * adm interface ptr)
Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
B - structures
Description

This function closes the backplane interface.

Return Value

ADM SUCCESS No errors were encountered
ADM ERR NOACCESS adm_handle does not have access
Example
ADMHANDLE adm handle;
ADM INTERFACE *interface ptr;
ADM INTERFACE interface;
interface ptr = &interface;

ADM BtClose (adm handle, interface ptr);

See Also
ADM_BtOpen (page 146)

ProSoft Technology, Inc. Page 147 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable

Developer Guide ‘C’ Programmable Network Interface Module for Quantum
ADM_BtNext
Syntax
int ADM BtNext (ADMHANDLE adm handle, ADM INTERFACE * adm interface ptr)
Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
B - structures
Description

This function sets the next write block number.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access

ADM ERR_NOTSUPPORTED Function is not supported on this platform

Example

ADMHANDLE adm_handle;

ADM INTERFACE *interface ptr;

ADM INTERFACE interface;
interface ptr = &interface;

ADM BtNext (adm handle, interface_ptr) ;

See Also
ADM_BtOpen (page 146)

Page 148 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_ReadBtCfg

Syntax

int ADM ReadBtCfg (ADMHANDLE adm handle, ADM INTERFACE * adm interface ptr,
int verbose)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
- - structures
verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.
Description

This function reads the module configuration from the processor. The function
will make a call to the function pointed to by interface.process cfg ptr. The
user function can be used to perform boundary checking on the configuration
parameters.

Return Value

ADM SUCCESS No errors were encountered

ADM ERR NOACCESS adm_handle does not have access, or configuration was
- - interrupted by operator.

ADM ERR NOTSUPPORTED This function is not supported on this platform

Example

ADMHANDLE adm handle;

ADM INTERFACE *interface ptr;

int verbose = 1;

ADM INTERFACE interface;
interface ptr = &interface;

ADM ReadBtCfg(adm handle, interface ptr, verbose);

See Also
ADM_BtOpen (page 146)

ProSoft Technology, Inc. Page 149 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable

Developer Guide ‘C’ Programmable Network Interface Module for Quantum
ADM_BtFunc
Syntax
int ADM BtFunc (ADMHANDLE adm handle, ADM INTERFACE * adm interface ptr, int
verbose)
Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
- - structures
verbose Switch to enable status messages to the debug port. A 1 will

enable messages and a 0 will disable the messages.

Description
This function handles the transfer of data across the backplane.

Return Value

0 Block transfer was successful
1 Invalid block number received
Example
ADMHANDLE adm_handle;
ADM INTERFACE *interface ptr;
int verbose = 1;
ADM INTERFACE interface;
interface ptr = &interface;

/* call backplane transfer logic */
ADM BtFunc (adm handle, interface ptr, verbose);

See Also
ADM_BtOpen (page 146)

Page 150 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_SetStatus

Syntax

int ADM SetStatus (ADMHANDLE adm handle, ADM INTERFACE * adm interface ptr,
int pass_cnt)

Parameters

adm handle Handle returned by previous call to ADM_Open

adm:interface_ptr Pointer to ADM_INTERFACE structure to allow APl access to structures

pass_cnt Counter from user code to indicate module health. This counter could be
updated in the main loop of the program.

Description

This function writes status data to the database at the location set by Error/Status
Pointer in the module configuration. The data is written in the following order:

pass_cnt (in the ADM_INTERFACE structure)

ADM_PRODUCT (structure)

ADM_PORT_ERRORS (structure, 1 time for each application port)
ADM_BLK_ERRORS (structure)

Return Value

ADM SUCCESS The function has completed successfully.
ADM ERR NOACCESS adm_handle does not have access
Example
ADMHANDLE adm handle;
ADM INTERFACE *interface ptr;
int pass_cnt;
ADM INTERFACE interface;
interface ptr = &interface;

ADM SetStatus(adm handle, interface ptr, interface.pass_cnt);

See Also
ADM_SetBtStatus (page 152)

ProSoft Technology, Inc. Page 151 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_SetBtStatus

Syntax

int ADM SetBtStatus (ADMHANDLE adm handle, ADM INTERFACE * adm interface ptr,
int pass_cnt)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
- - structures

pass_cnt Counter from user code to indicate module health. This counter
- could be updated in the main loop of the program.

Description

This function writes status data to the processor at word 202 in the input image
and to the database at location 6670. The data is written in the following order:

pass_cnt (in the ADM_INTERFACE structure)

ADM_PRODUCT (structure)

ADM_PORT_ERRORS (structure, 1 time for each application port)
ADM_BLK_ERRORS (structure)

CurErr (port 1, from ADM_PORT structure)

LastErr (port 1, from ADM_PORT structure)

CurErr (port 2, from ADM_PORT structure)

LastErr (port 2, from ADM_PORT structure)

Return Value

ADM_SUCCESS The function has completed successfully.
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_NOTSUPPORTED This function is not supported on this platform
Example
ADMHANDLE adm_handle;
ADM INTERFACE *interface ptr;
int pass_cnt;
ADM INTERFACE interface;

interface ptr = &interface;

ADM SetBtStatus (adm handle, interface ptr, interface.pass cnt);

See Also
ADM_SetStatus (page 151)

Page 152 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

9.7 ADM LED Functions

ADM_SetLed

Syntax

int ADM SetLed (ADMHANDLE adm handle, ADM INTERFACE *adm interface ptr, int
led, int state);

Parameters

adm handle Handle returned by previous call to ADM_Open
adm:interface_ptr Pointer to the interface structure

led Specifies which of the user LED indicators is being addressed
state Specifies whether the LED will be turned on or off
Description

ADM_SetLed allows an application to turn the user LED indicators on and off.
adm_handle must be a valid handle returned from ADM_Open.

led must be set to ADM_LED_USER1, ADM_LED_USER?2 or
ADM_LED_STATUS for User LED 1, User LED 2 or Status LED, respectively.

state must be set to ADM_LED_OK, ADM_LED_FAULT to turn the Status LED
green or red, respectively. For User LED 1 and User LED 2 state must be set to
ADM_LED_OFF or ADM_LED_ON to turn the indicator On or Off, respectively.

Return Value

ADM SUCCESS The LED has successfully been set.
ADM_ERR_NOACCESS adm_handle does not have access
ADM _ERR BADPARAM led or state is invalid.

Example

ADMHANDLE adm_handle;

/* Set Status LED OK, turn User LED 1 off and User LED 2 on */

ADM SetLed(adm handle, interface ptr, ADM LED STATUS, ADM LED OK);
ADM SetLed(adm handle, interface ptr, ADM LED USER1, ADM LED OFF);
ADM SetLed(adm handle, interface ptr, ADM LED USER2, ADM LED ON);

ProSoft Technology, Inc. Page 153 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

9.8 ADM API Miscellaneous Functions

ADM_GetVersioninfo

Syntax

int ADM GetVersionInfo (ADMHANDLE adm handle, ADMVERSIONINFO *adm verinfo);
Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_verinfo Pointer to structure of type ADMVERSIONINFO

Description

ADM_GetVersioninfo retrieves the current version of the ADM API library. The
information is returned in the structure adm_verinfo. adm_handle must be a valid
handle returned from ADM_Open.

The ADMVERSIONINFO structure is defined as follows:

typedef struct

{
char APISeries[4];
short APIRevisionMajor;
short APIRevisionMinor;
long APIRun;

}ADMVERSIONINFO;

Return Value

ADM SUCCESS The version information was read successfully.
ADI_ERR NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADMVERSIONINFO verinfo;

/* print version of API library */

ADM GetVersionInfo(adm handle, &adm version);
printf ("Revision %d.%d\n", verinfo.APIRevisionMajor,
verinfo.APIRevisionMinor) ;

Page 154 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_SetConsolePort

Syntax

void ADM SetConsolePort (int Port);

Parameters

Port Com port to use as the console (COM1=0, COM2=1, COM3=2)
Description

ADM_SetConsolePort sets the specified communication port as the console. This
allows the console to be disabled in the BIOS setup and the application can still
configure the console for use.

Return Value
None

Example

/* enable console on COM1 */
ADM SetConsolePort (COM1) ;

See Also
ADM_SetConsoleSpeed (page 156)

ProSoft Technology, Inc. Page 155 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_SetConsoleSpeed

Syntax

void ADM SetConsoleSpeed(int Port, long Speed);

Parameters

Port Com port to use as the console (COM1=0,
COM2=1, COM3=2)

Speed Baud rate for console port.

Available settings are: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200,
38400, 57600 and 115200.

Description

ADM_SetConsoleSpeed sets the specified communication port to the baud rate
specified.

Return Value
None

Example

/* set console to 115200 baud */
ADM SetConsoleSpeed (COM1, 115200L);

See Also
ADM_SetConsolePort (page 155)

Page 156 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

9.9 ADM APl RAM Functions

ADM_RAM_GetString

Syntax

char huge ADM RAM GetString (ADMHANDLE adm handle, char huge * mydata, char
* Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetString tries to find the Topic name passed to the function in the

file.

Return Value
Pointer to the string found in the file or NULL if the sub-section is not found.

Example
cptr = (char*)ADM_RAM_GetString(adm_handle, tptr, "Module Name");
if (cptr == NULL)
strcpy (module.name, "No Module Name") ;
else

{
if (strlen(cptr) > 80)
* (cptr+80) = 0;
strcpy (module.name, cptr);

if (module.name[strlen (module.name)-1] < 32)
module.name[strlen (module.name)-1] = 0;
}
ProSoft Technology, Inc. Page 157 of 239

February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_RAM_GetInt

Syntax

unsigned short ADM RAM GetInt (ADMHANDLE adm handle, char huge * mydata, char
* Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_Getint tries to find the Topic name passed to the function in the file.

Return Value
Value of type Integer found under the Topic name or 0 if the sub-section is not

found.
Example
module.err offset = ADM RAM GetInt (adm handle, tptr, "Baud Rate");
if (module.err offset < 0 || module.err offset > module.max regs-61)
{

module.err offset = -1;

module.err freq 0;
}

else

{

module.err freq = 500;

}

Page 158 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_RAM_GetLong

Syntax

unsigned long ADM RAM GetLong (ADMHANDLE adm handle, char huge * mydata,
char * Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

myd;ta Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetLong tries to find the Topic name passed to the function in the
file.

Return Value
Value of a type Long found under the Topic nhame or O if the sub-section is not

found.
Example
module.err offset = ADM RAM GetLong(adm handle, tptr, "Baud Rate");
if (module.err offset < 0 || module.err offset > module.max regs-61)
{

module.err offset = -1;

module.err freq 0;

}

else
{
module.err freq = 500;
}
ProSoft Technology, Inc. Page 159 of 239

February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_RAM_GetFloat

Syntax

float ADM RAM GetFloat (ADMHANDLE adm handle, char huge * mydata, char *
Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetFloat tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Float found under the Topic hame or O if the sub-section is not
found.

Example

module.time = ADM RAM GetFloat (adm handle, tptr, "Time");
if (module.time < 0 || module.time > module.max regs-61)
{
module.time = -1;
module.err freq = 0;
}
else
{
module.err freq = 500;

}

Page 160 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_RAM_GetDouble

Syntax

double ADM RAM GetDouble (ADMHANDLE adm handle, char huge * mydata, char *
Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetDouble tries to find the Topic name passed to the function in the
file.

Return Value
Value of a type Double found under the Topic name or 0 if the sub-section is not

found.
Example
module.time = ADM RAM GetDouble (adm handle, tptr, "Time");
if (module.time < 0 || module.time > module.max regs-61)
{
module.time = -1;
module.err freq = 0;
}
else
{
module.err freq = 500;
}
ProSoft Technology, Inc. Page 161 of 239

February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

ADM_RAM_GetChar

Syntax

unsigned char ADM RAM GetChar (ADMHANDLE adm handle, char huge * mydata,
char * Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

myd;ta Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetChar tries to find the Topic name passed to the function in the
file.

