

ProLinx ADM
'C' Programmable

Application Development Module

 February 20, 2013

DEVELOPER'S GUIDE

Important Installation Instructions

Power, Input and Output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods, Article 501-4 (b)
of the National Electrical Code, NFPA 70 for installation in the U.S., or as specified in Section 18-1J2 of the Canadian
Electrical Code for installations in Canada, and in accordance with the authority having jurisdiction. The following
warnings must be heeded:

A WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR
CLASS I, DIV. 2;

B WARNING - EXPLOSION HAZARD - WHEN IN HAZARDOUS LOCATIONS, TURN OFF POWER BEFORE
REPLACING OR WIRING MODULES

C WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NONHAZARDOUS.

D THIS DEVICE SHALL BE POWERED BY CLASS 2 OUTPUTS ONLY.

All ProLinx® Products

WARNING – EXPLOSION HAZARD – DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

AVERTISSEMENT – RISQUE D'EXPLOSION – AVANT DE DÉCONNECTER L'EQUIPMENT, COUPER LE
COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DÉSIGNÉ NON DANGEREUX.

Markings

UL/cUL ISA 12.12.01 Class I, Div 2 Groups A, B, C, D

cUL C22.2 No. 213-M1987

 243333 183151

CL I Div 2 GPs A, B, C, D

Temp Code T5

II 3 G

Ex nA nL IIC T5 X

0° C <= Ta <= 60° C

II – Equipment intended for above ground use (not for use in mines).

3 – Category 3 equipment, investigated for normal operation only.

G – Equipment protected against explosive gasses.

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,
compliments or complaints about the product, documentation, or support, please write or call us.

ProSoft Technology

5201 Truxtun Ave., 3rd Floor
Bakersfield, CA 93309
+1 (661) 716-5100
+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
support@prosoft-technology.com

Copyright © 2013 ProSoft Technology, Inc., all rights reserved.

ProLinx ADM Developer's Guide

February 20, 2013

ProSoft Technology
®
, ProLinx

®
, inRAx

®
, ProTalk

®
, and RadioLinx

®
 are Registered Trademarks of ProSoft

Technology, Inc. All other brand or product names are or may be trademarks of, and are used to identify products
and services of, their respective owners.

In an effort to conserve paper, ProSoft Technology no longer includes printed manuals with our product shipments.
User Manuals, Datasheets, Sample Ladder Files, and Configuration Files are provided on the enclosed CD-ROM,
and are available at no charge from our web site: www.prosoft-technology.com.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of
these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate
and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or
use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. Information in this document including illustrations, specifications and
dimensions may contain technical inaccuracies or typographical errors. ProSoft Technology makes no warranty or
representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or
errors at any time without notice. If you have any suggestions for improvements or amendments or have found errors
in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including
photocopying, without express written permission of ProSoft Technology. All pertinent state, regional, and local safety
regulations must be observed when installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform repairs to components. When
devices are used for applications with technical safety requirements, the relevant instructions must be followed.
Failure to use ProSoft Technology software or approved software with our hardware products may result in injury,
harm, or improper operating results. Failure to observe this information can result in injury or equipment damage.

© 2013 ProSoft Technology. All rights reserved.

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.

North America: +1.661.716.5100

Asia Pacific: +603.7724.2080

Europe, Middle East, Africa: +33 (0) 5.3436.87.20

Latin America: +1.281.298.9109

http://www.prosoft-technology.com/

Contents ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 4 of 161
February 20, 2013

Contents ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 5 of 161
February 20, 2013

Contents

Important Installation Instructions ... 2
Your Feedback Please .. 3
Content Disclaimer .. 3

1 Introduction 7

1.1 Operating System .. 7

2 Preparing the PLX-ADM Module 9

2.1 Package Contents ... 9
2.2 Setting Port 0 Configuration Jumpers ... 10
2.3 Mounting the gateway on the DIN-rail ... 11
2.4 Connecting Power to the Unit ... 11
2.5 RS-232 Configuration Port Serial Connection .. 12

3 Setting Up Your Development Environment 13

3.1 Setting Up Your Compiler.. 13
3.2 Downloading Files to the Module .. 30

4 Programming the Module 33

4.1 Hardware Specifications and Equipment Ratings ... 33
4.2 Debugging Strategies .. 34
4.3 RS-485 Programming Note ... 34

5 Understanding the ADM API 37

5.1 API Libraries .. 37
5.2 Development Tools ... 38
5.3 Theory of Operation .. 39
5.4 ADM Functional Blocks ... 39
5.5 Example Code Files .. 41
5.6 ADM API Files ... 42
5.7 Serial API Files .. 46

6 Application Development Function Library - ADM API 47

6.1 ADM API Functions ... 47
6.2 Core Functions .. 50
6.3 ADM API Initialization Functions ... 61
6.4 ADM API Debug Port Functions .. 63
6.5 ADM API Database Functions .. 70
6.6 ADM API Clock Functions ... 105
6.7 ADM LED Functions .. 107
6.8 ADM API Miscellaneous Functions ... 108

ProLinx ADM ♦ 'C' Programmable Contents
Application Development Module Developer's Guide

Page 6 of 161 ProSoft Technology, Inc.
 February 20, 2013

7 Serial Port Library Functions 113

7.1 Serial Port API Initialization Functions .. 114
7.2 Serial Port API Configuration Functions ... 119
7.3 Serial Port API Status Functions .. 121
7.4 Serial Port API Communications .. 129
7.5 Serial Port API Miscellaneous Functions .. 141
7.6 RAM Functions ... 142

8 DOS 6 XL Reference Manual 151

9 Glossary of Terms 153

10 Support, Service & Warranty 157

10.1 Contacting Technical Support ... 157
10.2 Warranty Information .. 158

Index 159

Introduction ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 7 of 161
February 20, 2013

1 Introduction

In This Chapter

 Operating System .. 7

This document provides information needed for development of application
programs for the ProLinx ADM Serial Communication Module.

The modules are programmable to accommodate devices with unique serial
protocols.

Included in this document is information about the available software API libraries
and tools, module configuration and programming information, and example code
for the module.

1.1 Operating System

The module includes General Software Embedded DOS 6-XL. This operating
system provides DOS compatibility along with real-time multitasking functionality.
The operating system is stored in Flash ROM and is loaded by the BIOS when
the module boots.

DOS compatibility allows user applications to be developed using standard DOS
tools, such as Borland compilers.

Note: DOS programs that try to access the video or keyboard hardware directly will not function
correctly on the PLX module. Only programs that use the standard DOS and BIOS functions to
perform console I/O are compatible.

Refer to the General Software Embedded DOS 6-XL Developer’s Guide (page
151) on the ProLinx ADM CD-ROM for more information.

ProLinx ADM ♦ 'C' Programmable Introduction
Application Development Module Developer's Guide

Page 8 of 161 ProSoft Technology, Inc.
February 20, 2013

Preparing the PLX-ADM Module ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 9 of 161
February 20, 2013

2 Preparing the PLX-ADM Module

In This Chapter

 Package Contents ... 9

 Setting Port 0 Configuration Jumpers .. 10

 Mounting the gateway on the DIN-rail ... 11

 Connecting Power to the Unit .. 11

 RS-232 Configuration Port Serial Connection 12

2.1 Package Contents

The following components are included with your ProLinx ADM gateway, and are
all required for installation and configuration.

Important: Before beginning the installation, please verify that all of the following items are
present.

Qty. Part Name Part Number Part Description

1 ProLinx ADM
gateway

PLX-#### ProLinx communication gateway gateway

1 Cable Cable #15, RS232
Null Modem

For RS232 Connection from a PC to the CFG Port
of the gateway

Varies Cable Cable #9, Mini-DIN8
to DB9 Male
Adapter

For DB9 Connection to gateway’s Port. One DIN to
DB-9M cable included per configurable serial port,
plus one for gateway configuration

Varies Adapter 1454-9F Adapters, DB9 Female to Screw Terminal. For
RS422 or RS485 Connections to each serial
application port of the gateway

1 ProSoft
Solutions CD

 Contains sample programs, utilities and
documentation for the ProLinx ADM gateway.

If any of these components are missing, please contact ProSoft Technology
Support for replacements.

ProLinx ADM ♦ 'C' Programmable Preparing the PLX-ADM Module
Application Development Module Developer's Guide

Page 10 of 161 ProSoft Technology, Inc.
February 20, 2013

2.2 Setting Port 0 Configuration Jumpers

Before installing the module on the DIN-rail, you must set the jumpers for the
Port 0 application port.

Note: Ethernet-only ProLinx modules do not use the serial port jumper settings. The serial
configuration jumper settings on an Ethernet-only module have no effect.
Note: The presence of Port 0 depends on the specific combination of protocols in your ProLinx
module. If your module does not have a Port 0, the following jumper settings do not apply.

Port 0 is preconfigured for RS-232. You can move the port configuration jumper
on the back of the module to select RS-485 or RS-422.

Note: Some ProLinx modules do not correctly report the position of the port 0 jumper to the Port
Configuration page on the Config/Debug menu. In cases where the reported configuration differs
from the known jumper configuration, the physical configuration of the jumper is correct.

The following illustration shows the jumper positions for Port 0:

ProLinx 5000/6000 Series Module

Preparing the PLX-ADM Module ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 11 of 161
February 20, 2013

2.3 Mounting the gateway on the DIN-rail

ProLinx 5000/6000 Series gateway

2.4 Connecting Power to the Unit

WARNING: Ensure that you do not reverse polarity when applying power to the gateway. This will
cause damage to the gateway’s power supply.

ProLinx ADM ♦ 'C' Programmable Preparing the PLX-ADM Module
Application Development Module Developer's Guide

Page 12 of 161 ProSoft Technology, Inc.
February 20, 2013

2.5 RS-232 Configuration Port Serial Connection

RS-232 Null Modem

Serial Cable

From PC to

ProLinx Module

This port is physically a Mini-DIN connection. A Mini-DIN to DB-9 adapter cable
is included with the module. This port permits ProSoft Configuration Builder to
view configuration and status data in the module and to control the module. The
following illustration shows the pinout for communications on this port.