Return Value
Character found under the Topic name or ' " if the sub-section is not found.

Example
module.enable = ADM RAM GetChar (adm handle, tptr, "Enable");
if (module.enable == ' ")

{
module.time = -1;
module.err freq

I
o
~

}

else

{

module.err freq = 500;

}

Page 162 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ADM_Get_BP_Data Exchange

Syntax

void ADM Get BP Data Exchange (ADMHANDLE adm_handle) ;

Parameters

adm handle Handle returned by previous call to ADM_Open
Description

ADM_Get_BP_Data_Exchange read the whole, [Backplane Data Exchange],
section, and load all variable for communication between Quantum PLC and
module.

Return Value
None

Example
ADM Get BP Data Exchange (adm handle) ;

ProSoft Technology, Inc. Page 163 of 239
February 20, 2013

Application Development Libraries PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 164 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Backplane API Functions
Developer Guide

10 Backplane API Functions

In This Chapter

< Backplane API Initialization Functions
< Backplane API Configuration Functions
< Backplane API Synchronization Functions
« Backplane API Direct I/O Access
< Backplane API Messaging Functions

0

< Backplane API Miscellaneous Functions

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in 'C'

format.

The API library routines are categorized according to functionality as follows:

ProSoft Technology, Inc.
February 20, 2013

Page 165 of 239

Backplane API Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Initialization
MVIbp_Open
MVIbp_Close

Configuration
MVIbp_GetlOConfig
MVIbp_SetlOConfig

Synchronization
MVIbp_WaitForlnputScan
MVIbp_WaitForOutputScan

Direct I/O Access
MVIbp ReadOutputimage
MVIbp_Writelnputimage

Messaging
MVIbp_ReceiveMessage
MVIbp_SendMessage

Miscellaneous
MVIbp_GetVersioninfo
MVIbp_ErrorString
MVIbp_SetUserLED
MVIbp_SetModuleStatus
MVIbp_GetSetupMode
MVIbp_GetConsoleMode
MVIbp_SetConsoleMode
MVIbp_GetModulelnfo
MVIbp_GetProcessorStatus
MVIbp_Sleep

Platform Specific
MVIbp_WriteModuleFile
MVIbp_ReadModuleFile
MVIbp_SetModulelnterrupt

Page 166 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

10.1 Backplane API Initialization Functions

MVIbp_Open

Syntax
int MVIbp Open (MVIHANDLE *handle);

Parameters
handle Pointer to variable of type MVIHANDLE

Description

MVIbp_Open acquires access to the APl and sets handle to a unique ID that the
application uses in subsequent functions. This function must be called before any
of the other API functions can be used.

IMPORTANT: After the API has been opened, MVIbp_Close should always be called before
exiting the application.

Return Value

MVI_SUCCESS APl was opened successfully
MVI_ERR_REOPEN APl is already open
MVI_ERR_NODEVICE Backplane driver could not be accessed

Note: MVI_ERR_NODEVICE will be returned if the backplane device driver is not loaded.

Example
MVIHANDLE Handle;

if (MVIbp Open (&Handle) != MVI SUCCESS) {
printf ("Open failed!\n");

} else {
printf ("Open succeeded\n");

}

See Also
MVIbp_Close (page 168)

ProSoft Technology, Inc. Page 167 of 239
February 20, 2013

Backplane API Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIbp_Close

Syntax
int MVIbp Close (MVIHANDLE handle);

Parameters
handle Handle returned by previous call to MVIbp_Open

Description

This function is used by an application to release control of the API. handle must
be a valid handle returned from MVIbp_Open.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

MVI_SUCCESS API was closed successfully
MVI_ERR NOACCESS Handle does not have access

Example
MVIHANDLE Handle;

MVIbp Close (Handle);

See Also
MVIbp_Open (page 167)

Page 168 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

10.2 Backplane API Configuration Functions

MVIbp_GetlOConfig

Syntax

int MVIbp GetIOConfig (MVIHANDLE handle, MVIBPIOCONFIG *ioconfig);
Parameters

handle Handle returned by previous call to MVIbp_Open

ioconfig Pointer to MVIBPIOCONFIG structure to receive configuration information
Description

This function obtains the 1/O configuration of the PTQ module. handle must be a
valid handle returned from MVIbp_Open.
The MVIBPIOCONFIG structure is defined as shown:

typedef struct tagMVIBPIOCONFIG
{

WORD TotalInputSize; // Size of entire input image in words

WORD TotalOutputSize; // Size of entire output image in words
WORD DirectInputSize; // Input words available for direct access
WORD DirectOutputSize; // Output words available for direct access
WORD MsgRcvBufSize; // Max size in words for received messages
WORD MsgSndBufSize; // Max size in words for sent messages

} MVIBPIOCONFIG;

The sizes in words of the module’s input and output images are returned in the
MVIBPIOCONFIG structure pointed to by ioconfig. The TotallnputSize and
TotalOutputSize members are set equal to the size of the entire input or output
image, respectively. The DirectinputSize and DirectOutputSize members are set
equal to the number of words of the respective image that is available for direct
access via the MVIbp_Writelnputimage or MVIbpReadOutputimage functions. By
default, the direct and total sizes are equal. Refer to the MVIbp_SetlOConfig
function for more information.

The MsgRcvBufSize and MsgSndBufSize members indicate the maximum size in
words for received or sent messages, respectively. By default, these values are
both zero, indicating that messaging is disabled. Refer to the MVIbp_SetlOConfig
function for more information.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;

MVIBPIOCONFIG ioconfig;

MVIbp GetIOConfig(handle, &ioconfig);
printf ("$d words of input image available\n", ioconfig.DirectInputSize);
printf ("$d words of output image available\n", ioconfig.DirectOutputSize);

ProSoft Technology, Inc. Page 169 of 239
February 20, 2013

Backplane API Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

See Also
MVIbp_SetlOConfig (page 171)

Page 170 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIbp_SetlOConfig

Syntax

int MVIbp SetIOConfig (MVIHANDLE handle, MVIBPIOCONFIG *ioconfig);

Parameters

handle Handle returned by previous call to MVIbp_Open

ioconfig Pointer to MVIBPIOCONFIG structure which contains configuration
information

Description

This function defines the portion of the module’s I/O images that will be used for
direct I/O access, and to enable messaging. handle must be a valid handle
returned from MVIbp_Open.

By default, all of the module’s I/O image is available for direct I/O access, and
messaging is disabled. The MVIbp_SetlOConfig may be used to limit the amount
of 1/0 image available for direct access to only that which the application expects
to use. Attempts to access /O outside of the range defined by this function will
result in an error.

If the application is to use the messaging functions (MVIbp_SendMessage and
MVIbp_ReceiveMessage), MVIbp_SetlOConfig must be called to enable
messaging and setup the maximum message size that will be allowed. The
message size is expressed in words.

The MVIBPIOCONFIG structure is defined as shown:

typedef struct tagMVIBPIOCONFIG
{

WORD TotalInputSize; // Size of entire input image in words
WORD TotalOutputSize; // Size of entire output image in words
WORD DirectInputSize; // Input words available for direct access
WORD DirectOutputSize; // Output words available for direct access
WORD MsgRcvBufSize; // Max size in words for received messages
WORD MsgSndBufSize; // Max size in words for sent messages

} MVIBPIOCONFIG;

The TotallnputSize and TotalOutputSize members are ignored by the API, since
the total I/0 image sizes cannot be changed by the application. The
DirectinputSize and DirectOutputSize members should be set equal to the
number of words of the respective image that will be used for direct access via
the MVIbp_Writelnputimage or MVIbpReadOutputimage functions.

To enable the module to receive messages from the control processor via the
MVIbp_ReceiveMessage function, the MsgRcvBufSize member should be set to
the maximum message size expected. Likewise, to enable the module to send
messages to the control processor via the MVIbp_SendMessage function, the
MsgSndBufSize member should be set to the maximum message size expected.
The message sizes are expressed in words. The combined maximum message
size is 2048 words. If the sum of MsgRcvBufSize and MsgSndBufSize exceeds
2048, the error MVI_ERR_BADCONFIG will be returned.

ProSoft Technology, Inc. Page 171 of 239
February 20, 2013

Backplane API Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Notes

If messaging is enabled, a portion of the input and output images must be
reserved for use by the messaging protocol. One word of input and one word of
output is required for messaging control. At least one additional word of input
and/or output is required for messaging data, depending upon the messaging
direction(s) enabled. To receive messages from the control processor, at least
one word of output image is required for messaging data. To send messages to
the control processor, at least one word of input image is required for messaging
data. Therefore, for bi-directional messaging, at least two words of input and two
words of output image must be left unallocated when the direct I/O sizes are
specified. If messaging is enabled and insufficient 1/0 image is available for
messaging, the error MVI_ERR_BADCONFIG will be returned.

For best messaging performance, set the direct I/O sizes as small as possible.

Return Value

MVI SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access

MVI ERR BADCONFIG Configuration is not valid
MVI_ERR_NOTSUPPORTED Always returns this error

Example

MVIHANDLE handle;

MVIBPIOCONFIG ioconfig;

ioconfig.DirectInputSize = 2; // 2 words used for input
ioconfig.DirectOutputSize = 1; // 1 word used for output
MsgSndBufSize = 256; // Enable 256 word (max) messages to
processor

MsgRcvBufSize = 0; // Received messages not enabled
if (MVI_SUCCESS != MVIbp SetIOConfig(handle, &ioconfig))

printf ("Error: I/0 configuration failed\n");

See Also
MVIbp_GetlOConfig (page 169)

Page 172 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

10.3 Backplane API Synchronization Functions

MVIbp_WaitForinputScan

Syntax

int MVIbp WaitForInputScan (MVIHANDLE handle, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

timeout Maximum number of milliseconds to wait for
scan

Description

MVIbp_WaitForinputScan allows an application to synchronize with the scan of
the module’s input image. This function will return immediately after the input
image has been read.

handle must be a valid handle returned from MVIbp_Open. timeout specifies the
number of milliseconds that the function will wait for the input scan to occur.

Return Value

MVI SUCCESS The input scan has occurred.

Mv|_ERR NOACCESS handle does not have access

MVI:ERR:TIMEOUT The timeout expired before an input scan
occurred.

Example

MVIHANDLE Handle;

/* Wait here until input scan, 50ms timeout */
rc = MVIbp WaitForInputScan (Handle, 50);
if (rc == MVI_ERR TIMEOUT)
printf ("Input scan did not occur within 50 milliseconds\n");
else
printf ("Input scan has occurred\n");

See Also
MVIbp_WaitForOutputScan (page 174)

ProSoft Technology, Inc. Page 173 of 239
February 20, 2013

Backplane API Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIbp_WaitForOutputScan

Syntax

int MVIbp WaitForOutputScan (MVIHANDLE handle, WORD timeout);
Parameters

handle Handle returned by previous call to MVIbp_Open
timeout Maximum number of milliseconds to wait for scan
Description

MVIbp_WaitForlnputScan allows an application to synchronize with the scan of
the module’s output image. This function will return immediately after the
module’s output image has been written.

handle must be a valid handle returned from MVIbp_Open. timeout specifies the
number of milliseconds that the function will wait for the output scan to occur.

Return Value

MVI_SUCCESS The output scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_TIMEOUT The timeout expired before an output scan occurred.