Setting Up Your Development Environment ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 13 of 161
February 20, 2013

3 Setting Up Your Development Environment

In This Chapter

 Setting Up Your Compiler .. 13

 Downloading Files to the Module .. 30

3.1 Setting Up Your Compiler

There are some important compiler settings that must be set in order to
successfully compile an application for the PLX platform. The following topics
describe the setup procedures for each of the supported compilers.

3.1.1 Configuring Digital Mars C++ 8.49

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note: This procedure assumes that you have successfully installed Digital Mars C++ 8.49 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_PLX.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. When you unzip the file, you will find the
sample code files in \ADM_TOOL_PLX\SAMPLES\.

Building an Existing Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project  Open from the Main
Menu.

ProLinx ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module Developer's Guide

Page 14 of 161 ProSoft Technology, Inc.
February 20, 2013

2 From the Folders field, navigate to the folder that contains the project
(C:\ADM_TOOL_PLX\SAMPLES\…).

3 In the File Name field, click on the project name (56adm-si.prj).
4 Click OK. The Project window appears:

5 Click Project  Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

Setting Up Your Development Environment ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 15 of 161
February 20, 2013

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be

accessed by clicking Project  Settings from the Main Menu.

Creating a New Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project  New from the Main
Menu.

2 Select the path and type in the Project Name.

ProLinx ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module Developer's Guide

Page 16 of 161 ProSoft Technology, Inc.
February 20, 2013

3 Click Next.

4 In the Platform field, choose DOS.
5 In the Project Settings choose Release if you do not want debug information

included in your build.
6 Click Next.

7 Select the first source file necessary for the project.
8 Click Add.
9 Repeat this step for all source files needed for the project.
10 Repeat the same procedure for all library files (.lib) needed for the project.

Setting Up Your Development Environment ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 17 of 161
February 20, 2013

11 Choose Libraries (*.lib) from the List Files of Type field to view all library files:

12 Click Next.

13 Add any defines or include directories desired.
14 Click Finish.

ProLinx ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module Developer's Guide

Page 18 of 161 ProSoft Technology, Inc.
February 20, 2013

15 The Project window should now contain all the necessary source and library
files as shown in the following window:

16 Click Project  Settings from the Main Menu.

17 These settings were set when the project was created. No changes are
required. The executable must be built as a DOS executable in order to run
on the PLX platform.

Setting Up Your Development Environment ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 19 of 161
February 20, 2013

18 Click the Directories tab and fill in directory information as required by your
project’s directory structure.

19 If the fields are left blank then it is assumed that all of the files are in the
same directory as the project file. The output files will be placed in this
directory as well.

20 Click on the Build tab, and choose the Compiler selection. Confirm that the
settings match those shown in the following screen:

ProLinx ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module Developer's Guide

Page 20 of 161 ProSoft Technology, Inc.
February 20, 2013

21 Click Code Generation from the Topics field and ensure that the options
match those shown in the following screen:

22 Click Memory Models from the Topics field and ensure that the options
match those shown in the following screen:

Setting Up Your Development Environment ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 21 of 161
February 20, 2013

23 Click Linker from the Topics field and ensure that the options match those
shown in the following screen:

24 Click Packing & Map File from the Topics field and ensure that the options
match those shown in the following screen:

ProLinx ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module Developer's Guide

Page 22 of 161 ProSoft Technology, Inc.
February 20, 2013

25 Click Make from the Topics field and ensure that the options match those
shown in the following screen:

26 Click OK.

27 Click Parse  Update All from the Project Window Menu. The new settings
may not take effect unless the project is updated and reparsed.

28 Click Project  Build All from the Main Menu.
29 When complete, the build results will appear in the Output window:

The executable file will be located in the directory listed in the Compiler Output
Directory box of the Directories tab (that is, C:\ADM_TOOL_PLX\SAMPLES\…).

The Project Settings window can be accessed by clicking Project  Settings
from the Main Menu.

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

Setting Up Your Development Environment ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 23 of 161
February 20, 2013

3.1.2 Configuring Borland C++5.02

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology, using Borland C++ 5.02. After verifying that the
sample code can be successfully compiled and built, you can modify the sample
code to work with your application.

Note: This procedure assumes that you have successfully installed Borland C++ 5.02 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_PLX.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. When you unzip the file, you will find the
sample code files in \ADM_TOOL_PLX\SAMPLES\.

Building an Existing Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, then click Project  Open Project from the Main
Menu.

2 From the Directories field, navigate to the directory that contains the project
(C:\adm\sample).

3 In the File Name field, click on the project name (adm.ide).
4 Click OK. The Project window appears:

ProLinx ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module Developer's Guide

Page 24 of 161 ProSoft Technology, Inc.
February 20, 2013

5 Click Project  Build All from the Main Menu to create the .exe file. The
Building ADM window appears when complete:

6 When Success appears in the Status field, click OK.

The executable file will be located in the directory listed in the Final field of
the Output Directories (that is, C:\adm\sample). The Project Options window
can be accessed by clicking Options  Project Menu from the Main Menu.

Setting Up Your Development Environment ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 25 of 161
February 20, 2013

Creating a New Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click File  Project from the Main Menu.

2 Type in the Project Path and Name. The Target Name is created
automatically.

3 In the Target Type field, choose Application (.exe).
4 In the Platform field, choose DOS (Standard).
5 In the Target Model field, choose Large.
6 Ensure that Emulation is checked in the Math Support field.
7 Click OK. A Project window appears:

ProLinx ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module Developer's Guide

Page 26 of 161 ProSoft Technology, Inc.
February 20, 2013

8 Click on the .cpp file created and press the Delete key. Click Yes to delete
the .cpp file.

9 Right click on the .exe file listed in the Project window and choose the Add
Node menu selection. The following window appears:

10 Click source file, then click Open to add source file to the project. Repeat this
step for all source files needed for the project.

11 Repeat the same procedure for all library files (.lib) needed for the project.
12 Choose Libraries (*.lib) from the Files of Type field to view all library files:

Setting Up Your Development Environment ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 27 of 161
February 20, 2013

13 The Project window should now contain all the necessary source and library
files as shown in the following window:

14 Click Options  Project from the Main Menu.

ProLinx ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module Developer's Guide

Page 28 of 161 ProSoft Technology, Inc.
February 20, 2013

15 Click Directories from the Topics field and fill in directory information as
required by your project’s directory structure.

16 Double-click on the Compiler header in the Topics field, and choose the
Processor selection. Confirm that the settings match those shown in the
following screen:

Setting Up Your Development Environment ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 29 of 161
February 20, 2013

17 Click Memory Model from the Topics field and ensure that the options match
those shown in the following screen:

18 Click OK.

19 Click Project  Build All from the Main Menu.
20 When complete, the Success window appears:

21 Click OK. The executable file will be located in the directory listed in the Final
box of the Output Directories (that is, C:\adm\sample). The Project Options

window can be accessed by clicking Options  Project from the Main
Menu.

ProLinx ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module Developer's Guide

Page 30 of 161 ProSoft Technology, Inc.
February 20, 2013

3.2 Downloading Files to the Module

1 Connect your PC’s COM port to the ProLinx Configuration/Debug port using
the Null Modem cable and ProLinx Adapter cable.

2 From the Start Menu on your PC, select Programs  Accessories 

Communications  HyperTerminal. The New Connection Screen appears:

3 Enter a name and choose OK. The Connect To window appears:

Setting Up Your Development Environment ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 31 of 161
February 20, 2013

4 Choose the COM port that your ProLinx module is connected to and choose
OK. The COM1 Properties window appears.

5 Ensure that the settings shown on this screen match those on your PC.
6 Click OK. The HyperTerminal window appears with a DOS prompt and

blinking cursor.
7 Apply power to the ProLinx module and hold down the [L] key. The screen

displays information and ultimately displays the Loader menu:

ProLinx ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module Developer's Guide

Page 32 of 161 ProSoft Technology, Inc.
February 20, 2013

This menu provides options that allow you to download a configuration file [C], a
WATTCP file [W], or a new executable file [U]. You can also press [V] to view
module version information.

1 Type [U] at the prompt to transfer executable files from the computer to the
ProLinx unit.

2 Type [Y] when the program asks if you want to load an .exe file.

3 From the HyperTerminal menu, select Transfer Send.

4 When the Send To screen appears, browse for the executable file to send to
the module. Be sure to select Y Modem in the Protocol field.

5 Click Send. The program loads the new executable file to the ProLinx
module. When the download is complete, the program returns to the Loader
menu.

If you want to load a new configuration file or a WATTCP file, select the
appropriate option and perform the same steps to download these files.

6 Press [Esc], then [Y] to confirm module reboot.

Programming the Module ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 33 of 161
February 20, 2013

4 Programming the Module

In This Chapter

 Hardware Specifications and Equipment Ratings 33

 Debugging Strategies .. 34

 RS-485 Programming Note ... 34

This section describes how to get your application running on the ProLinx
module. Once an application has been developed using the serial API, it must be
downloaded to the ProLinx module in order to run. The application may then be
run manually from the console command line, or automatically on boot from the
AUTOEXEC.BAT or CONFIG.SYS files.

4.1 Hardware Specifications and Equipment Ratings

Type Specifications

Serial Ports

Serial Port Cable

(DB-9M Connector)

A mini-DIN to DB-9M cable is included with the unit

Debug RS-232/422/485 - jumper selectable

DB-9M connector

No hardware handshaking

Serial Port Isolation 2500V RMS port-to-port isolation per UL 1577.

3000V DC min. port to ground and port to logic power isolation.

Serial Port Protection RS-485/422 port interface lines TVS diode protected at +/- 27V
standoff voltage.

RS-232 port interface lines fault protected to +/- 36V power on, +/-
40V power off.

General Signal Connections For highest EMI/RFI immunity, signal connections shall use the
interconnect cable as specified by the protocol in use. Interconnect
cable shields shall be connected to earth ground.

Example Interconnect Cable
Types

Rockwell Automation RIO and DH+ protocols use Belden 9463
type shielded cable or equivalent. Schneider Electric Modbus Plus
protocol uses Belden 9841 type shielded cable or equivalent.

Power

External Power Supply Voltage: 24 VDC nominal, 18 to 32 VDC allowed

Supply Current: 500 mA (max. at 24 VDC)

Center terminal shall be connected to earth ground.

Power Connector +/-/GND screw connectors, rated for 24 AWG to 14 AWG tinned
copper, stranded, insulated wire.

Use 2.5 mm screwdriver blade.

ProLinx ADM ♦ 'C' Programmable Programming the Module
Application Development Module Developer's Guide

Page 34 of 161 ProSoft Technology, Inc.
February 20, 2013

Environmental

Operating Temperature -20 to 60 C (-4 to 140 F)

Storage Temperature -40 to 85 C (-40 to 185 F)

Relative Humidity 5% to 95% (non-condensing)

Shock (Unpackaged) Operational - Pending testing

Non-operational - Pending testing

Vibration (Unpackaged) Pending testing

Dimensions 3.71H x 6.06 W x 4.70 D inches

94.2 H x 153.9 W x 119.3 D mm

Weight (max.) Pending

Altitude Shipping and storage: up to 3000 m (9843 Feet). Operation: up to
2000 m (6562 Feet).

Corrosion Immunity Rated in accordance with IEC 68.

Pollution Degree Rated to pollution degree 2. Equipment may be exposed to non-
conductive pollution. Occasional conductivity due to condensation
may occur. Equipment may not function properly until condensation
evaporates.

Overvoltage Category Rated to over voltage category I. Reverse polarity, improper lead
connection, and/or voltages outside of the range of 18 VDC to 36
VDC applied to the power connector may damage the equipment.

4.2 Debugging Strategies

For simple debugging, printf’s may be inserted into the module application to
display debugging information on the console connected to PRT1.

4.3 RS-485 Programming Note

4.3.1 Hardware

The serial port has two driver chips, one for RS-232 and one for RS-422/485.
The Request To Send (RTS) line is used for hardware handshaking in RS-232
and to control the transmitter in RS-422/485.

In RS-485, only one node can transmit at a time. All nodes should default to
listening (RTS off) unless transmitting. If a node has its RTS line asserted, then
all other communication is blocked. An analogy for this is a 2-way radio system
where only one person can speak at a time. If someone holds the talk button,
then they cannot hear others transmitting.

Programming the Module ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 35 of 161
February 20, 2013

In order to have orderly communication, a node must make sure no other nodes
are transmitting before beginning a transmission. The node needing to transmit
will assert the RTS line then transmit the message. The RTS line must be de-
asserted as soon as the last character is transmitted. Turning RTS on late or off
early will cause the beginning or end of the message to be clipped resulting in a
communication error. In some applications it may be necessary to delay between
RTS transitions and the message. In this case RTS would be asserted, wait for
delay time, transmit message, wait for delay time, and de-assert RTS.

RS-485 Transmit / Receive

Unit A

Unit B

Unit B

Unit A

RTS

Transmit

Data

RTS

Transmit

Data

RTS On RTS Off

Optional

RTS On

Delay

Optional

RTS Off

Delay

4.3.2 Software

The following is a code sample designed to illustrate the steps required to
transmit in RS-485. Depending on the application, it may be necessary to handle
other processes during this transmit sequence and to not block. This is simplified
to demonstrate the steps required.

int length = 10; // send 10 characters

int CharsLeft;

BYTE buffer[10];

// Set RTS on

MVIsp_SetRTS(COM2, ON);

// Optional delay here (depends on application)

// Transmit message

MVIsp_PutData(COM2, buffer, &length, TIMEOUT_ASAP);

// Check to see that message is done

MVIsp_GetCountUnsent(COM2, &CharsLeft);

// Keep checking until all characters sent

while(CharsLeft)

{

MVIsp_GetCountUnsent(COM2, &CharsLeft);

}

// Optional delay here (depends on application)

// Set RTS off

MVIsp_SetRTS(COM2, OFF);

ProLinx ADM ♦ 'C' Programmable Programming the Module
Application Development Module Developer's Guide

Page 36 of 161 ProSoft Technology, Inc.
February 20, 2013

Understanding the ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 37 of 161
February 20, 2013

5 Understanding the ADM API

In This Chapter

 API Libraries .. 37

 Development Tools ... 38

 Theory of Operation .. 39

 ADM Functional Blocks ... 39

 Example Code Files .. 41

 ADM API Files ... 42

 Serial API Files .. 46

The ADM API Suite allows software developers to access the serial ports without
needing detailed knowledge of the module’s hardware design. The ADM API
Suite consists of two distinct components: the Serial Port API and the ADM API.

Applications for the ADM module may be developed using industry-standard
DOS programming tools and the appropriate API components.

This section provides general information pertaining to application development
for the ProLinx ADM module.

5.1 API Libraries

Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars C++ or Borland development
tools.

Note: The following compiler versions are intended to be compatible with the PLX module API:
Digital Mars C++ 8.49
Borland C++ V5.02
More compilers will be added to the list as the API is tested for compatibility with them.

5.1.1 Calling Convention

The API library functions are specified using the 'C' programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

ProLinx ADM ♦ 'C' Programmable Understanding the ADM API
Application Development Module Developer's Guide

Page 38 of 161 ProSoft Technology, Inc.
February 20, 2013

5.1.2 Header File

A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard 'C' format.

5.1.3 Sample Code

A sample application is provided to illustrate the usage of the API functions. Full
source for the sample application is provided. The sample application may be
compiled using Borland C++.

5.1.4 Multithreading Considerations

The DOS 6-XL operating system supports the development of multi-threaded
applications.

Note: The multi-threading library kernel.lib in the DOS folder on the distribution CD-ROM is
compiler-specific to Borland C++ 5.02. It is not compatible with Digital Mars C++ 8.49. ProSoft
Technology, Inc. does not support multi-threading with Digital Mars C++ 8.49.

Note: The ADM DOS 6-XL operating system has a system tick of 5 milliseconds. Therefore, thread
scheduling and timer servicing occur at 5ms intervals. Refer to the DOS 6-XL Developer’s Guide
on the distribution CD-ROM for more information.

Multi-threading is also supported by the API.

 DOS libraries have been tested and are thread-safe for use in multi-threaded
applications.

 MVIsp libraries are safe to use in multi-threaded applications with the
following precautions: If you call the same MVIsp function from multiple
threads, you will need to protect it, to prevent task switches during the
function's execution. The same is true for different MVIsp functions that share
the same resources (for example, two different functions that access the
same read or write buffer).

WARNING: ADM and ADMNET libraries are not thread-safe. ProSoft Technology, Inc. does not
support the use of ADM and ADMNET libraries in multi-threaded applications.

5.2 Development Tools

An application that is developed for the ProLinx ADM module must be stored on
the module’s Flash ROM disk to be executed. A loader program is provided with
the module, to download an executable, configuration file or wattcp.cfg file via
module port 0, as needed.

Understanding the ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 39 of 161
February 20, 2013

5.3 Theory of Operation

5.3.1 ADM API

The ADM API is one component of the ADM API Suite. The ADM API provides a
simple module level interface that is portable between members of the ProLinx
Family. This is useful when developing an application that implements a serial
protocol for a particular device, such as a scale or bar code reader. After an
application has been developed, it can be used on any of the ProLinx family
modules.

5.3.2 ADM API Architecture

The ADM API is composed of a statically-linked library (called the ADM library).
Applications using the ADM API must be linked with the ADM library. The ADM
API encapsulates the hardware making it possible to design ProLinx applications
that can be run on any of the ProLinx family of modules.

The following illustration shows the relationship between the API components.

Application

SP API

HARDWARE

5.4 ADM Functional Blocks

5.4.1 Database

The database functions of the ADM API allow the creation of a database in
memory to store data to be accessed via the backplane interface and the
application ports. The database consists of word registers that can be accessed
as bits, bytes, words, longs, floats or doubles. Functions are provided for reading
and writing the data in the various data types. The database serves as a holding
area for exchanging data with the processor on the backplane, and with a foreign
device attached to the application port. Data transferred into the module from the
processor can be requested via the serial port. Conversely data written into the
module database by the foreign device can be transferred to the processor over
the backplane.

ProLinx ADM ♦ 'C' Programmable Understanding the ADM API
Application Development Module Developer's Guide

Page 40 of 161 ProSoft Technology, Inc.
February 20, 2013

5.4.2 Serial Communications

The developer must provide the serial communication driver code. The serial API
has many useful functions to facilitate writing a driver. A sample communication
driver is included in the example program provided.

5.4.3 Main_app.c

The application starts by opening the ADM API, initializing variables, structure
members and pointers to structures. Next the database is created and initialized

to 0. startup() is called. The function startup(), loads the module configuration,
initializes the com. ports and finishes by showing the application version
information. Now the main loop is entered. The processing that occurs in the loop
cycles through the com. driver, and the debug menu logic. If the application is
quit by the user, shutdown() is called. The function shutdown() closes the com.
ports, closes the backplane driver, closes the database and closes the ADM API.

5.4.4 Debugprt.c

The debug port code shows how a sub-menu can be added to the main menu.

When "X" (Auxiliary menu) is selected, the function pointed to by user_menu_ptr

in the interface structure: that is, interface.user_menu_ptr = DebugMenu;. The

function name is DebugMenu() but it can be named anything the developer

wishes. Code can be added for additional menu items within DebugMenu() by
adding additional case statements. It is recommended that if long strings must be
sent to the debug port, that the output buffering is used. An example of this is the

"?" case. The string is placed into the buffer (interface_ptr->buff) using

sprintf. interface_ptr->buff_ch is the pointer to the first character of the string

and should be set to 0. interface_ptr->buff_len must be set to the number of
characters placed into the buffer. The writing of the characters is handled when

ADM_ProcessDebug() is called.

Example

sprintf(interface_ptr->buff,"\nAUXILLIARY MENU\n\

 ?=Display Menu\n\

 1=Selection 1\n\

 2=Selection 2\n\

 M=Main Menu\n\n");

 interface_ptr->buff_ch = 0;

 interface_ptr->buff_len = strlen(interface_ptr->buff);

5.4.5 Mvicfg.c

The configuration section of the example code is intended to qualify the module
configuration after it is transferred to the module. The logic must be modified to
match any changes to the configuration data structure.

Understanding the ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 41 of 161
February 20, 2013

5.4.6 Commdrv.c

The communication driver is intended to demonstrate how a simple driver might
be written. The driver is an ASCII slave that echoes the characters it receives
back to the host. The end of a new string is detected when an LF is received.
The communication driver is called for each application port on the module. The
following illustration shows information on the communication driver state
machine.