MVI_ERR_BADCONFIG The data connection is not open

Example

MVIHANDLE Handle;
int rc;

/* Wait here until output scan, 50ms timeout */
rc = MVIbp WaitForOutputScan (Handle, 50);
if (rc == MVI_ERR TIMEOUT)
printf ("Output scan did not occur within 50ms\n");
else
printf ("Output scan has occurred\n");

See Also
MVIbp_WaitForlnputScan (page 173)

Page 174 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

10.4 Backplane API Direct I/0O Access

MVIbp_ReadOutputimage

Syntax

int MVIbp ReadOutputImage (MVIHANDLE handle, WORD *buffer, WORD offset, WORD
length) ;

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer to receive data from output image

offset Word offset into output image at which to begin reading

length Number of words to read

Description

MVIbp_ReadOutputlmage reads from the module’s output image. handle must
be a valid handle returned from MVIbp_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the output image to begin reading, and length
specifies the number of words to read. The error MVI_ERR_BADPARAM will be
returned if an attempt is made to access the output image beyond the range
configured for direct I/O. Refer to the MVIbp_SetlOConfig function for more
information.

The output image is written by the control processor and read by the module.

Return Value

MVl SUCCESS The data was read from the output image successfully.
MVI_ERR NOACCESS handle does not have access

MVI_ERR_BADPARAM Parameter contains invalid value
MVI:ERR:BADCONFIG The data connection is not open.

Example

MVIHANDLE Handle;
WORD buffer[8];
int rc;

/* Read 8 words of data from the output image, starting with word 2 */
rc = MVIbp ReadOutputImage (Handle, buffer, 2, 8);
if (rc != MVI SUCCESS)

printf ("ERROR: MVIbp ReadOutputImage failed");

See Also
MVIbp_SetlOConfig (page 171)
MVIbp_Writelnputimage (page 176)

ProSoft Technology, Inc. Page 175 of 239
February 20, 2013

Backplane API Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIbp_Writelnputimage

Syntax

int MVIbp WriteInputImage (MVIHANDLE handle, WORD *buffer, WORD offset, WORD
length) ;

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer of data to be written to input image

offset Word offset into input image at which to begin writing

length Number of words to write

Description

MVIbp_Writelnputlmage writes to the module’s input image. handle must be a
valid handle returned from MVIbp_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the input image to begin writing, and length specifies
the number of words to write. The error MVI_ERR_BADPARAM will be returned
if an attempt is made to access the input image beyond the range configured for
direct I/O. If this error is returned, no data will be written to the input image. Refer
to the MVIbp_SetlOConfig function for more information.

The input image is written by the module and read by the control processor.

Return Value

MVI_SUCCESS The data was written to the input image successfully.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM Parameter contains invalid value

MVI_ERR BADCONFIG The data connection is not open

Example

MVIHANDLE Handle;
WORD buffer[2];
int rc;

/* Write 2 words of data to the input image, starting with word 0 */
rc = MVIbp WriteInputImage (Handle, buffer, 0, 2);
if (rc != MVI_ SUCCESS)

printf ("ERROR: MVIbp WriteInputImage failed");

See Also
MVIbp_SetlOConfig (page 171)
MVIbp_ReadOutputimage (page 175)

Page 176 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

10.5 Backplane API Messaging Functions

MVIbp_ReceiveMessage

Syntax

int MVIbp ReceiveMessage (MVIHANDLE handle, WORD *buffer, WORD *length, WORD
reserved, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer to receive message data from processor

length Pointer to a variable containing the maximum message length in words.
When this function is called, this should be set to the size of the indicated
buffer. Upon successful return, this variable will contain the actual received
message length.

reserved Must be setto O

timeout Maximum number of milliseconds to wait for message

Description

This function retrieves a message sent from the control processor. handle must
be a valid handle returned from MVIbp_Open.

Upon calling this function, length should contain the maximum message size in
words to be received. buffer must point to a buffer of at least length words in size.
Upon successful return, length will contain the actual length of the message
received.

If length exceeds the maximum message size specified by the value
MsgRcvBuUfSize (refer to the MVIbp_SetlOConfig function),
MVI_ERR_BADPARAM will be returned.

reserved is not used and must be set to zero. MVI_ERR_BADPARAM will be
returned if reserved is not zero.

timeout specifies the number of milliseconds that the function will wait for a
message. To poll for a message without waiting, set timeout to zero. If no
message has been received, MVI_ERR_TIMEOUT will be returned.

Before this function can be used, messaging must be enabled with the
MVIbp_SetlOConfig function. If messaging has not been enabled,
MVI_ERR_BADCONFIG will be returned.

If the message received from the control processor is larger than length, the
message will be truncated to length words and MVI_ERR_MSGTOOBIG will be
returned.

The MVIbp_ReceiveMessage function retrieves data written to the PTQ-ADM
module by the processor via a MSG instruction. The MSG instruction must be
configured as shown in table A. The MSG instruction implements a "put attribute’
command to the PTQ module’s assembly object. The MSG instruction will fail if a
message has already been written to the PTQ module but application has not yet
retrieved the message via MVIbp_ReceiveMessage.

ProSoft Technology, Inc. Page 177 of 239
February 20, 2013

Backplane API Functions
Developer Guide

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Receive MSG Instruction Configuration

Field Value Description

Message Type CIP Generic Specify CIP message type
Service Code 10 (Hex) Set_Attribute_Single service
Object Type 4 Assembly object class code
Object ID 8 Output message instance number
Object Attribute 3 Data attribute

Num Elements Application dependent Size of message to be written
Path Application dependent Path to PTQ module

Return Value

MVI_SUCCESS

A message has been received.

MVI_ERR_NOACCESS

handle does not have access.

MVI_ERR_TIMEOUT

The timeout occurred before a message was received.

MVI_ERR_BADPARAM

A parameter is invalid.

MVI_ERR_BADCONFIG

Receive messaging is not enabled.

MVI_ERR_MSGTOOBIG

The received message is too big for the buffer.

Example

MVIHANDLE Handle;
int rc;

WORD buffer[256];
WORD length;

length = 256;

// maximum message size that can be received

// Wait up to 5 seconds for a message
rc = MVIbp ReceiveMessage (Handle, buffer, &length, 0, 5000);

if (rc == MVI SUCCESS)

printf ("Message received. Length is %d words\n", length);

See Also

MVIbp_SetlOConfig (page 171)
MVIbp_SendMessage (page 179)

Page 178 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIbp_SendMessage

Syntax

int MVIbp SendMessage (MVIHANDLE handle, WORD *buffer, WORD length,
WORD reserved, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer of data to send to processor

length The length in words of the message to send.

reserved Must be setto O

timeout Maximum number of milliseconds to wait for processor to read message
Description

This function sends a message to the control processor. handle must be a valid
handle returned from MVIbp_Open.

Upon calling this function, length should contain the message size in words.
buffer must point to a buffer of at least length words in size.

If length exceeds the maximum message size specified by the value
MsgSndBufSize (refer to the MVIbp_SetlOConfig function),
MVI_ERR_BADPARAM will be returned.

timeout specifies the number of milliseconds that the function will wait for the
message to transfer to the control processor. If the timeout occurs before the
message has been transferred, MVI_ERR_TIMEOUT will be returned.

If timeout is 0, the function will return immediately. If the message was
successfully queued to be sent, MVI_SUCCESS will be returned. If the message
was not queued (for example, a previous message is being sent),
MVI_ERR_TIMEOUT will be returned and the message must be re-tried at a later
time. A timeout of O allows an application to perform other tasks while the
message is being transmitted.

Before this function can be used, messaging must be enabled with the
MVIbp_SetlOConfig function. If messaging has not been enabled,
MVI_ERR_BADCONFIG will be returned.

Notes

The MVIbp_SendMessage function copies the message data into a buffer to be
retrieved by the processor via a MSG instruction. The MSG instruction must be
configured as shown in table B. The MSG instruction implements a "get attribute"
command to the PTQ module’s assembly object. The MSG instruction will fail if a
message has not already been written by the application via
MVIbp_SendMessage.

ProSoft Technology, Inc. Page 179 of 239
February 20, 2013

Backplane API Functions

PTQ-ADM ¢ 'C' Programmable

Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Send MSG Instruction Configuration

Field Value Description

Message Type CIP Generic Specify CIP message type
Service Code OE (Hex) Get_Attribute_Single service
Object Type 4 Assembly object class code
Object ID 7 Output message instance number
Object Attribute 3 Data attribute

Num Elements Application dependent Size of message to be written
Path Application dependent Path to PTQ module

Return Value

MVl SUCCESS A message has been received.

MVI_ERR NOACCESS handle does not have access.

MVI_ERR_TIMEOUT The timeout occurred before the message was transferred.
MVI_ERR_BADPARAM A parameter is invalid.

MVI:ERR:BADCONFIG Send messaging is not enabled.

Example

MVIHANDLE Handle;

int rc;

WORD buffer[256];

// Wait 5 seconds for the message to be sent
rc = MVIbp SendMessage (Handle, buffer, 256,

if (rc == MVI_ SUCCESS)
printf ("Message sent\n");
See Also

MVIbp_SetlOConfig (page 171)
MVIbp_ReceiveMessage (page 177)

5000) ;

Page 180 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

10.6 Backplane API Miscellaneous Functions

MVIbp_GetVersioninfo

Syntax

int MVIbp GetVersionInfo (MVIHANDLE handle, MVIBPVERSIONINFO *verinfo);
Parameters

handle Handle returned by previous call to MVIbp_Open

verinfo Pointer to structure of type MVIBPVERSIONINFO

Description

MVIbp_GetVersionInfo retrieves the current version of the API library and the
backplane device driver. The information is returned in the structure verinfo.
handle must be a valid handle returned from MVIbp_Open.

The MVIBPVERSIONINFO structure is defined as follows:

typedef struct tagMVIBPVERSIONINFO

{

WORD APISeries; /* API series */

WORD APIRevision; /* API revision */

WORD BPDDSeries;/* Backplane device driver series */

WORD BPDDRevision; /* Backplane device driver revision */
BYTE Reserved[8]; /* Reserved */

} MVIBPVERSIONINFO;

Return Value

MVI_SUCCESS The version information was read successfully.
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE Handle;
MVIBPVERSIONINEO verinfo;

/* print version of API library */

MVIbp GetVersionInfo (Handle, &verinfo);

printf ("Library Series %d, Rev %d\n", verinfo.APISeries,
verinfo.APIRevision) ;

printf ("Driver Series %d, Rev %d\n", verinfo.BPDDSeries,
verinfo.BPDDRevision) ;

ProSoft Technology, Inc. Page 181 of 239
February 20, 2013

Backplane API Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIbp_GetModulelnfo

Syntax

int MVIbp GetModuleInfo (MVIHANDLE handle, MVIBPMODULEINFO *modinfo) ;
Parameters

handle Handle returned by previous call to MVIbp_Open

modinfo Pointer to structure of type MVIBPMODULEINFO

Description

MVIbp_GetModulelnfo retrieves identity information for the module. The
information is returned in the structure modinfo. handle must be a valid handle
returned from MVIbp_Open.