The state machine is entered at state -1. It waits there until data is detected in
the receive buffer. When data is present, the state machine advances to state 1.
It will remain in state 1 receiving data from the buffer until a line feed (LF) is
found. At this time the state advances to 2. The string will be saved to the
database and the state changes to 2000. State 2000 contains a sub-state
machine for handling the sending of the response. State 2000:2 sets RTS on.
The state now changes to 2000:3. The driver now waits for the RTS timeout
period to expire. When it does it checks for CTS to be asserted. If CTS detection
is disabled or CTS is detected, RTS is set to off (CTS enabled only) and the state
advances to 2000:4. Otherwise it is an error and RTS is set to off and returns to
state -1. The response is now placed in the transmit buffer. The state is
advanced to 2000:5 where it waits for the response to be sent. If the response
times out, RTS is set to off and the state returns to -1. If the response is sent
before timeout, the state changes to 2000:6 where it waits for the RTS timer to
expire. When the timer expires, RTS is set to off and the state returns to -1 where
it is ready for the next packet.

5.5 Example Code Files

The source files containing the example program are provided with the ProLinx
ADM module. They are also available on our web site at
www.prosoft-technology.com.

The source files included are:

File Name Description

Main_plx.c application main program

Commdrv.c communication driver

Debugplx.c debug port user menu

Plxcfg.c module configuration

Main_plx.h application header file

Adm.ide project file for Borland C++ V5.2

The configuration files included are:

File Name Description

ADM.cfg Configuration file

ProLinx ADM ♦ 'C' Programmable Understanding the ADM API
Application Development Module Developer's Guide

Page 42 of 161 ProSoft Technology, Inc.
February 20, 2013

5.6 ADM API Files

Table 1 lists the supplied API file names. These files should be copied to a
convenient directory on the computer where the application is to be developed.
These files need not be present on the module when executing the application.

File Name Description

admapi.h Include file

admapi.lib Library (16-bit OMF format)

5.6.1 ADM Interface Structure

The ADM interface structure functions as a data exchange between the ADM API
and user developed code. Pointers to structures are used so the API can access
structures created and named by the developer. This allows the developer
flexibility in function naming. The ADM API requires the interface structure and
the structures referenced by it. The interface structure also contains pointers to
functions. These functions allow the developer to insert code into some of the
ADM functions. The functions are required, but they can be empty. Refer to the
example code section for examples of the functions. It is the developer's
responsibility to declare and initialize these structures.

The interface structure is as follows:

typedef struct

{

ADM_BT_DATA *adm_bt_data_ptr; /* pointer to struct holding ADM_BT_DATA */

ADM_BLK_ERRORS *adm_bt_err_ptr; /* pointer to struct holding ADM_BT_DATA */

ADM_PORT *adm_port_ptr[4]; /* pointer to struct holding ADM_PORT */

ADM_MODULE *adm_module_ptr; /* pointer to struct holding ADM_MODULE */

ADM_PORT_ERRORS *adm_port_errors_ptr[4]; /* pointer to struct holding ADM PORT */

 /* ERRORS */

ADM_PRODUCT *adm_product_ptr; /* pointer to struct holding ADM_PRODUCT */

int (*startup_ptr)(void); /* pointer to function for startup code */

int (*shutdown_ptr)(void); /* pointer to function for shutdown code */

int (*user_menu_ptr)(void); /* pointer to function for additional menu code */

void (*version_ptr)(void); /* pointer to function for version information */

void (*process_cfg_ptr)(void); /* pointer to function for checking configuration */

int (*ctrl_data_block_ptr)(unsigned short); /* pointer to function for checking */

 /* configuration */

unsigned short pass_cnt;

short debug_mode;

char buff[2000]; /* data area used to hold message */

int buff_len; /* number of characters to print */

int buff_ch; /* index of character to print */

MVIHANDLE handle; /* backplane handle */

HANDLE sc_handle; /* side-connect handle */

int ModCfgErr;

int Apperr;

 unsigned short cfg_file; /* side-connect usage */

}ADM_INTERFACE;

The following structures are referenced by the interface structure:

Understanding the ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 43 of 161
February 20, 2013

The structure ADM_PRODUCT contains the product name abbreviation and
version information.

typedef struct

{

 char ProdName[5]; /* Product Name */

 char Rev[5]; /* Revision */

 char Op[5]; /* Month/Year */

 char Run[5]; /* Day/Run */

}ADM_PRODUCT;

ProLinx ADM ♦ 'C' Programmable Understanding the ADM API
Application Development Module Developer's Guide

Page 44 of 161 ProSoft Technology, Inc.
February 20, 2013

The structure ADM_BT_DATA contains the backplane transfer configuration
settings and status counters. This structure is not used in the ProLinx

typedef struct

{

 short rd_start;

 short rd_count;

 short rd_blk_max;

 short wr_start;

 short wr_count;

 short wr_blk_max;

 WORD bt_fail_cnt; /* number of successive failures before comm SD */

 WORD bt_fail_cntr; /* current number of failures */

 WORD bt_failed; /* comm SD status */

 short rd_blk;

 short rd_blk_last;

 short wr_blk;

 short wr_blk_last;

 unsigned short buff[130]; /*only require a single buffer because only 1 op */

 /*at a time

 WORD wrbuff[258];

 WORD rdbuff[248];

 WORD cbuff[3000];

 short bt_size;

}ADM_BT_DATA;

The structure ADM_BLK_ERRORS contains the backplane transfer status
counters. This structure is not used in the ProLinx.

typedef struct

{

 WORD rd; /* blocks read */

 WORD wr; /* blocks written */

 WORD parse; /* blocks parsed */

 WORD event; /* reserved */

 WORD cmd; /* reserved */

 WORD err; /* block transfer errors */

}ADM_BLK_ERRORS;

The structure ADM_PORT contains the application port configuration and status
variables.

typedef struct

{

 char enabled; /* Y=Yes, N=No */

 unsigned short baud; /* port baud rate */

 short parity; /* port parity */

 short databits; /* number of data bits per character */

 short stopbits; /* number of stop bits */

 unsigned short MinDelay; /* minimum response delay */

 unsigned short RTS_On; /* RTS delay before assertion */

 unsigned short RTS_Off; /* RTS delay before de-assertion */

 char CTS; /* Y=Yes, N=No */

 short state; /* state of comm. Message state machine */

 int len; /* length of data in buffer */

 int expLen; /* expected length of message */

 unsigned long timeout; /* timeout for message */

 int ComState; /* State of serial communication */

Understanding the ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 45 of 161
February 20, 2013

 int RTULen; /* reserved */

 unsigned short tm; /* timing variable; used for current time */

 unsigned short tmlast; /* time of previous time check */

 long tmout; /* timeout time variable */

 long tmdiff; /* holds tm - tmlast */

 unsigned short CurErr; /* current comm. error */

 unsigned short LastErr; /* previous comm. error */

 unsigned short CfgErr; /* port configuration error */

 unsigned short buff_ptr; /* pointer to current location in buff */

 char buff[600]; /* buffer for holding comm. packets */

 unsigned char SendBuff[1000]; /* reserved */

 unsigned char RecBuff[1000]; /* reserved */

}ADM_PORT;

The structure ADM_MODULE contains the module database configuration
variables.

typedef struct

{

 char name[81]; /* module name */

 short max_regs; /* number of database registers */

 short err_offset; /* address of status table in database */

 unsigned short err_freq; /* status table update time in ms */

 short rd_start; /* read block start address*/

 short rd_count; /* read block register count */

 short rd_blk_max; /* maximum number of read blocks */

 short wr_start; /* write block starting address */

 short wr_count; /* write block register count */

 short wr_blk_max; /* maximum number of write blocks */

 short bt_fail_cnt; /* number of backplane transfer failures */

 /* before ending communications (not used)*/

}ADM_MODULE;

The structure ADM_PORT_ERRORS contains the application port
communication status variables.

typedef struct

{

 WORD CmdList; /* Total number of command list requests */

 WORD CmdListResponses; /* Total number of command list responses */

 WORD CmdListErrors; /* Total number of command list errors */

 WORD Requests; /* Total number of requests of slave */

 WORD Responses; /* Total number of responses */

 WORD ErrSent; /* Total number of errors sent */

 WORD ErrRec; /* Total number of errors received */

}ADM_PORT_ERRORS;

The following are the prototypes for the referenced functions:

extern int (*startup_ptr)(void); /* pointer to function for startup code */

extern int (*shutdown_ptr)(void); /* pointer to function for shutdown code */

extern int (*user_menu_ptr)(void); /* pointer to function for additional */

 /* menu code */

extern void (*version_ptr)(void); /* pointer to function for version */

 /* information */

extern void (*process_cfg_ptr)(void); /* pointer to function for checking */

 /* configuration */

extern int (*ctrl_data_block_ptr)(unsigned short); /* pointer to function for */

 /* checking configuration */

ProLinx ADM ♦ 'C' Programmable Understanding the ADM API
Application Development Module Developer's Guide

Page 46 of 161 ProSoft Technology, Inc.
February 20, 2013

The following is an example excerpted from the sample code of how the pointers
to functions can be initialized:

 interface.startup_ptr = startup;

 interface.shutdown_ptr = shutdown;

 interface.version_ptr = ShowVersion;

 interface.user_menu_ptr = DebugMenu;

 interface.process_cfg_ptr = NULL;

 interface.ctrl_data_block_ptr = NULL;

5.7 Serial API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

Filename Description

Mvispapi.h Include file

Mvispapi.lib Library (16-bit OMF format)

5.7.1 Serial API Architecture

The serial API communicates with foreign serial devices via industry standard
UART hardware.

The API acts as a high level interface that hides the hardware details from the
application programmer. The primary purpose of the API is to allow data to be
transferred between the module and a foreign device. Because each foreign
device is different, the communications protocol used to transfer data must be
device specific. The application must be programmed to implement the specific
protocol of the device, and the data can then be processed by the application
and transferred to the control processor.

Note: Care must be taken if using DEBUG port (COM1) when the console is enabled. If the
console is enabled, the serial API will not be able to change the baud rate on Debug port. In
addition, console functions such as keyboard input may not behave properly while the serial API
has control of the DEBUG port. In general, this situation should be avoided by disabling the
console when using PRT1 with the serial API.