The MVIBPMODULEINFO structure is defined as follows:

typedef struct tagMVIBPMODULEINFO
{

WORD VendorID; // Reserved

WORD DeviceType; // Reserved

WORD ProductCode; // Device model code

BYTE MajorRevision; // Device major revision

BYTE MinorRevision; // Device minor revision
DWORD SerialNo; // Serial number

BYTE Name [32]; // Device name (string)

BYTE Month; // Date of manufacture - month
BYTE Day; // Date of manufacture - day
WORD Year; // Date of manufacture - year
} MVIBPMODULEINFO;

Return Value

MVI_SUCCESS The version information was read successfully.
MVI_ERR NOACCESS handle does not have access

Example
MVIHANDLE Handle;
MVIBPMODULEINFO modinfo;

/* print module name */
MVIbp_GetModuleInfo(Handle,&modinfo);
printf ("Name is %$s\n", modinfo.Name) ;

Page 182 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIbp_ErrorString

Syntax

int MVIbp ErrorString(int errcode, char *buf);

Parameters

errcode Error code returned from an API function
buf Pointer to user buffer to receive message
Description

MVIbp_ErrorStr returns a text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value

MVI_SUCCESS Message returned in buf
MVI_ERR_BADPARAM Unknown error code
Example

char buf[80];

int rc;

/* print error message */
MVIbp ErrorString(rc, buf);
printf ("Error: %s", buf);

ProSoft Technology, Inc. Page 183 of 239
February 20, 2013

Backplane API Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIbp_SetUserLED

Syntax

int MVIbp SetUserLED (MVIHANDLE handle, int lednum, int ledstate);
Parameters

handle Handle returned by previous call to MVIbp_Open

lednum Specifies which of the user LED indicators is being addressed
Description

MVIbp_SetUserLED allows an application to turn the user LED indicators on and
off. handle must be a valid handle returned from MVIbp_Open.

lednum must be set to MVI_LED USER1 or MVI_LED_USER?2 to select User
LED 1 or User LED 2, respectively.

ledstate must be set to MVI_LED_STATE_ON or MVI_LED_STATE_OFF to turn
the indicator On or Off, respectively.

Return Value

MVI SUCCESS The input scan has occurred.
MVI_ERR NOACCESS handle does not have access
MVI:ERR:BADPARAM lednum or ledstate is invalid.

Example
MVIHANDLE Handle;

/* Turn User LED 1 on and User LED 2 off */
MVIbp SetUserLED (Handle, MVI LED USER1, MVI LED STATE ON) ;
MVIbp SetUserLED (Handle, MVI LED USER2, MVI LED STATE OFF);

Page 184 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIbp_SetModuleStatus

Syntax

int MVIbp SetModuleStatus (MVIHANDLE handle, int status);

Parameters

handle Handle returned by previous call to MVIbp_Open
status Module status, OK or Faulted

Description

MVIbp_SetModuleStatus allows an application set the state of the module to OK
or Faulted. handle must be a valid handle returned from MVIbp_Open.

state must be set to MVI_MODULE_STATUS_OK or

MVI_MODULE_STATUS FAULTED. If the state is OK, the module status LED
indicator will be set to Green. If the state is Faulted, the status indicator will be
set to Red.

Note: The MVI hardware can set the OK LED to Red if any of the following occurs:

= an unrecoverable fault

= hardware failure

= backplane driver failure

= Neither the PTQ hardware, nor the Set ModuleStatus call has priority. Either can overwrite the
other.

Return Value

MVI_SUCCESS The input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example

MVIHANDLE Handle;

/* Set the Status indicator to Red */
MVIbp SetModuleStatus (Handle, MVI MODULE STATUS FAULTED) ;

ProSoft Technology, Inc. Page 185 of 239
February 20, 2013

Backplane API Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIbp_GetConsoleMode

Syntax

int MVIbp GetConsoleMode (MVIHANDLE handle, int *mode, int *baud);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode Pointer to an integer that is set to 1 if the console is installed, or 0 if the
console is not enabled.

baud Pointer to an integer that is set to the console baud rate index if the
console is enabled.

Description

This function is used to query the state of the console. handle must be a valid
handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the console is enabled, or 0 if the console is disabled.

baud is a pointer to an integer. When this function returns, baud will be set to the
console’s baud index value if the console is enabled. baud is not set if the
console is disabled.

It may be useful for an application to detect that the console is enabled and allow
user interaction.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;

int mode;

MVIbp GetConsoleMode (handle, é&mode) ;

if (mode)
// Console is enabled - allow user interaction
else
// Console is not available - normal operation
Page 186 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIbp_GetSetupMode

Syntax

int MVIbp GetSetupMode (MVIHANDLE handle, int *mode);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode Pointer to an integer that is set to 1 if the Setup Jumper is installed, or O if
the Setup Jumper is not installed.

Description

This function is used to query the state of the Setup Jumper. handle must be a
valid handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the module is in Setup Mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup Mode. It
may be useful for an application to detect Setup Mode and perform special
configuration or diagnostic functions.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
Example

MVIHANDLE handle;

int mode;

MVIbp GetSetupMode (handle, é&mode);
if (mode)

// Setup Jumper is installed - perform configuration/diagnostic
else

// Not in Setup Mode - normal operation

ProSoft Technology, Inc. Page 187 of 239
February 20, 2013

Backplane API Functions
Developer Guide

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

MVIbp_GetProcessorStatus

Syntax

int MVIbp GetProcessorStatus (MVIHANDLE handle, WORD *pstatus);
Parameters

handle Handle returned by previous call to MVIbp_Open

pstatus Pointer to a word that will be updated with the current processor status.
Description

This function is used to query the state of the processor. handle must be a valid

handle returned from MVIbp_Open.

pstatus is a pointer to an word. When this function returns, certain bits in this
word will be set to indicate the current processor status, as shown in Figure 6.

Processor Status Bits

Bit Name

Description

0 MVI_PROCESSOR_STATUS_RUN Set if processor is in Run Mode
1 MVI_DATA_CONNECTION_OPEN Set if data connection is open
2 MVI_STATUS_CONNECTION_OPEN Set if status connection is open

Return Value

MVI_SUCCESS

No errors were encountered

MVI_ERR_NOACCESS

handle does not have access

MVI_ERR_BADCONFIG

The data connection is not open

Example

MVIHANDLE handle;
WORD status;
MVIbp GetProcessorStatus (handle,

&status) ;

if (status & MVI_PROCESSOR_STATUS RUN)

// Processor is in Run Mode
else

// Processor is not in Run Mode or there is no connection

Page 188 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Backplane API Functions

‘C’ Programmable Network Interface Module for Quantum Developer Guide
MVIbp_Sleep
Syntax
int MVIbp Sleep(MVIHANDLE handle, WORD msdelay);
Parameters
handle Handle returned by previous call to MVIbp_Open
msdelay Time in milliseconds to suspend task
Description

MVIbp_Sleep suspends the calling thread for at least msdelay milliseconds. The
actual delay may be several milliseconds longer than msdelay, due to system
overhead and the system timer granularity (5ms).

Return Value

MVI_SUCCESS Success
MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int timeout=200;

// Simple timeout loop

while (timeout—-)

{

// Poll for data, and so on.

// Break if condition is met (no timeout)
// Else sleep a bit and try again

MVIbp Sleep(10);

}

ProSoft Technology, Inc. Page 189 of 239
February 20, 2013

Backplane API Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIbp_SetConsoleMode

Syntax

int MVIbp SetConsoleMode (MVIHANDLE handle, int mode, int baud);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode An integer that is set to 1 if the console is to be enabled, or 0 if the console
is not enabled.

baud An integer that is set to the desired console baud rate index if the console
is enabled.

Description

This function sets the state of the console. handle must be a valid handle
returned from MVIbp_Open.

mode is an integer that contains the desired state of the console. mode should
be set to 1 if the console is to be enabled, or O if the console is to be disabled.

baud is an integer that contains the desired baud rate of the console. baud
should be set to the console’s baud index value if the console is enabled. The
baud index values are shown in Table 3.

The state of the console is normally configured with the BIOS setup menu and is
saved in battery-backed memory. If the module is removed from power for a
period of time and the battery discharges, then the state information is lost. This
function allows an application to store a desired console state into the battery-
backed memory.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.
Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int mode, baud;

mode = 1; // enable the console

baud = 8; // set baud rate to 19200 baud
MVIbp SetConsoleMode (handle, mode, baud);

Page 190 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Serial Port Library Functions
Developer Guide

11 Serial Port Library Functions

In This Chapter

< Serial Port API Initialization FUNCLONS...........cccovvevieeiiiiiiieieee e,
< Serial Port API Configuration FUNCLiONSccveveeeiiiiiiiieiee e,

Serial Port API Status Functions
< Serial Port APl Communications

0

< Serial Port APl Miscellaneous FUNCHIONS............cueeeeeeeeeieiiieeeeeeeeeenae,

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in 'C’

format.

The API library routines are categorized according to functionality as follows:

Initialization
MVIsp_Open
MVIsp_Close
MVIsp_OpenAlt
Configuration
MVIsp_Config
MVIsp_SetHandshaking
Port Status
MVIsp_SetRTS, MVIsp_GetRTS
MVIsp_SetDTR, MVIsp_GetDTR
MVIsp_GetCTS
MVIsp_GetDSR
MVIsp_GetDCD
MVIsp_GetLineStatus
Communications
MVIsp_Putch
MVIsp_Puts
MVIsp_PutData
MVIsp_Getch
MVIsp_Gets
MVIsp_GetData
MVIsp_GetCountUnsent
MVIsp_GetCountUnread
MVIsp_PurgeDataUnsent
MVIsp_PurgeDataUnread

ProSoft Technology, Inc.
February 20, 2013

Page 191 of 239

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Miscellaneous
MVIsp_GetVersioninfo

Page 192 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

11.1 Serial Port API Initialization Functions

MVIsp_Open

Syntax

int MVIsp Open (int comport, BYTE baudrate, BYTE parity, BYTE wordlen,
BYTE stopbits);

Parameters

comport Communications Port to open
baudrate Baud rate for this port

parity Parity setting for this port

wordlen Number of bits for each character
stopbits Number of stop bits for each character
Description

MVIsp_Open acquires access to a communications port. This function must be
called before any of the other API functions can be used.

comport specifies which port is to be opened. The valid values for the module are
COM1 (corresponds to PRT1), COM2 (corresponds to PRT2), and COM3
(corresponds to PRT3)..

ProSoft Technology, Inc. Page 193 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

baudrate is the desired baud rate. The allowable values for baudrate are shown
in the following table.

Baud Rate
BAUD 110
BAUD_150
BAUD_300
BAUD_600
BAUD_1200
BAUD_ 2400
BAUD_4800
BAUD_9600
BAUD_19200
BAUD_28800
BAUD_38400
BAUD_57600
BAUD_115200 12

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLENS5, WORDLEN6, WORDLEN7, and WORDLENS.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

The handshake lines DTR and RTS of the port specified by comport are turned
on by MVIsp_Open.

<
=
c
@D

OO N[OoO| g A~ WIN| PO

=
o

[
[

Note: If the console is enabled or the Setup jumper is installed, the baud rate for COM1 is set as
configured in BIOS Setup and cannot be changed by MVIsp_Open. MVIsp_Open will return
MVI_SUCCESS, but the baud rate will not be affected. It is recommended that the console be
disabled in BIOS Setup if COM1 is to be accessed with the serial API.

IMPORTANT: After the API has been opened, MVIsp_Close should always be called before exiting
the application.Return Value

MVI _SUCCESS Port was opened successfully
MVI_ERR_REOPEN Port is already open
MVI_ERR _NODEVICE UART not found on port

Note: MVI_ERR_NODEVICE will be returned if the port is not supported by the module.

Example
if (MVISp_Open(COMI,BAUD_9600,PARITY_NONE,WORDLENS,STOPBITSI) =
MVI_ SUCCESS) {
printf ("Open failed!\n");
} else {
printf ("Open succeeded\n");

}

See Also
MVIsp_Close (page 197)

Page 194 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIsp_OpenAlt

Syntax

int MVIsp OpenAlt (int comport, MVISPALTSETUP *altsetup):;

Parameters

comport Communications port to open

altsetup pointer to structure of type MVISPALTSETUP
Description

MVIsp_OpenAlt provides an alternate method to acquire access to a
communications port.

With MVIsp_OpenAlt, the sizes of the serial port data queues can be set by the
application.

See MVIsp_Open for any considerations about opening a port.
Comport specifies which port is to be opened. See MVIsp_Open for valid values.

Altsetup points to a MVISPALTSETUP structure that contains the configuration
information for the port.

The MVISPALTSETUP structure is defined as follows

typedef struct tagMVISPALTSETUP

{

BYTE baudrate;

BYTE parity;

BYTE wordlen;

BYTE stopbits;

int txquesize; /* Transmit queue size */

int rxquesize; /* Receive queue size */

BYTE fifosize; /* UART Internal FIFO size */

} MVISPALTSETUP;

See MVIsp_Open for valid values for the baudrate, parity, wordlen, and stopbits
members of the structure. The txquesize and rxquesize members determine the
size of the data buffers used to queue serial data. Valid values for the queue
sizes can be any value from MINQSIZE to MAXQSIZE. The MVIsp_Open
function uses a queue size of DEFQSIZE. These values are defined as:
#define MINQSIZE 512 /* Minimum Queue Size */

#define DEFQSIZE 1024 /* Default Queue Size */

#define MAXQSIZE 16384 /* Maximum Queue Size */

By default, the API sets the UART’s internal receive fifo size to 8 characters to
permit greater reliability at higher baud rates. In certain serial protocols, this
buffering of characters can cause character timeouts and can be changed or
disabled to meet these requirements. Most applications should set the fifosize to
the default RXFIFO_DEFAULT.

Either MVIsp_OpenAlt or MVIsp_Open must be called before any of the other
API functions can be used.

ProSoft Technology, Inc. Page 195 of 239
February 20, 2013

Serial Port Library Functions
Developer Guide

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Return Value

MVI_SUCCESS

Port was opened successfully

MVI_ERR_REOPEN

Port is already open

MVI_ERR_NODEVICE

UART not found for port

Example

MVISPALTSETUP altsetup;
altsetup.baudrate
altsetup.parity

altsetup.wordlen
altsetup.stopbits

altsetup.txquesize
altsetup.rxquesize
if (MVIsp OpenAlt (COMI1,

{

printf ("Open failed!\n");

} else {

printf ("Open succeeded!\n");

}

See Also

MVIsp_Open (page 193)

BAUD_9600;
PARITY NONE;

STOPBITS1;

DEFQSIZE * 2;
&altsetup)

!= MVI_SUCCESS)

Page 196 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIsp_Close

Syntax

int MVIsp Close (int comport);

Parameters
comport Port to close

Description

This function is used by an application to release control of the a communications
port. comport must be previously opened with MVIsp_Open.

comport specifies which port is to be closed. The valid values for the module are
COM1 (corresponds to PRT1), COM2 (corresponds to PRT2), and COM3
(corresponds to PRT3).

The handshake lines DTR and RTS of the port specified by comport are turned
off by MVIsp_Close.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

MVI_SUCCESS Port was closed successfully
MVI_ERR_NOACCESS Comport has not been opened
Example

MVIsp Close (COM1) ;

See Also
MVIsp_Open (page 193)

ProSoft Technology, Inc. Page 197 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

11.2 Serial Port API Configuration Functions

MVIsp_Config

Syntax
int MVIsp Config(int comport, BYTE baudrate, BYTE parity,
BYTE wordlen, BYTE stopbits);

Parameters

comport Communications port to open
baudrate Baud rate for this port

parity Parity setting for this port

wordlen Number of bits for each character
stopbits Number of stop bits for each character
baudrate Pointer to DWORD to receive baudrate
Description

MVIsp_Config allows the configuration of a serial port to be changed after it has
been opened.

comport specifies which port is to be opened.
baudrate is the desired baud rate.

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLENS, WORDLENG6, WORDLEN7, and WORDLENS.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

Note: If the console is enabled or the Setup jumper is installed, the baud rate for COM1 is set as

configured in BIOS Setup and cannot be changed by MVIsp_Open. MVIsp_Config will return
MVI_SUCCESS, but the baud rate will not be affected.

Return Value

MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS Comport has not been opened
MVI_ERR_BADPARAM Invalid pointer

Example

if (MVI sp_Config (coM1, BAUD_9600 , PARITY_NONE, WORDLEN8, STOPBITS1) !=
MVI SUCCESS) {

printf ("Config failed!\n");
} else {

printf ("Config succeeded\n") ;

}

See Also
MVIsp_Open (page 193)

Page 198 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIsp_SetHandshaking

Syntax

int MVIsp SetHandshaking(int comport, int shake);

Parameters

comport Port for which handshaking is to be set
shake Desired handshake mode
Description

This function enables handshaking for a port after it has been opened. comport
must be previously opened with MVIsp_Open.

shake is the desired handshake mode. Valid values for shake are
HSHAKE_NONE, HSHAKE_XONXOFF, HSHAKE_RTSCTS, and
HSHAKE_DTRDSR.

Use HSHAKE_XONXOFF to enable software handshaking for a port. Use
HSHAKE_RTSCTS or HSHAKE_DTRDSR to enable hardware handshaking for
a port. Hardware and software handshaking cannot be used together.

Handshaking is supported in both the transmit and receive directions.

Important: If hardware handshaking is enabled, using the MVIsp_SetRTS and MVIsp_SetDTR
functions will cause unpredictable results.

If software handshaking is enabled, ensure that the XON and XOFF ASCII characters are not
transmitted as data from a port or received into a port because this will be treated as handshaking
controls.

Return Values

MVI _SUCCESS No errors were encountered
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid handshaking mode
Example

if (MVI_SUCCESS != MVIsp SetHandshaking(COM1, HSHAKE RTSCTS))

printf ("Error: Set Handshaking failed\n");

ProSoft Technology, Inc. Page 199 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

11.3 Serial Port API Status Functions

MVIsp_SetRTS

Syntax

int MVIsp SetRTS (int comport, int state);

Parameters

comport Port for which RTS is to be changed
state Desired RTS state

Description

This functions allows the state of the RTS signal to be controlled. comport must
be previously opened with MVIsp_Open.

state specifies desired state of the RTS signal. Valid values for state are ON and
OFF.

Note: If RTS/CTS hardware handshaking is enabled, using the MVIsp_SetRTS function will cause
unpredictable results.

Return Value

MVI_SUCCESS The RTS signal was set successfully.
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid state

Example

int rc;

rc = MVIsp SetRTS(COM1, ON);
if (rc != MVI SUCCESS)
printf ("SetRTS failed\n ");

See Also
MVIsp_GetRTS (page 201)

Page 200 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVisp_GetRTS

Syntax

int MVIsp GetRTS (int comport, int *state);

Parameters

comport Port for which RTS is requested
state Pointer to int for desired state
Description

This function allows the state of the RTS signal to be determined. comport must
be previously opened with MVIsp_Open.

The current state of the RTS signal is copied to the int pointed to by state.

Return Value

MVI_SUCCESS The RTS state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid pointer
Example
int state;
if (MVIsp GetRTS(COM1l, &state) == MVI_SUCCESS)
{

if (state == ON)

printf ("RTS is ON\n");
else

printf ("RTS is OFF\n");
}

See Also
MVIsp_SetRTS (page 200)

ProSoft Technology, Inc. Page 201 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIsp_SetDTR

Syntax

int MVIsp SetDTR(int comport, int state);

Parameters

comport Port for which DTR is to be changed
state Desired state

Description

This function allows the state of the DTR signal to be controlled. comport must be
previously opened with MVIsp_Open.

state is the desired state of the DTR signal. Valid values for state are ON and
OFF.

Note: If DTR/DSR handshaking is enabled, changing the state of the DTR signal with
MVIsp_SetDTR will cause unpredictable results.

Return Value

MVI_SUCCESS The DTR signal was set successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid state

Example

if (MVIsp SetDTR(COM1, ON) != MVI SUCCESS)

printf ("Set DTR failed\n");

See Also
MVIsp_GetDTR (page 203)

Page 202 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVisp_GetDTR

Syntax

int MVIsp GetDTR(int comport, int *state);

Parameters

comport Port for which DTR is requested
state Pointer to int for desired state
Description

This function allows the state of the DTR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DTR signal is
copied to the int pointed to by state.

Return Values

MVI_SUCCESS The DTR state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid pointer
Example
int state;
if (MVIsp GetDTR(COMl, &state) == MVI SUCCESS)
{

if (state == ON)

printf ("DTR is ON\n");
else

printf ("DTR is OFF\n");
}

See Also
MVIsp_SetDTR (page 202)

ProSoft Technology, Inc. Page 203 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVisp_GetCTS

Syntax

int MVIsp GetCTS (int comport, int *state);

Parameters

comport Port for which CTS is requested
state Pointer to int for desired state
Description

This function allows the state of the CTS signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the CTS signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS The CTS state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid pointer
Example
int state;
if (MVIsp GetCTS(COMl, &state) == MVI SUCCESS)
{

if (state == ON)

printf ("CTS is ON\n");
else

printf ("CTS is OFF\n");

Page 204 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MViIsp_GetDSR

Syntax

int MVIsp GetDSR(int comport, int *state);

Parameters

comport Port for which DSR is requested
state Pointer to int for desired state
Description

This function allows the state of the DSR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DSR signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS The DSR state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid pointer
Example
int state;
if (MVIsp GetDSR(COMl, &state) == MVI SUCCESS)
{

if (state == ON)

printf ("DSR is ON\n");
else

printf ("DSR is OFF\n");

ProSoft Technology, Inc. Page 205 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVisp_GetDCD

Syntax

int MVIsp GetDCD(int comport, int *state);

Parameters

comport Port for which DCD is requested
state Pointer to int for desired state
Description

This function allows the state of the DCD signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DCD signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS The DCD state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid pointer
Example
int state;
if (MVIsp GetDCD(COMl, &state) == MVI SUCCESS)
{

if (state == ON)

printf ("DCD is ON\n");
else

printf ("DCD is OFF\n");

Page 206 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIsp_GetLineStatus

Syntax

int MVIsp GetLineStatus (int comport, BYTE *status);

Parameters

comport Port for which line status is requested
status Pointer to BYTE to receive line status
Description

MVIsp_GetLineStatus returns any line status errors received over the serial port.
The status returned indicates if any overrun, parity, or framing errors or break
signals have been detected.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

status points to a BYTE that will receive a set of flags that indicate errors
received over the serial port. If the returned status is 0, no errors have been
detected. If status is non-zero, it can be logically and'ed with the line status error
flags LSERR_OVERRUN, LSERR_PARITY, LSERR_FRAMING,
LSERR_BREAK, and/or QSERR_OVERRUN to determine the exact cause of the
error. The corresponding error flag will be set for each error type detected.

Note: The QSERR_OVERRUN bit indicates that a receive queue overflow has occurred.

After returning the bit flags in status, line status errors are cleared. Therefore,
MVIsp_GetLineStatus actually returns line status errors detected since the
previous call to this function.

Return Value

MVI_SUCCESS The line status was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid pointer

Example

BYTE sts;

if (MVIsp GetGetLineStatus (COM2, &sts) == MVI_ SUCCESS)
{
if (sts == 0)
printf ("No Line Status Errors Received\n");
else if ((sts & LSERR BREAK) != 0)
printf ("A Break Signal was Received\n");
else
printf ("A Line Status Error was Received\n");

ProSoft Technology, Inc. Page 207 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

11.4 Serial Port APl Communications

MVIsp_Putch
Syntax
int MVIsp Putch(int comport, BYTE ch, DWORD timeout);
Parameters
comport Port to which data is to be sent
ch Character to be sent
timeout Amount of time to wait to send character
Description

This function is used to transmit a single character across a serial port. comport
must be previously opened with MVIsp_Open.

ch is the byte to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time after this function returns
and the actual time that the character is transmitted across the serial line. This
function attempts to insert the character into the transmission queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the character cannot be
gueued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until the character is queued successfully.