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 47 of 161
February 20, 2013

6 Application Development Function Library -
ADM API

In This Chapter

 ADM API Functions ... 47

 Core Functions .. 50

 ADM API Initialization Functions ... 61

 ADM API Debug Port Functions .. 63

 ADM API Database Functions ... 70

 ADM API Clock Functions ... 105

 ADM LED Functions .. 107

 ADM API Miscellaneous Functions ... 108

6.1 ADM API Functions

This section provides detailed programming information for each of the ADM API
library functions. The calling convention for each API function is shown in 'C'
format.

API library routines are categorized according to functionality.

Function Category Function Name Description

Initialization ADM_Open Initialize access to the API

 ADMClose Terminate access to the API

Debug Port ADM_ProcessDebug Debug port user interface

 ADM_DAWriteSendCtl Writes a data analyzer Tx control
symbol

 ADM_DAWriteRecvCtl Writes a data analyzer Rx control
symbol

 ADM_DAWriteSendData Writes a data analyzer Tx data byte

 ADM_DAWriteRecvData Writes a data analyzer Rx data byte

 ADM_ConPrint Outputs characters to Debug port

 ADM_CheckDBPort Checks for character input on Debug
port

Database ADM_DBOpen Initializes database

 ADM_DBClose Closes database

 ADM_DBZero Zeros database

 ADM_DBGetBit Read a bit from the database

 ADM_DBSetBit Write a 1 to a bit to the database

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 48 of 161 ProSoft Technology, Inc.
February 20, 2013

Function Category Function Name Description

 ADM_DBClearBit Write a 0 to a bit to the database

 ADM_DBGetByte Read a byte from the database

 ADM_DBSetByte Write a byte to the database

 ADM_DBGetWord Read a word from the database

 ADM_DBSetWord Write a word to the database

 ADM_DBGetLong Read a double word from the database

 ADM_DBSetLong Write a double word to the database

 ADM_DBGetFloat Read a floating-point number from the
database

 ADM_DBSetFloat Write a floating-point number to the
database

 ADM_DBGetDFloat Read a double floating-point number
from the database

 ADM_DBSetDFloat Write a double floating-point number to
the database

 ADM_DBGetBuff Reads a character buffer from the
database

 ADM_DBSetBuff Writes a character buffer to the
database

 ADM_DBGetRegs Read multiple word registers from the
database

 ADM_DBSetRegs Write multiple word registers to the
database

 ADM_DBGetString Read a string from the database

 ADM_DBSetString Write a string to the database

 ADM_DBSwapWord Swaps bytes within a word in the
database

 ADM_DBSwapDWord Swaps bytes within a double word in
the database

 ADM_GetDBCptr Get a pointer to a character in the
database

 ADM_GetDBIptr Get a pointer to a word in the database

 ADM_GetDBInt Returns an integer from the database

 ADM_DBChanged Tests a database register for a change

 ADM_DBBitChanged Tests a database bit for a change

 ADM_DBOR_Byte Inclusive OR a byte with a database
byte

 ADM_DBNOR_Byte Inclusive NOR a byte with a database
byte

 ADM_DBAND_Byte AND a byte with a database byte

 ADM_DBNAND_Byte NAND a byte with a database byte

 ADM_DBXOR_Byte Exclusive OR a byte with a database
byte

 ADM_DBXNOR_Byte Exclusive NOR a byte with a database
byte

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 49 of 161
February 20, 2013

Function Category Function Name Description

Timer ADM_StartTimer Initialize a timer

 ADM_CheckTimer Check current timer value

LED ADM_SetLed Turn user LED indicators on or off

Miscellaneous ADM_GetVersionInfo Get the ADM API version information

 ADM_SetConsolePort Enable the console on a port

 ADM_SetConsoleSpeed Set the console port baud rate

RAM ADM_EEPROM_ReadConfiguration Read configuration file.

 ADM_RAM_Find_Section Find section in the configuration file.

 ADM_RAM_GetString Get String under topic name.

 ADM_RAM_GetInt Get Integer under topic name.

 ADM_RAM_GetLong Get Long under topic name.

 ADM_RAM_GetFloat Get Float under topic name.

 ADM_RAM_GetDouble Get Double under topic name.

 ADM_RAM_GetChar Get Char under topic name.

Core Functions ADM_Open Opens the API and enables the other
functions to be used

 ADM_InstallDatabase Creates the database area for the
protocols to pass data to one another

 ADM_RegisterProtocol Registers and installs an ADM driver
on the Com port

 ADM_RegisterUserFunc Registers a user process in the
application. This function could also be
used to register the ADMNET function.

 ADM_RegisterMNET Registers a Modbus TCP/IP driver on a
particular port

 ADM_ProtocolConfigInfo Displays port configuration according
to port number

 ADM_Startup Performs the module startup process

 ADM_Run Performs the module run process

 ADM_Shutdown Performs the module shutdown
process

New Functions ADM_PLX_ReadConfiguration Reads the contents of the ProLinx.cfg
file into the character array for parsing

 ADM_PLX_FindSection Searches the configuration file for the
sub section specified

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 50 of 161 ProSoft Technology, Inc.
February 20, 2013

6.2 Core Functions

ADM_Open

Syntax

ADMAPIENTRY ADM_Open(void);

Parameters

None

Description

This function opens the ADM API. This function must be called before any of the
other API functions can be used.

Important: After the API has been opened, ADM_Shutdown should always be called before exiting
the application.

Return Value

ADM_SUCCESS API was opened successfully

ADM_ERR_REOPEN API is already open

ADM_ERR_NOACCESS API cannot run on this hardware

Note: ADM_ERR_NOACCESS will be returned if the hardware is not from ProSoft Technology.

Example

/* open ADM API */

if(ADM_Open() != ADM_SUCCESS)

{

 printf("\nFailed to open ADM API... exiting program\n");

 exit(1);

}

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 51 of 161
February 20, 2013

ADM_InstallDatabase

Syntax

ADMAPIENTRYW ADM_InstallDatabase(unsigned int size);

Parameters

size Size of database in 16-bit registers

Description

Return Value

ADM_SUCCESS Database was installed successfully

ADM_ERR_DB_MAX_SIZE Database maximum size exceeded

ADM_ERR_MEMORY Insufficient memory for database

ADM_ERR_REOPEN Database is already installed

ADM_ERR_NOACCESS API is not open

ADM_ERR_BADPARAM Size is less than 1000 or greater than 10000

Example

ADM_InstallDatabase(4000); // Install database of 4000 registers

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 52 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_RegisterProtocol

Syntax

ADMAPIENTRYW ADM_RegisterProtocol(int port, void (*startup_func)(), void

(*run_func)(), void (*shutdown_func)() , int (*debug_func)());

Parameters

port Com port to use (0 to 3)

startup_func Pointer to user startup function

run_func Pointer to user run function

shutdown Pointer to user shutdown function

debug_func Pointer to user debug function

Description

This function registers and installs an ADM driver on the Com port. This function
must be called in order to use the ADM port driver. A pointer to a startup, run and
shutdown function must be provided. These functions will be called by the
system at various times. The startup function will be called once during the boot
process. When the module enters the run loop the run function will be called
once per loop. When shutdown of the module is requested the shutdown function
will be called once.

Note: The run function should be written to be non-blocking to ensure timely processing of all the
drivers.

Return Value

ADM_SUCCESS ADM driver was installed successfully

ADM_ERR_REOPEN ADM driver is already installed

ADM_ERR_NOACCESS API is not open

ADM_ERR_BADPARAM Com port specified is out of range

Example

/* Set port 0 as an ADM port */

ADM_RegisterProtocol(0,

ADM_Protocol_Startup0,

ADM_Protocol_Run_Talker,

ADM_Protocol_Shutdown0,

ADM_Protocol_Debug0);

/* startup function for port 0 */

void ADM_Protocol_Startup0(void)

{

 printf("ADM Startup0\n");

 ADM_FlushTransmitBuffer(0);

 // if clock handle does not exist get handle

 if(CountTimer == -1)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 53 of 161
February 20, 2013

 CountTimer = ADM_ClockGetHandle();

 /* start 1 second timer */

 ADM_ClockStart(CountTimer, 1000000L);

}

/* run function for port 0 */

void ADM_Protocol_Run_Talker(void)

{

 /* check timer */

 if(ADM_ClockCheck(CountTimer) == TRUE)

 return;

 /* re-start clock, 1 second */

 ADM_ClockStart(CountTimer, 1000000L);

 /* get counter from database */

 Counter = ADM_DBGetWord(COUNTER_OFFSET);

 /* increment count */

 Counter++;

 /* save new count to database */

 ADM_DBSetWord(COUNTER_OFFSET, Counter);

 /* get count from database and swap bytes */

 TxBuff[1] = ADM_DBGetByte(COUNTER_OFFSET*2);

 TxBuff[0] = ADM_DBGetByte((COUNTER_OFFSET*2)+1);

 /* send count message out of port */

 ADM_SendBytes(0, TxBuff, 2);

}

/* shutdown function for port 0 */

void ADM_Protocol_Shutdown0(void)

{

 printf("ADM Shutdown0\n");

}

int ADM_Protocol_Debug0(void)

{

 int port = 0;

 printf("test port %d\n\n", port);

 /* Get port configuration */

 ADM_ProtocolConfigInfo(port);

 return -1; // return to Main

}

Note: The pointers to the user functions are the names of the functions.

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 54 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_RegisterUserFunc

Syntax

ADMAPIENTRYW ADM_RegisterUserFunc(void (*startup_func)(), void (*run_func)(),

void(*shutdown_func)() , int (*debug_func)());

Parameters

startup_func Pointer to user startup function

run_func Pointer to user run function

shutdown Pointer to user shutdown function

debug_func Pointer to user debug function

Description

This function registers and installs a user process. This function is useful for
adding a user-defined process to the application. A pointer to a startup, run and
shutdown function must be provided. These functions will be called by the
system at various times. The startup function will be called once during the boot
process. When the module enters the run loop the run function will be called
once per loop. When shutdown of the module is requested the shutdown function
will be called once.

Note: The run function should be written to be non-blocking to ensure timely processing of all the
drivers.

ADM_SUCCESS ADM driver was installed successfully

ADM_ERR_NOACCESS API is not open

Example

void ADM_Protocol_Startup(void)

{

 /* initialize user function */

 ...