If the character can be queued immediately, MVIsp_Putch returns
MVI_SUCCESS. If the character cannot be queued immediately, MVIsp_Putch
tries to queue the character until the timeout elapses. If the timeout elapses
before the character can be queued, MVI_ERR_TIMEOQUT is returned.

Note: If handshaking is enabled and the receiving serial device has paused transmission, timeouts
may occur after the queue becomes full.

Return Value

MVI_SUCCESS The char was sent successfully
MVI_ERR_NOACCESS comport has not been opened
MVI ERR_BADPARAM Invalid parameter
MVI_ERR_TIMEOUT Timeout elapsed before character sent
Example
if (MVIsp Putch(coMi, ';', 1000L) != MVI SUCCESS)

printf ("Semicolon could not be sent in 1 second\n");
See Also

MVIsp_GetCh (page 209)
MVIsp_Puts (page 210)
MVIsp_PutData (page 212)

Page 208 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIsp_Getch

Syntax

int MVIsp Getch(int comport, BYTE *ch, DWORD timeout);

Parameters

comport Port from which data is to be received

ch Pointer to BYTE to receive character
timeout Amount of time to wait to receive character

Description

This function receives a single character from a serial port. comport must be
previously opened with MVIsp_Open.

ch points to a BYTE that will receive the character.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Getch.
This function attempts to retrieve a character from the reception queue, and
return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until a character is
retrieved from the reception queue successfully.

If the reception queue is not empty, the oldest character is retrieved from the
gueue and MVIsp_Getch returns MVI_SUCCESS. If the queue is empty,
MVIsp_Getch tries to retrieve a character from the queue until the timeout
elapses. If the timeout elapses before a character can be retrieved,
MVI_ERR_TIMEOUT is returned.

Return Value

MVI_SUCCESS A char was retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid pointer

MVI_ERR_TIMEOUT Timeout elapsed before character retrieved
Example

BYTE ch;

if (MVIsp Getch(COM1, &ch, 1000L) == MVI SUCCESS)

putch ((char)ch);

See Also
MVIsp_PutCh (page 208)
MVIsp_Gets (page 214)

ProSoft Technology, Inc. Page 209 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable

Developer Guide ‘C’ Programmable Network Interface Module for Quantum
MVIsp_Puts
Syntax
int MVIsp Puts (int comport, BYTE *str, BYTE term, int *len, DWORD timeout);
Parameters
comport Port to which data is to be sent
str String of characters to be sent
term Termination character of string
len Pointer to BYTE to receive number of characters sent
timeout Amount of time to wait to send character
Description

This function is used to transmit a string of characters across a serial port.
comport must be previously opened with MVIsp_Open.

str is a pointer to an array of characters (or is a string) to be sent.

MVIsp_Puts sends each char in the array str to the serial port until it encounters
the termination character term. Therefore, the character array must end with the
termination character. The termination character is not sent to the serial port.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the characters are transmitted across the serial line. This function
attempts to insert the characters into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the characters
cannot be queued immediately. If timeout is TIMEOUT_FOREVER, the function
will not return until all the characters are queued successfully.

If all the characters can be queued immediately, MVIsp_Puts returns
MVI_SUCCESS. If the characters cannot be queued immediately, MVIsp_Puts
tries to queue the characters until the timeout elapses. If the timeout elapses
before the characters can be queued, MVI_ERR_TIMEOUT is returned.

If len is not NULL, MVIsp_Puts writes to the int pointed to by len the number of
characters queued successfully. len is written for successfully sent characters as
well as timeouts.

Note: If handshaking is enabled and the receiving serial device has paused transmission, timeouts
may occur after the queue becomes full.

Page 210 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

Serial Port Library Functions
Developer Guide

Return Value

MVI_SUCCESS

The characters were sent successfully

MVI_ERR_NOACCESS

comport has not been opened

MVI_ERR_BADPARAM

Invalid parameter

MVI_ERR_TIMEOUT

Timeout elapsed before characters sent

Example

char str[] = "Hello, World!";

int nn;

if (MVIsp Puts(COM1l, str,

&nn,

1000L) != MVI SUCCESS)

printf ("%d characters were sent\n",nn);

See Also
MVIsp_Gets (page 214)
MVIsp_PutCh (page 208)

MVIsp_PutData (page 212)

ProSoft Technology, Inc.
February 20, 2013

Page 211 of 239

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIsp_PutData

Syntax

int MVIsp PutData (int comport, BYTE *data, int *len, DWORD timeout);
Parameters

comport Port to which data is to be sent

data Pointer to array of bytes to be sent

len Pointer to number of bytes to send / bytes sent
timeout Amount of time to wait to send byte
Description

This function is used to transmit an array of bytes across a serial port. comport
must be previously opened with MVIsp_Open.

data is a pointer to an array of bytes to be sent.

MVIsp_PutData sends each byte in the array data to the serial port. len should
point to the number of bytes in the array data to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the bytes are transmitted across the serial line. This function
attempts to insert the bytes into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the bytes cannot
be queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until all the bytes are queued successfully.

If all the bytes can be queued immediately, MVIsp_PutData returns
MVI_SUCCESS. If the characters cannot be queued immediately,
MVIsp_PutData tries to queue the bytes until the timeout elapses. If the timeout
elapses before the bytes can be queued, MVI_ERR_TIMEOUT is returned.

When MVIsp_PutData returns, it writes to the int pointed to by len the number of
bytes queued successfully. len is written for successfully sent bytes as well as
timeouts.

Note: If software handshaking is enabled on the external serial device, sending data that contains
XOFF characters may stop transmission from the external serial device.

If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.

Page 212 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Serial Port Library Functions
Developer Guide

Return Value

MVI_SUCCESS

The bytes were sent successfully

MVI_ERR_NOACCESS

comport has not been opened

MVI_ERR_BADPARAM

Invalid parameter

MVI_ERR_TIMEOUT

Timeout elapsed before bytes sent

Example
BYTE dd[5] = { 10, 20, 30, 40, 50 };
int nn;
nn = 5;
if (MVIsp PutData (COM1, &dd[0], &nn,

printf ("$d bytes were sent\n",nn);

See Also
MVIsp_PutCh (page 208)
MVIsp_Puts (page 210)

1000L) != MVI SUCCESS)

ProSoft Technology, Inc.
February 20, 2013

Page 213 of 239

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable

Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIsp_Gets
Syntax
int MVIsp Gets (int comport, BYTE *str, BYTE term, int *len, DWORD timeout);
Parameters
comport Port from which data is to be received
str Pointer to array of bytes to receive data
term Termination character of data
len Number of bytes to receive / bytes received
timeout Amount of time to wait to receive character
Description

This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

str points to an array of bytes that will receive the data.
len points to the number of bytes to receive.

MVIsp_Gets retrieves bytes from the reception queue until either a byte is equal
to the termination character or the number of bytes pointed to by len are
retrieved. If a byte is retrieved that equals the termination character, the byte is
copied into the array str and the function returns.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Gets. This
function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_Gets returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.
If the function returns because a termination character was retrieved, len
includes the termination character in the length.

Note: If handshaking is enabled and the reception queue is full, this API may pause transmissions
from the external device, and timeouts may then occur.

Page 214 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

Return Value

MVI_SUCCESS Bytes were retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid pointer

MVI_ERR_TIMEOUT Timeout elapsed before bytes retrieved
Example

BYTE str[10];

int nn;

nn = 10;

if (MVIsp Gets(COM1, &str[0], '\r', &nn, 1000L) == MVI SUCCESS)

printf ("$d bytes were received\n",nn);

See Also

MVIsp_Getch (page 209)
MVIsp_Puts (page 210)
MVIsp_PutData (page 212)

ProSoft Technology, Inc. Page 215 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVisp_GetData

Syntax

int MVIsp GetData (int comport, BYTE *data, int *len, DWORD timeout);
Parameters

comport Port from which data is to be received

data Pointer to array of bytes to receive data

len Number of bytes to receive / bytes received
timeout Amount of time to wait to receive character
Description

This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

data points to an array of bytes that will receive the data.
len points to the number of bytes to receive.

MVIsp_GetData retrieves bytes from the reception queue until either the number
of bytes pointed to by len are retrieved or the timeout elapses.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_GetData.
This function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_GetData returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.

Page 216 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Serial Port Library Functions
Developer Guide

Return Value

MVI_SUCCESS

bytes were retrieved successfully

MVI_ERR_NOACCESS

comport has not been opened

MVI_ERR_BADPARAM

invalid pointer

MVI_ERR_TIMEOUT

timeout elapsed before bytes retrieved

Example

BYTE data[l1l0];
int nn;

10;
(MVIsp GetData (COM1,

nn =

if data, &nn,

1000L)

== MVI_SUCCESS)

printf ("$d bytes were received\n",nn);

See Also

MVIsp_Gets (page 214)
MVIsp_Getch (page 209)
MVIsp_PutData (page 212)

ProSoft Technology, Inc.
February 20, 2013

Page 217 of 239

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIsp_GetCountUnsent

Syntax

int MVIsp GetCountUnsent (int comport, int *count);

Parameters

comport Desired communications port

count Pointer to int to receive unsent character count
Description

MVIsp_GetCountUnsent returns the number of characters in the transmit queue
that are waiting to be sent. Since data sent to a port is queued before
transmission across a serial port, the application may need to determine if all
characters have been transmitted or how many characters remain to be
transmitted.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
sent to the serial port but not transmitted. If the returned count is 0, all data has
been transmitted. If it is non-zero, it contains the number of characters put into
the queue with MVIsp_Putch, MVIsp_Puts, or MVIsp_PutData but that have not
been transmitted.

Return Value

MVI_SUCCESS Count retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid pointer

Example

int count;

if (MVIsp_ GetCountUnsent (COM2, &count) == MVI SUCCESS)
{
if (count == 0)
printf ("All chars sent\n");
else
printf ("$d characters remaining\n",count);

}

See Also

MVIsp_Putch (page 208)
MVIsp_Puts (page 210)
MVIsp_PutData (page 212)

Page 218 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIsp_GetCountUnread

Syntax

int MVIsp GetCountUnread(int comport, int *count);

Parameters

comport Desired communications port

count Pointer to int to receive unread character count
Description

MVIsp_GetCountUnread returns the number of characters in the receive queue
that are waiting to be read. Since data received from a port is queued after
reception from a serial port, the application may need to determine if all
characters have been read or how many characters remain to be read.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
received from the serial port but not read by the application. If the returned count
is 0, all received data has been read. If it is non-zero, it contains the number of
characters placed into the receive queue after reception from a serial port but
that have not been read from the queue with MVIsp_Getch, MVIsp_Gets, or
MVIsp_GetData.

Return Value

MVI_SUCCESS Count retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM Invalid pointer

Example

int count;

if (MVIsp_ GetCountUnread (COM2, &count) == MVI SUCCESS)
{
if (count == 0)
printf ("All chars read\n");
else
printf ("$d characters remaining\n",count);

}

See Also

MVIsp_Getch (page 209)
MVIsp_Gets (page 214)
MVIsp_GetData (page 216)

ProSoft Technology, Inc. Page 219 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

MVIsp_PurgeDataUnsent

Syntax

int MVIsp PurgeDataUnsent (int comport);

Parameters
comport Port whose transmit data is to be purged

Description

MVIsp_PurgeDataUnsent deletes all data waiting in the transmit queue. The data
is discarded

and is not transmitted.
Comport specifies the port whose transmit queue is to be purged.

Return Value

MVI_SUCCESS The data was purged successfully
MVI_ERR_BADPARAM invalid comport
MVI_ERR_NOACCESS The comport has not been opened
Example

if (MVIsp PurgeDataUnsent (COM1) == MVI SUCCESS)

printf ("Transmit Data purged.\n");

See Also
MVIsp_PurgeDataUnread (page 221)

Page 220 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

MVIsp_PurgeDataUnread

Syntax

int MVIsp PurgeDataUnread(int comport)

Parameters
comport Port whose receive data is to be purged

Description

MVIsp_PurgeDataUnread deletes all data waiting in the receive queue. The data
is discarded and is no longer available for reading.

Note: If handshaking is enabled and the transmitting serial device has been paused, this function
will release the transmitting serial device to resume transmission.

Return Value

MVI_SUCCESS The data was purged successfully
MVI_ERR_BADPARAM invalid comport
MVI_ERR_NOACCESS The comport has not been opened
Example

if (MVIsp PurgeDataUnread(COMl) == MVI SUCCESS)

printf ("Transmit Data purged.\n");

See Also
MVIsp_PurgeDataUnsent (page 220)

ProSoft Technology, Inc. Page 221 of 239
February 20, 2013

Serial Port Library Functions PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

11.5 Serial Port APl Miscellaneous Functions

MVIsp_GetVersioninfo

Syntax

int MVIsp GetVersionInfo (MVISPVERSIONINFO *verinfo);
Parameters

verinfo Pointer to structure of type MVISPVERSIONINFO
Description

MVIsp_GetVersioninfo Retrieves the current version of the API. The version
information is returned in the structure verinfo.
The MVISPVERSIONINFO structure is defined as follows:

typedef struct tagMVISPVERSIONINFO
{

WORD APISeries; /* API series */
WORD APIRevision; /* API revision */
} MVISPVERSIONINFO;

Return Value

MVI_SUCCESS The version information was read successfully.
Example
MVISPVERSIONINFO verinfo;

/* print version of API library */

MVIsp GetVersionInfo (&verinfo);

printf ("Library Series %d, Rev %d\n", verinfo.APISeries,
verinfo.APIRevision) ;

Page 222 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Product Specifications
‘C’ Programmable Network Interface Module for Quantum Developer Guide

12 Product Specifications

In This Chapter

s General SPeCifiCationS............eeiiiiiiiiiiiiie e 224
% Hardware Specifications..........cccccoviiuiiiiiii e 225
¢ Functional Specifications.............ccecuviieiiie i 226

The PTQ Application Development Module is an backplane compatible module
that allows user-developed 'C' applications to operate on the platform. A great
way to speed up custom ASCII data communications or to protect a proprietary
algorithm, the ADM is a powerful tool for the platform.

Powerful platform for developing and running 'C' applications on Schneider
Electric’s processors. The PTQ-ADM module is a single slot, backplane
compatible solution for the platform. This module is a powerful and
programmable solution supporting two fully isolated serial ports allowing the
many serial field devices to be integrated into the platform.

The PTQ-ADM module has three serial ports, two of which are isolated for field
interfaces:

= CFG: Debug/configuration RS-232

= PRT1: Application RS-232, RS-422 or RS-485

= PRT2: Application RS-232, RS-422 or RS-485

PRT1 and PRT2 are jumper configured for direct or multi-drop field

communication. The application program can be written to control the two
application ports independently, allowing maximum flexibility in the design.

ProSoft Technology, Inc. Page 223 of 239
February 20, 2013

Product Specifications PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

12.1 General Specifications

Single Slot - Quantum backplane compatible
The module is recognized as an Options module and has access to PLC
memory for data transfer

= Configuration data is stored in non-volatile memory in the ProTalk module

= Up to six modules can be placed in a rack

= Local rack - The module must be placed in the same rack as processor

= Compatible with all common Quantum programming packages, including
Concept (version 2.6 or higher), Unity Pro (version 2.2 or higher), ProwORX
(version 2.20 or later), and ModSoft

= Quantum data types supported: 3x, 4x

= High speed data transfer across backplane provides quick data update times

= Sample ladder file available

Page 224 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

Product Specifications
Developer Guide

12.2 Hardware Specifications

Specification

Value

Backplane Current Load

1100 mA maximum @ 5 Vdc + 5%

Operating Temperature

0°C to 60°C (32°F to 140°F)

Storage Temperature

-40°C to 85°C (-40°F to 185°F)

Relative Humidity

5% to 95% (without condensation)

Vibration Sine vibration 4-100 Hz in each of
the 3 orthogonal axes
Shock 30G, 11 mSec. in each of the 3

orthogonal axes

Dimensions (HXWxD),
Approx.

250 x 103.85 x 40.34 mm
9.84x4.09x1.59in

LED Indicators

Module Status

Backplane Transfer Status

Serial Port Activity LED

Serial Activity and Error LED Status

Configuration Serial Port
(PRT1)

DB-9M PC Compatible
RS-232 only
No hardware handshaking

Application Serial Ports

(PRT2, PRT3)

DB-9M PC Compatible
RS-232/422/485 jumper selectable
RS-422/485 screw termination
included

RS-232 handshaking configurable
500V Optical isolation from
backplane

ProSoft Technology, Inc.
February 20, 2013

Page 225 of 239

Product Specifications PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

12.3 Functional Specifications

The PTQ ADM API Suite allows software developers to access the Quantum
backplane and serial ports without needing detailed knowledge of the module’s
hardware design.

Serial Port API Functions

The serial port API provides a common interface to the serial ports across all of
the PTQ hardware platforms. Functions include configuring, opening, closing,
controlling and monitoring the serial port, and sending and receiving serial data

Backplane API Functions

The backplane API provides an interface to transfer data between the module
and the processor over the backplane. Functions include initialization,
configuration, direct I/O access, synchronization, messaging, and control of the
console and LEDs.

ADM API Functions
The ADM API provides an interface to initialize the API, control the debug port,
read and write data to the database, start and check timers, transfer data over

the backplane, parse configuration files, set user LED indicators, and configure
the console.

Module Specifications
Module
= User-definable module memory usage, supporting the storage and transfer of

up to 5000 registers to/from the control processor
» Floating-point data movement support

Development Environment

= Operating system: General software DOS 6-XL
= Compatible compilers (16-bit DOS target)

o Digital Mars C++ V8.49 (included)

o Borland C++ V5.02

Page 226 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable DOS 6 XL Reference Manual
‘C’ Programmable Network Interface Module for Quantum Developer Guide

13 DOS 6 XL Reference Manual

The DOS 6 XL Reference Manual makes reference to compilers other than
Digital Mars C++ or Borland Compilers. The PTQ-ADM and ADMNET modules
only support Digital Mars C++ and Borland C/C++ Compiler Version 5.02.
References to other compilers should be ignored.

ProSoft Technology, Inc. Page 227 of 239
February 20, 2013

DOS 6 XL Reference Manual PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 228 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Support, Service & Warranty
‘C’ Programmable Network Interface Module for Quantum Developer Guide

14 Support, Service & Warranty

In This Chapter

Contacting Technical SUPPOItcivvieiiiiiiiiee e 230
Warranty Information...........ccveviieiiiiiiiiiice e 231
ProSoft Technology, Inc. Page 229 of 239

February 20, 2013

Support, Service & Warranty PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

14.1 Contacting Technical Support

ProSoft Technology, Inc. (ProSoft) is committed to providing the most efficient
and effective support possible. Before calling, please gather the following
information to assist in expediting this process:

1 Product Version Number
2 System architecture
3 Network details

If the issue is hardware related, we will also need information regarding:

Module configuration and associated ladder files, if any

Module operation and any unusual behavior

Configuration/Debug status information

LED patterns

Details about the serial, Ethernet or fieldbus devices interfaced to the module,
if any.

b wiNBE

Note: For technical support calls within the United States, an after-hours answering system allows
24-hour/7T-days-a-week pager access to one of our qualified Technical and/or Application Support
Engineers. Detailed contact information for all our worldwide locations is available on the following

page.

Page 230 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable

Support, Service & Warranty

‘C’ Programmable Network Interface Module for Quantum Developer Guide

Internet

Web Site: www.prosoft-technology.com/support
E-mail address: support@prosoft-technology.com

Asia Pacific Tel: +603.7724.2080, E-mail: asiapc@prosoft-technology.com
(location in Malaysia) Languages spoken include: Chinese, English

Asia Pacific Tel: +86.21.5187.7337 x888, E-mail: asiapc@prosoft-technology.com
(location in China) Languages spoken include: Chinese, English

Europe Tel: +33 (0) 5.34.36.87.20,

(location in Toulouse, E-mail: support. EMEA@ prosoft-technology.com

France) Languages spoken include: French, English

Europe Tel: +971-4-214-6911,

(location in Dubai, UAE)

E-mail: mea@prosoft-technology.com
Languages spoken include: English, Hindi

North America
(location in California)

Tel: +1.661.716.5100,
E-mail: support@prosoft-technology.com
Languages spoken include: English, Spanish

Latin America
(Oficina Regional)

Tel: +1-281-2989109,
E-Mail: latinam@prosoft-technology.com
Languages spoken include: Spanish, English

Latin America
(location in Puebla, Mexico)

Tel: +52-222-3-99-6565,
E-mail: soporte@prosoft-technology.com
Languages spoken include: Spanish

Brasil
(location in Sao Paulo)

Tel: +55-11-5083-3776,
E-mail: brasil@prosoft-technology.com
Languages spoken include: Portuguese, English

14.2 Warranty Information

Complete details regarding ProSoft Technology’'s TERMS AND CONDITIONS
OF SALE, WARRANTY, SUPPORT, SERVICE AND RETURN MATERIAL
AUTHORIZATION INSTRUCTIONS can be found at www.prosoft-
technology.com/warranty.

Documentation is subject to change without notice.

ProSoft Technology, Inc.
February 20, 2013

Page 231 of 239

http://www.prosoft-technology.com/warranty
http://www.prosoft-technology.com/warranty

Support, Service & Warranty PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 232 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Glossary of Terms
‘C’ Programmable Network Interface Module for Quantum Developer Guide

Glossary of Terms

API
Application Program Interface

Backplane

Refers to the electrical interface, or bus, to which modules connect when inserted
into the rack. The module communicates with the control processor(s) through
the processor backplane.

BIOS

Basic Input Output System. The BIOS firmware initializes the module at power
up, performs self-diagnostics, and provides a DOS-compatible interface to the
console and Flashes the ROM disk.

Byte
8-bit value

C

cip

Control and Information Protocol. This is the messaging protocol used for
communications over the ControlLogix backplane. Refer to the ControlNet
Specification for information.

Connection

A logical binding between two objects. A connection allows more efficient use of
bandwidth, because the message path is not included after the connection is
established.

Consumer

A destination for data.

Controller

The PLC or other controlling processor that communicates with the module
directly over the backplane or via a network or remote I/O adapter.

D

DLL
Dynamic Linked Library

ProSoft Technology, Inc. Page 233 of 239
February 20, 2013

Glossary of Terms PTQ-ADM ¢ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

E

Embedded I/0
Refers to any I/O which may reside on a CAM board.

ExplicitMsg
An asynchronous message sent for information purposes to a node from the
scanner.
H
HSC

High Speed Counter

Input Image

Refers to a contiguous block of data that is written by the module application and
read by the controller. The input image is read by the controller once each scan.
Also referred to as the input file.

Library

Refers to the library file containing the API functions. The library must be linked
with the developer’s application code to create the final executable program.

Linked Library
Dynamically Linked Library. See Library.

Local IIO
Refers to any 1/O contained on the CPC base unit or mezzanine board.

Long
32-bit value.

M

Module
Refers to a module attached to the backplane.

Mutex

A system object which is used to provide mutually-exclusive access to a
resource.

MVI Suite
The MVI suite consists of line products for the following platforms:

Flex 1/0O
ControlLogix
SLC

PLC

Page 234 of 239 ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable Glossary of Terms
‘C’ Programmable Network Interface Module for Quantum Developer Guide

= CompactLogix

MVI46
MV146 is sold by ProSoft Technology under the MVI146-ADM product name.