}

void ADM_Protocol_Run(void)

{

 /* run user function */

 ...

}

void ADM_Protocol_Shutdown(void)

{

 /* close user function */

...

}

int ADM_Protocol_Debug(void)

{

 /* print out debugging information */

...

}

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 55 of 161
February 20, 2013

...

ADM_RegisterUserFunc(

 ADM_Protocol_Startup,

 ADM_Protocol_Run,

 ADM_Protocol_Shutdown,

 ADM_Protocol_Debug);

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 56 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_RegisterMNET

Syntax:

int ADM_RegisterMNET(void);

Parameters:

none

Description:

Adds MNET (Modbus TCP/IP) protocol to a project

Return Value:

Return Value

ADM_SUCCESS ADM driver was installed successfully

ADM_ERR_REOPEN ADM driver is already installed

ADM_ERR_NOACCESS API is not open

ADM_ERR_BADPARAM Com port specified is out of range

Example:

ADM_RegisterMNET();

See Also:

ADM_RegisterProtocol (page 52)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 57 of 161
February 20, 2013

ADM_ProtocolConfigInfo

Syntax

ADMAPIENTRYV ADM_ProtocolConfigInfo(int port);

Parameters

comport port for which configuration information is requested

Description

This function displays port configuration according to port number.

Return Value

MVI_ERR_NOACCESS comport has not been opened

Example

 int port = 0;

 /* Get port configuration */

 printf("test port %d\n\n", port + 1);

 ADM_ProtocolConfigInfo(port);

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 58 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_Startup

Syntax

ADMAPIENTRYW ADM_Startup(void);

Parameters

None

Description

This function performs the module initialization. The protocol drivers must be
registered before the initialization is performed. During the initialization the
protocol drivers will be initialized and the database will be cleared.

Return Value

ADM_SUCCESS Initialization was performed

ADM_ERR_NOACCESS API is not open

Example

/* Initialize processes */

ADM_Startup();

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 59 of 161
February 20, 2013

ADM_Run

Syntax

ADMAPIENTRYW ADM_Run(void);

Parameters

None

Description

This function calls startup for all of the processes. The user startup function will
be called by this function. Once startup is complete, the processes will be run.
The user run function will be called repeatedly while the function is running.
When an ESC key is received over the Debug port, the processes will be
shutdown. The user shutdown function will be called at this time. The function will
then exit.

Return Value

ADM_SUCCESS Run was performed

ADM_ERR_NOACCESS API is not open

Example

/* Run protocol drivers */

ADM_Run();

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 60 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_Shutdown

Syntax

ADMAPIENTRYW ADM_Shutdown(void);

Parameters

None

Description

This function removes the protocol drivers and closes the database.

Return Value

ADM_SUCCESS Shutdown was performed

Example

ADM_Shutdown();

exit(0);

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 61 of 161
February 20, 2013

6.3 ADM API Initialization Functions

ADM_Open

Syntax

int ADM_Open(ADMHANDLE *adm_handle);

Parameters

adm_handle Pointer to variable of type ADMHANDLE

Description

ADM_Open acquires access to the ADM API and sets adm_handle to a unique
ID that the application uses in subsequent functions. This function must be called
before any of the other API functions can be used.

IMPORTANT: After the API has been opened, ADM_Close should always be called before exiting
the application.

Return Value

ADM_SUCCESS API was opened successfully

ADM_ERR_REOPEN API is already open

ADM_ERR_NOACCESS API cannot run on this hardware

Note: ADM_ERR_NOACCESS will be returned if the hardware is not from ProSoft Technology.

Example

ADMHANDLE adm_handle;

 if(ADM_Open(&adm_handle) != ADM_SUCCESS)

 {

 printf("\nFailed to open ADM API... exiting program\n");

 exit(1);

 }

See Also

ADM_Close (page 62)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 62 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_Close

Syntax

int ADM_Close(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function is used by an application to release control of the API. adm_handle
must be a valid handle returned from ADM_Open.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

ADM_SUCCESS API was closed successfully

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

 ADM_Close(adm_handle);

See Also

ADM_Open (page 61)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 63 of 161
February 20, 2013

6.4 ADM API Debug Port Functions

ADM_ProcessDebug

Syntax

int ADM_ProcessDebug(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function provides a module user interface using the debug port. adm_handle
must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access or user pressed ESC to exit

program

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_ProcessDebug(adm_handle, interface_ptr);

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 64 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DAWriteSendCtl

Syntax

int ADM_DAWriteSendCtl(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,

int app_port, int marker);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

marker Flow control symbol to output to the data analyzer screen

Description

This function may be used to send a transmit flow control symbol to the data
analyzer screen. The control symbol will appear between two angle brackets:
<R+>, <R->, <CS>.

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF <R->

RTSON <R+>

CTSRCV <CS>.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

MVI_ERR_BADPARAM Value of marker is not valid

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteSendCtl(adm_handle, interface_ptr, app_port, RTSON);

See Also

ADM_DAWriteRecvCtl (page 65)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 65 of 161
February 20, 2013

ADM_DAWriteRecvCtl

Syntax

int ADM_DAWriteRecvCtl(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,

int app_port, int marker);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

marker Flow control symbol to output to the data analyzer screen

Description

This function may be used to send a receive flow control symbol to the data
analyzer screen. The control symbol will appear between two square brackets:
[R+], [R-], [CS].

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF [R-]

RTSON [R+]

CTSRCV [CS]

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

MVI_ERR_BADPARAM Value of marker is not valid

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteRecvCtl(adm_handle, interface_ptr, app_port, RTSON);

See Also

ADM_DAWriteSendCtl (page 64)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 66 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DAWriteSendData

Syntax

int ADM_DAWriteSendData(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,

int app_port, int length, char *data_buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

length The number of data characters to send to the data analyzer

data_buff The buffer holding the transmit data

Description

This function may be used to send transmit data to the data analyzer screen. The
data will appear between two angle brackets: <data>.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_PORT ports[MAX_APP_PORTS];

Int app_port;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteSendData(adm_handle, interface_ptr, app_port, ports[app_port].len,

ports[app_port].buff);

See Also

ADM_DAWriteRecvData (page 67)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 67 of 161
February 20, 2013

ADM_DAWriteRecvData

Syntax

int ADM_DAWriteRecvData(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,

int app_port, int length, char *data_buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

length The number of data characters to send to the data analyzer

data_buff The buffer holding the receive data

Description

This function sends receive data to the data analyzer screen. The data will
appear between two square brackets: [data].

adm_handle must be a valid handle returned from ADM_Open.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_PORT ports[MAX_APP_PORTS];

Int app_port;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteRecvData(adm_handle, interface_ptr, app_port, ports[app_port].len,

ports[app_port].buff);

See Also

ADM_DAWriteSendData (page 66)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 68 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_ConPrint

Syntax

int ADM_ConPrint(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function outputs characters to the debug port. This function will buffer the
output and allow other functions to run. The buffer is serviced with each call to
ADM_ProcessDebug and can be serviced by the user's program. When sending
data to the debug port, if printf statements are used, other processes will be held
up until the printf function completes execution. Two variables in the interface
structure must be set when data is loaded. The first, buff_ch is the offset of the
next character to print. This should be set to 0. The second is buff_len. This
should be set to the length of the string placed in the buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_ERR_NOACCESS adm_handle does not have access

 Number of characters left in the buffer

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

sprintf(interface.buff,"MVI ADM\n");

 interface.buff_ch = 0;

 interface.buff_len = strlen(interface.buff);

/* write buffer to console */

 while(interface.buff_len)

 {

 interface.buff_len = ADM_ConPrint(adm_handle, interface_ptr);

 }

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 69 of 161
February 20, 2013

ADM_CheckDBPort

Syntax

int ADM_CheckDBPort(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

Use this function to check for input characters on the debug port. adm_handle
must be a valid handle returned from ADM_Open.

Return Value

ADM_ERR_NOACCESS adm_handle does not have access

Returns the character input to the debug port

Example

 int key;

 key = ADM_CheckDBPort(adm_handle);

 printf("key = %i\n", key);

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 70 of 161 ProSoft Technology, Inc.
February 20, 2013

6.5 ADM API Database Functions

ADM_DBOpen

Syntax

int ADM_DBOpen(ADMHANDLE adm_handle, unsigned short max_size)

Parameters

adm_handle Handle returned by previous call to ADM_Open

max_size Maximum number of words in the database

Description

This function creates a database in the RAM area of the PLX module.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_DB_MAX_SIZE max_size has exceeded the maximum allowed

ADM_ERR_REG_RANGE max_size requested was zero

ADM_ERR_OPEN Database already created

ADM_ERR_MEMORY Insufficient memory for database

Example

ADMHANDLE adm_handle;

if(ADM_DBOpen(adm_handle, ADM_MAX_DB_REGS) != ADM_SUCCESS)

 printf("Error setting up Database!\n");

See Also

ADM_DBClose (page 71)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 71 of 161
February 20, 2013

ADM_DBClose

Syntax

int ADM_DBClose(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function closes a database previously created by ADM_DBOpen.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_DBClose(adm_handle);

See Also

ADM_DBOpen (page 70)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 72 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBZero

Syntax

int ADM_DBZero(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function writes zeros to a database previously created by ADM_DBOpen.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

Example

ADMHANDLE adm_handle;

ADM_DBZero(adm_handle);

See Also

ADM_DBOpen (page 70)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 73 of 161
February 20, 2013

ADM_DBGetBit

Syntax

int ADM_DBGetBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function reads a bit from the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested bit

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

if(ADM_DBGetBit(adm_handle, offset))

 printf("bit is set");

else

 printf("bit is clear");

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 74 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBSetBit

Syntax

int ADM_DBSetBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function sets a bit to a 1 in the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBSetBit(adm_handle, offset);

See Also

ADM_DBClearBit (page 75)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 75 of 161
February 20, 2013

ADM_DBClearBit

Syntax

int ADM_DBClearBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function clears a bit to a 0 in the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBClearBit(adm_handle, offset);

See Also

ADM_DBSetBit (page 74)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 76 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBGetByte

Syntax

char ADM_DBGetByte(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

Description

This function reads a byte from the database at a specified byte offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested byte