MVI56
MVI56 is sold by ProSoft Technology under the MVI56-ADM product name.

MVI69
MVI69 is sold by ProSoft Technology under the MVI69-ADM product name.

MVI71
MVI71 is sold by ProSoft Technology under the MVI71-ADM product name.

MVI94
MV194 and MVI94AV are the same modules. The MVI94AYV is now sold by
ProSoft Technology under the MVI94-ADM product name

@)

Originator
A client that establishes a connection path to a target.

Output Image
Table of output data sent to nodes on the network.

P

Producer
A source of data.

PTO
Pulse Train Output

PTQ Suite
The PTQ suite consists of line products for Schneider Electronics platforms:
Quantum (ProTalk)

Scanner
A DeviceNet node that scans nodes on the network to update outputs and inputs.

Side-connect

Refers to the electronic interface or connector on the side of the PLC-5, to which
modules connect directly through the PLC using a connector that provides a fast
communication path between the - module and the PLC-5.

ProSoft Technology, Inc. Page 235 of 239
February 20, 2013

Glossary of Terms PTQ-ADM ¢ 'C' Programmable

Developer Guide ‘C’ Programmable Network Interface Module for Quantum
T
Target
The end-node to which a connection is established by an originator.
Thread
Code that is executed within a process. A process may contain multiple threads.
W
Word
16-bit value
Page 236 of 239 ProSoft Technology, Inc.

February 20, 2013

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Index

Developer Guide

Index

A
Add the PTQ Module to the Project « 20, 38
ADM API ¢ 58

ADM API Architecture * 58

ADM API Backplane Functions * 146
ADM API Clock Functions * 144
ADM API Database Functions * 109
ADM API Debug Port Functions « 102
ADM API Functions * 98

ADM API Initialization Functions ¢ 100
ADM API Miscellaneous Functions ¢ 154
ADM API RAM Functions ¢ 157
ADM LED Functions * 153
ADM_BtClose ¢ 146, 147
ADM_BtFunc « 150

ADM_BtNext « 148

ADM_BtOpen ¢ 146, 147, 148, 149, 150
ADM_CheckDBPort « 108
ADM_CheckTimer 144, 145
ADM_Close * 100, 101
ADM_ConPrint « 107
ADM_DAWriteRecvCtl « 103, 104
ADM_DAWriteRecvData ¢ 105, 106
ADM_DAWriteSendCtl « 103, 104
ADM_DAWriteSendData ¢ 105, 106
ADM_DBAND_Byte * 140
ADM_DBBitChanged « 137
ADM_DBChanged * 136
ADM_DBClearBit * 113, 114
ADM_DBClose * 109, 110
ADM_DBGetBit * 112
ADM_DBGetBuff « 125, 126
ADM_DBGetByte « 115, 116
ADM_DBGetDFloat * 123, 124
ADM_DBGetFloat * 121, 122
ADM_DBGetLong ¢ 119, 120
ADM_DBGetRegs * 127, 128
ADM_DBGetString « 129, 130
ADM_DBGetWord *« 117, 118
ADM_DBNAND_Byte « 141
ADM_DBNOR_Byte « 139
ADM_DBOpen * 109, 110, 111
ADM_DBOR _Byte * 138
ADM_DBSetBit * 113, 114
ADM_DBSetBuff « 125, 126
ADM_DBSetByte « 115, 116
ADM_DBSetDFloat « 123, 124
ADM_DBSetFloat * 121, 122
ADM_DBSetLong ¢ 119, 120
ADM_DBSetRegs * 127, 128
ADM_DBSetString ¢ 129, 130
ADM_DBSetWord « 117, 118
ADM_DBSwapDWord ¢ 132

ADM_DBSwapWord « 131
ADM_DBXNOR_Byte * 143
ADM_DBXOR_Byte * 142
ADM_DBZero * 111
ADM_Get_BP_Data_Exchange * 163
ADM_GetDBCptr « 133
ADM_GetDBInt « 135
ADM_GetDBlptr « 134
ADM_GetVersionInfo « 154
ADM_Open ¢ 100, 101
ADM_ProcessDebug ¢+ 102
ADM_RAM_GetChar * 162
ADM_RAM_GetDouble * 161
ADM_RAM_GetFloat * 160
ADM_RAM_Getint * 158
ADM_RAM_GetLong * 159
ADM_RAM_GetString * 157
ADM_ReadBtCfg « 149
ADM_SetBtStatus ¢ 151, 152
ADM_SetConsolePort * 155, 156
ADM_SetConsoleSpeed ¢+ 155, 156
ADM_SetLed * 153
ADM_SetStatus * 151, 152
ADM_StartTimer « 144, 145

AP| « 233

API Libraries * 56

Application Development Libraries « 97

B

Backplane « 233

Backplane API Configuration Functions ¢ 169

Backplane API Direct I/O Access * 175

Backplane API Functions « 165

Backplane API Initialization Functions « 167

Backplane API Messaging Functions * 177

Backplane API Miscellaneous Functions « 181

Backplane API Synchronization Functions « 173

BIOS « 233

Build the Project « 40

Building an Existing Borland C++ 5.02 ADM Project ¢
75

Building an Existing Digital Mars C++ 8.49 ADM
Project « 64
Byte » 233

Cable Connections * 48

Calling Convention * 56

CIP 233

Configuring Borland C++5.02 « 74
Configuring Digital Mars C++ 8.49 « 64
Configuring the Processor with Concept « 17
Configuring the Processor with ProWORX « 31
Configuring the Processor with Unity Pro « 35
Connect Your PC to the Processor ¢ 41
Connecting to the Module * 88

Connecting to the Processor with TCPIP + 43
Connection « 233

Consumer ¢+ 233

ProSoft Technology, Inc.
February 20, 2013

Page 237 of 239

Index
Developer Guide

PTQ-ADM ¢ 'C' Programmable

‘C’ Programmable Network Interface Module for Quantum

Controller « 233

Create a New Project « 18, 36

Creating a New Borland C++ 5.02 ADM Project « 76

Creating a New Digital Mars C++ 8.49 ADM Project ¢
67

Creating a ROM Disk Image * 82

D

Database * 60

Debugging Strategies * 95

Development Tools * 57

DLL +233

DOS 6 XL Reference Manual « 54, 227

Download the Project to the Processor « 24

Download the Project to the Quantum Processor « 44
Downloading a ROM Disk Image « 84, 93
Downloading Files From a PC to the ADM Module « 94
Downloading the Sample Program ¢ 64, 74

E

Embedded 1/0 « 234
Enabling the Console * 89
ExplicitMsg « 234

F

Functional Specifications * 226
G

General Specifications * 224
H

Hardware « 61
Hardware and Software Requirements « 12
Hardware Specifications * 225
Header File « 56
How to Contact Us
Technical Support * 230
HSC « 234

Information for Concept Version 2.6 Users « 14

Information for ProTalk® Product Users * 3

Input Image * 234

Inserting the 1454-9F connector * 46

Install the ProTalk Module in the Quantum Rack ¢ 46,
47

Installing MDC Configuration Files ¢« 14

Installing RY.exe and SY .exe * 93

Introduction to PTQ-ADM ¢ 53

L
Library « 234
LIMITED WARRANTY « 231
Linked Library « 234
Local I/0 « 234
Long « 234

M

Module « 234

Multithreading Considerations * 56
Mutex « 234

MVI Suite « 234

MVI46 « 235

MVI56 « 235

MVIB9 « 235

MVI71 « 235

MVI194 « 235

MVIbp_Close « 167, 168
MVIbp_ErrorString « 183
MVIbp_GetConsoleMode « 186
MVIbp_GetlOConfig « 169, 172
MVIbp_GetModulelnfo « 182
MVIbp_GetProcessorStatus + 188
MVIbp_GetSetupMode « 187
MVIbp_GetVersioninfo « 181
MVIbp_Open ¢« 167, 168
MVIbp_ReadOutputimage ¢ 175, 176
MVIbp_ReceiveMessage * 177, 180
MVIbp_SendMessage * 178, 179
MVIbp_SetConsoleMode * 190
MVIbp_SetlOConfig « 170, 171, 175, 176, 178, 180
MVIbp_SetModuleStatus + 185
MVIbp_SetUserLED « 184
MVIbp_Sleep * 189
MVIbp_WaitForlnputScan « 173, 174
MVIbp_WaitForOutputScan * 173, 174
MVIbp_Writelnputimage « 175, 176
MVIsp_Close * 194, 197
MVisp_Config « 198

MVisp_Getch « 208, 209, 215, 217, 219
MVIsp_GetCountUnread * 219
MVIsp_GetCountUnsent « 218
MVIsp_GetCTS « 204

MVIsp_GetData * 216, 219
MVIsp_GetDCD « 206
MVIsp_GetDSR + 205
MVIsp_GetDTR « 202, 203
MVIsp_GetLineStatus * 207
MVIsp_GetRTS « 200, 201
MVlisp_Gets * 209, 211, 214, 217, 219
MVIsp_GetVersionInfo « 222
MVIsp_Open « 193, 196, 197, 198
MVisp_OpenAlt * 195
MVIsp_PurgeDataUnread « 220, 221
MVIsp_PurgeDataUnsent « 220, 221
MVIsp_Putch « 208, 209, 211, 213, 218
MVIsp_PutData « 208, 211, 212, 215, 217, 218
MVlsp_Puts * 208, 210, 213, 215, 218
MVIsp_SetDTR ¢ 202, 203
MVIsp_SetHandshaking * 199
MVIsp_SetRTS « 200, 201
MVIUPDAT -« 84

O

Operating System ¢ 54
Originator « 235

Page 238 of 239

ProSoft Technology, Inc.
February 20, 2013

PTQ-ADM ¢ 'C' Programmable
‘C’ Programmable Network Interface Module for Quantum

Index
Developer Guide

Output Image * 235

P
Package Contents * 12
PC and PC Software * 13
Pinouts « 3, 46, 48
Producer * 235
Product Specifications « 223
PTO « 235
PTQ Suite * 235
PTQ System BIOS Setup * 85
Q
Quantum Hardware « 12
R
Recommended Compact Flash (CF) Cards * 13
Required Hardware « 87
Required Software * 87
RS-232

Modem Connection ¢+ 49
Null Modem Connection (Hardware Handshaking)
<49
Null Modem Connection (No Hardware
Handshaking) + 50
RS-232 Application Port(s) * 48
RS-232 Configuration/Debug Port « 48
RS-422 + 51
RS-485 and RS-422 Tip « 51
RS-485 Application Port(s) « 50
RS-485 Programming Note * 61

S

Scanner ¢ 235

Serial Port APl Communications ¢ 208

Serial Port API Configuration Functions ¢ 198
Serial Port AP Initialization Functions * 193
Serial Port API Miscellaneous Functions « 222
Serial Port API Status Functions « 200

Serial Port Library Functions ¢ 191

Set up Data Memory in Project * 22

Setting Up the ProTalk Module « 45

Setting Up Your Compiler « 64

Setting Up Your Development Environment « 63
Side-connect ¢ 235

Software ¢ 62

Start Here « 11

Support, Service & Warranty « 229

T

Target « 236

Theory of Operation « 58

Thread + 236

Transferring Files to and from the Module with
HyperTerminal « 87

u

Understanding the PTQ-ADM API « 55
Uploading files from the ADM module to a PC + 95

\Y,

Verify Jumper Settings ¢ 46
Verify Successful Download « 27

W
Warnings * 3
WINIMAGE - Windows Disk Image Builder « 82
Word « 236

Y

Your Feedback Please * 2

ProSoft Technology, Inc.
February 20, 2013

Page 239 of 239