Example

ADMHANDLE adm_handle;

unsigned short offset;

int i;

i = ADM_DBGetByte(adm_handle, offset);

See Also

ADM_DBSetByte (page 77)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 77 of 161
February 20, 2013

ADM_DBSetByte

Syntax

int ADM_DBSetByte(ADMHANDLE adm_handle, unsigned short offset, const char val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

val Value to be written to the database

Description

This function writes a byte to the database at a specified byte offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const char val;

ADM_DBSetByte(adm_handle, offset, val);

See Also

ADM_DBGetByte (page 76)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 78 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBGetWord

Syntax

int ADM_DBGetWord(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function reads a word from the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested word

Example

ADMHANDLE adm_handle;

unsigned short offset;

int i;

i = ADM_DBGetWord(adm_handle, offset);

See Also

ADM_DBSetWord (page 79)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 79 of 161
February 20, 2013

ADM_DBSetWord

Syntax

int ADM_DBSetWord(ADMHANDLE adm_handle, unsigned short offset, const short

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

val Value to be written to the database

Description

This function writes a word to the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const short val;

ADM_DBSetWord(adm_handle, offset, val);

See Also

ADM_DBGetWord (page 78)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 80 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBGetLong

Syntax

long ADM_DBGetLong(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Long int offset into database

Description

This function reads a long int from the database at a specified long int offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested long int

Example

ADMHANDLE adm_handle;

unsigned short offset;

long l;

l = ADM_DBGetLong(adm_handle, offset);

See Also

ADM_DBSetLong (page 81)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 81 of 161
February 20, 2013

ADM_DBSetLong

Syntax

int ADM_DBSetLong(ADMHANDLE adm_handle, unsigned short offset, const long val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Long int offset into database

val Value to be written to the database

Description

This function writes a long int to the database at a specified long int offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const long val;

ADM_DBSetLong(adm_handle, offset, val);

See Also

ADM_DBGetLong (page 80)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 82 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBGetFloat

Syntax

float ADM_DBGetFloat(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset float offset into database

Description

This function reads a floating-point number from the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested floating-point number.

Example

ADMHANDLE adm_handle;

unsigned short offset;

float f;

f = ADM_DBGetFloat(adm_handle, offset);

See Also

ADM_DBSetFloat (page 83)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 83 of 161
February 20, 2013

ADM_DBSetFloat

Syntax

int ADM_DBSetFloat(ADMHANDLE adm_handle, unsigned short offset, const float

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset float offset into database

val Value to be written to the database

Description

This function writes a floating-point number to the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const float val;

ADM_DBSetFloat(adm_handle, offset, val);

See Also

ADM_DBGetFloat (page 82)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 84 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBGetDFloat

Syntax

double ADM_DBGetDFloat(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset double float offset into database

Description

This function reads a double floating-point number from the database at a
specified double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested double floating-point number

Example

ADMHANDLE adm_handle;

unsigned short offset;

double d;

d = ADM_DBGetDFloat(adm_handle, offset);

See Also

ADM_DBSetDFloat (page 85)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 85 of 161
February 20, 2013

ADM_DBSetDFloat

Syntax

int ADM_DBSetDFloat(ADMHANDLE adm_handle, unsigned short offset, const double

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset double float offset into database

val Value to be written to the database

Description

This function writes a double floating-point number to the database at a specified
double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const double val;

ADM_DBSetDFloat(adm_handle, offset, val);

See Also

ADM_DBGetDFloat (page 84)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 86 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBGetBuff

Syntax

char * ADM_DBGetBuff(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short count, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of characters to retrieve

str String buffer to receive characters

Description

This function copies a buffer of characters in the database to a character buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short char_count;

char *string_buff;

ADM_DBGetBuff(adm_handle, offset, char_count, string_buff);

See Also

ADM_DBSetBuff (page 87)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 87 of 161
February 20, 2013

ADM_DBSetBuff

Syntax

int ADM_DBSetBuff(ADMHANDLE adm_handle, unsigned short offset, const unsigned

short count, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of characters to write

str String buffer to copy characters from

Description

This function copies a buffer of characters to the database.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

NULL adm_handle has no access, the database is not allocated, or count
+ offset is beyond the max size of the database

 Characters from buffer

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short char_count;

char *string_buff = "MVI ADM";

char_count = strlen(string_buff);

ADM_DBSetBuff(adm_handle, offset, char_count, string_buff);

See Also

ADM_DBGetBuff (page 86)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 88 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBGetRegs

Syntax

unsigned short * ADM_DBGetRegs(ADMHANDLE adm_handle, unsigned short offset,

const unsigned short count, unsigned short * buff)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of integers to retrieve

buff Register buffer to receive integers

Description

This function copies a buffer of registers in the database to a register buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns buff if successful.

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short reg_count;

unsigned short *reg_buff;

ADM_DBGetRegs(adm_handle, offset, reg_count, reg_buff);

See Also

ADM_DBSetRegs (page 89)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 89 of 161
February 20, 2013

ADM_DBSetRegs

Syntax

int ADM_DBSetRegs(ADMHANDLE adm_handle, unsigned short offset, const unsigned

short count, unsigned short * buff)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of integers to write

buff Register buffer from which integers are copied

Description

This function copies a buffer of registers to the database.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short reg_count;

unsigned short *reg_buff;

ADM_DBSetRegs(adm_handle, offset, reg_count, reg_buff);

See Also

ADM_DBGetRegs (page 88)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 90 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBGetString

Syntax

char * ADM_DBGetString(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short maxcount, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

maxcount Maximum number of characters to retrieve

str String buffer to receive characters

Description

This function copies a string from the database to a string buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns str if string is copy is successful.

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short maxcount;

char *string_buff;

ADM_DBGetString(adm_handle, offset, maxcount, str);

See Also

ADM_DBSetString (page 91)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 91 of 161
February 20, 2013

ADM_DBSetString

Syntax

int ADM_DBSetString(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short maxcount, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

maxcount Maximum number of characters to write

str String buffer to copy string from

Description

This function copies a string to the database from a string buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short maxcount;

char *string_buff;

ADM_DBSetString(adm_handle, offset, maxcount, str);

See Also

ADM_DBGetString (page 90)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 92 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBSetWord

Syntax

int ADM_DBSetWord(ADMHANDLE adm_handle, unsigned short offset, const short

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

val Value to be written to the database

Description

This function writes a word to the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const short val;

ADM_DBSetWord(adm_handle, offset, val);

See Also

ADM_DBGetWord (page 78)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 93 of 161
February 20, 2013

ADM_DBSwapDWord

Syntax

int ADM_DBSwapDWord(ADMHANDLE adm_handle, unsigned short offset, int type)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset long offset into database where swapping is to be performed

type If type = 3 then bytes will be swapped in pairs within the long.

Description

This function swaps bytes within a database long word.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBSwapDWord(adm_handle, offset, 3);

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 94 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_GetDBCptr

Syntax

char * ADM_GetDBCptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains a pointer to char corresponding to the database + offset
location. Because offset is a word offset, the pointer will always reference a
character on a word boundary.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns pointer to char if successful.

Example

ADMHANDLE adm_handle;

int offset;

char c;

c = *(ADM_GetDBCptr(adm_handle, offset));

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 95 of 161
February 20, 2013

ADM_GetDBIptr

Syntax

int * ADM_GetDBIptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains a pointer to int corresponding to the database + offset
location.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns pointer to int if successful.

Example

ADMHANDLE adm_handle;

int offset;

int i;

i = *(ADM_GetDBIptr(adm_handle, offset));

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 96 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_GetDBInt

Syntax

int ADM_GetDBIptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains an int corresponding to the database + offset location.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns 0 if not successful.

Returns int requested if successful.

Example

ADMHANDLE adm_handle;

int offset;

int i;

i = ADM_GetDBInt(adm_handle, offset);

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 97 of 161
February 20, 2013

ADM_DBChanged

Syntax

int ADM_DBChanged(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function checks to see if a register has changed since the last call to
ADM_DBChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

0 No change

1 Register has changed

Example

ADMHANDLE adm_handle;

int offset;

if(ADM_DBChanged(adm_handle, offset))

 printf("Data has changed");

else

 printf("Data is unchanged");

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 98 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBBitChanged

Syntax

int ADM_DBBitChanged(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function checks to see if a bit has changed since the last call to
ADM_DBBitChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

0 No change

1 Bit has changed

Example

ADMHANDLE adm_handle;

int offset;

if(ADM_DBBitChanged(adm_handle, offset))

 printf("Bit has changed");

else

 printf("Bit is unchanged");

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 99 of 161
February 20, 2013

ADM_DBOR_Byte

Syntax

int ADM_DBOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be ORed with the byte at offset

Description

This function ORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBOR_Byte(adm_handle, offset, bval);

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 100 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBNOR_Byte

Syntax

int ADM_DBNOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be NORed with the byte at offset

Description

This function NORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBNOR_Byte(adm_handle, offset, bval);

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 101 of 161
February 20, 2013

ADM_DBAND_Byte

Syntax

int ADM_DBAND_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be ANDed with the byte at offset

Description

This function ANDs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBAND_Byte(adm_handle, offset, bval);

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 102 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBNAND_Byte

Syntax

int ADM_DBNAND_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be NANDed with the byte at offset

Description

This function NANDs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBNAND_Byte(adm_handle, offset, bval);

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 103 of 161
February 20, 2013

ADM_DBXOR_Byte

Syntax

int ADM_DBXOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be XORed with the byte at offset

Description

This function XORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBXOR_Byte(adm_handle, offset, bval);

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 104 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_DBXNOR_Byte

Syntax

int ADM_DBXNOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be XNORed with the byte at offset

Description

This function XNORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBXNOR_Byte(adm_handle, offset, bval);

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 105 of 161
February 20, 2013

6.6 ADM API Clock Functions

ADM_StartTimer

Syntax

unsigned short ADM_StartTimer(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

ADM_StartTimer can be used to initialize a variable with a starting time with the
current time from a microsecond clock. A timer can be created by making a call
to ADM_StartTimer and by using ADM_CheckTimer to check to see if timeout
has occurred. For multiple timers call ADM_StartTimer using a different variable
for each timer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Current time value from millisecond clock

Example

Initialize 2 timers.

ADMHANDLE adm_handle;

unsigned short timer1;

unsigned short timer2;

timer1 = ADM_StartTimer(adm_handle);

timer2 = ADM_StartTimer(adm_handle);

See Also

ADM_CheckTimer (page 106)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 106 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_CheckTimer

Syntax

int ADM_CheckTimer(ADMHANDLE adm_handle, unsigned short *adm_tmlast, long

*adm_tmout)

Parameters

adm_handle Handle returned by previous call to ADM_Open.

adm_tmlast Starting time of timer returned from call to ADM_StartTimer.

adm_tmout Timeout value in microseconds.

Description

ADM_CheckTimer checks a timer for a timeout condition. Each time the function
is called, ADM_CheckTimer updates the current timer value in adm_tmlast and
the time remaining until timeout in adm_tmout. If adm_tmout is less than 0, then
a 1 is returned to indicate a timeout condition. If the timer has not expired, a 0 will
be returned.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Timer not expired.

Timer expired.

Example

Check 2 timers.

ADMHANDLE adm_handle;

unsigned short timer1;

unsigned short timer2;

long timeout1;

long timeout2;

timeout1 = 10000000L; /* set timeout for 10 seconds */

timer1 = ADM_StartTimer(adm_handle);

/* wait until timer 1 times out */

while(!ADM_CheckTimer(adm_handle, &timer1, &timeout1))

timeout2 = 5000000L; /* set timeout for 5 seconds */

timer2 = ADM_StartTimer(adm_handle);

/* wait until timer 2 times out */

while(!ADM_CheckTimer(adm_handle, &timer2, &timeout2))

See Also

ADM_StartTimer (page 105)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 107 of 161
February 20, 2013

6.7 ADM LED Functions

ADM_SetLed

Syntax

int ADM_SetLed(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr, int led,

int state);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to the interface structure

led Specifies which of the user LED indicators is being addressed

state Specifies whether the LED will be turned on or off

Description

ADM_SetLed allows an application to turn the user LED indicators on and off.

adm_handle must be a valid handle returned from ADM_Open.

led must be set to ADM_LED_USER1, ADM_LED_USER2 or
ADM_LED_STATUS for User LED 1, User LED 2 or Status LED, respectively.

state must be set to ADM_LED_OK, ADM_LED_FAULT to turn the Status LED
green or red, respectively. For User LED 1 and User LED 2 state must be set to
ADM_LED_OFF or ADM_LED_ON to turn the indicator On or Off, respectively.

Return Value

ADM_SUCCESS The LED has successfully been set.

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_BADPARAM led or state is invalid.

Example

ADMHANDLE adm_handle;

/* Set Status LED OK, turn User LED 1 off and User LED 2 on */

ADM_SetLed(adm_handle, interface_ptr, ADM_LED_STATUS, ADM_LED_OK);

 ADM_SetLed(adm_handle, interface_ptr, ADM_LED_USER1, ADM_LED_OFF);

 ADM_SetLed(adm_handle, interface_ptr, ADM_LED_USER2, ADM_LED_ON);

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 108 of 161 ProSoft Technology, Inc.
February 20, 2013

6.8 ADM API Miscellaneous Functions

ADM_GetVersionInfo

Syntax

int ADM_GetVersionInfo(ADMHANDLE adm_handle, ADMVERSIONINFO *adm_verinfo);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_verinfo Pointer to structure of type ADMVERSIONINFO

Description

ADM_GetVersionInfo retrieves the current version of the ADM API library. The
information is returned in the structure adm_verinfo. adm_handle must be a valid
handle returned from ADM_Open.

The ADMVERSIONINFO structure is defined as follows:

typedef struct

{

 char APISeries[4];

 short APIRevisionMajor;

 short APIRevisionMinor;

 long APIRun;

}ADMVERSIONINFO;

Return Value

ADM_SUCCESS The version information was read successfully.

ADI_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADMVERSIONINFO verinfo;

/* print version of API library */

 ADM_GetVersionInfo(adm_handle, &adm_version);

printf("Revision %d.%d\n", verinfo.APIRevisionMajor, verinfo.APIRevisionMinor);

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 109 of 161
February 20, 2013

ADM_SetConsolePort

Syntax

void ADM_SetConsolePort(int Port);

Parameters

Port Com port to use as the console (COM1=0, COM2=1, COM3=2)

Description

ADM_SetConsolePort sets the specified communication port as the console. This
allows the console to be disabled in the BIOS setup and the application can still
configure the console for use.

Return Value

None

Example

 /* enable console on COM1 */

 ADM_SetConsolePort(COM1);

See Also

ADM_SetConsoleSpeed (page 110)

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 110 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_SetConsoleSpeed

Syntax

void ADM_SetConsoleSpeed(int Port, long Speed);

Parameters

Port Com port to use as the console (COM1=0,
COM2=1, COM3=2)

Speed Baud rate for console port.

Available settings are: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200,
38400, 57600 and 115200.

Description

ADM_SetConsoleSpeed sets the specified communication port to the baud rate
specified.

Return Value

None

Example

 /* set console to 115200 baud */

 ADM_SetConsoleSpeed (COM1, 115200L);

See Also

ADM_SetConsolePort (page 109)

Application Development Function Library - ADM API ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 111 of 161
February 20, 2013

ADM_PLX_ReadConfiguration

Syntax

ADMAPIENTRYUL ADM_PLX_ReadConfiguration(ADMHANDLE adm_handle, char huge**

mydata);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer to huge character array to hold the configuration file for
parsing

Description

This function will open the ProLinx.cfg file and read the contents into the
character array for parsing.

Return Value

File Length Upon normal termination the configuration file length will be
returned

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_BADPARAM Cannot find ProLinx.cfg file

Example

char huge * tptr;

//if no configuration data, return

if(ADM_PLX_ReadConfiguration(adm_handle, &tptr) == 0)

{

 printf("ERROR: No configuration return\n");

 return (1);

}

ProLinx ADM ♦ 'C' Programmable Application Development Function Library - ADM API
Application Development Module Developer's Guide

Page 112 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_PLX_FindSection

Syntax

ADMAPIENTRYCHP ADM_PLX_FindSection(ADMHANDLE adm_handle, char * SubSec, char

huge* mydata);

Parameters

adm_handle Handle returned by previous call to ADM_Open

SubSec Configuration file section to seek

mydata Pointer to huge character array to hold the configuration file for
parsing

Description

This function searches the configuration file for the sub section specified. If found
it returns a pointer to the sub section. If the sub section is not found the function
returns NULL.

Return Value

NULL Sub Section not found

Pointer to Sub section

Example

if((tptr = ADM_PLX_FindSection(adm_handle, "[Module]", tptr)) != NULL)

{

 // search for line items

}

else

{

 // sub section not found

}

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 113 of 161
February 20, 2013

7 Serial Port Library Functions

In This Chapter

 Serial Port API Initialization Functions ... 114

 Serial Port API Configuration Functions .. 119

 Serial Port API Status Functions ... 121

 Serial Port API Communications ... 129

 Serial Port API Miscellaneous Functions ... 141

 RAM Functions .. 142

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in 'C'
format.

The API library routines are categorized according to functionality as follows:

Initialization MVIsp_Open

MVIsp_Close

MVIsp_OpenAlt

Configuration MVIsp_Config

MVIsp_SetHandshaking

Port Status MVIsp_SetRTS, MVIsp_GetRTS

MVIsp_SetDTR, MVIsp_GetDTR

MVIsp_GetCTS

MVIsp_GetDSR

MVIsp_GetDCD

MVIsp_GetLineStatus

Communications MVIsp_Putch

MVIsp_Puts

MVIsp_PutData

MVIsp_Getch

MVIsp_Gets

MVIsp_GetData

MVIsp_GetCountUnsent

MVIsp_GetCountUnread

MVIsp_PurgeDataUnsent

MVIsp_PurgeDataUnread

Miscellaneous MVIsp_GetVersionInfo

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 114 of 161 ProSoft Technology, Inc.
February 20, 2013

7.1 Serial Port API Initialization Functions

MVIsp_Open

Syntax

int MVIsp_Open(int comport, BYTE baudrate, BYTE parity, BYTE wordlen,

BYTE stopbits);

Parameters

comport Communications Port to open

baudrate Baud rate for this port

parity Parity setting for this port

wordlen Number of bits for each character

stopbits Number of stop bits for each character

Description

MVIsp_Open acquires access to a communications port. This function must be
called before any of the other API functions can be used.

comport specifies which port is to be opened. The valid values for the module are
COM1 (corresponds to PRT1), COM2 (corresponds to PRT2), and COM3
(corresponds to PRT3)..

baudrate is the desired baud rate. The allowable values for baudrate are shown
in the following table.

Baud Rate Value

BAUD_110 0

BAUD_150 1

BAUD_300 2

BAUD_600 3

BAUD_1200 4

BAUD_2400 5

BAUD_4800 6

BAUD_9600 7

BAUD_19200 8

BAUD_28800 9

BAUD_38400 10

BAUD_57600 11

BAUD_115200 12

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLEN5, WORDLEN6, WORDLEN7, and WORDLEN8.

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 115 of 161
February 20, 2013

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

The handshake lines DTR and RTS of the port specified by comport are turned
on by MVIsp_Open.

Note: If the console is enabled or the Setup jumper is installed, the baud rate for COM1 is set as
configured in BIOS Setup and cannot be changed by MVIsp_Open. MVIsp_Open will return
MVI_SUCCESS, but the baud rate will not be affected. It is recommended that the console be
disabled in BIOS Setup if COM1 is to be accessed with the serial API.
IMPORTANT: After the API has been opened, MVIsp_Close should always be called before exiting
the application.

Return Value

MVI_SUCCESS Port was opened successfully

MVI_ERR_REOPEN Port is already open

MVI_ERR_NODEVICE UART not found on port

Note: MVI_ERR_NODEVICE will be returned if the port is not supported by the module.

Example

if (MVIsp_Open(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,STOPBITS1) != MVI_SUCCESS)

{

 printf("Open failed!\n");

} else {

 printf("Open succeeded\n");

}

See Also

MVIsp_Close (page 118)

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 116 of 161 ProSoft Technology, Inc.
February 20, 2013

MVIsp_OpenAlt

Syntax

int MVIsp_ OpenAlt(int comport, MVISPALTSETUP *altsetup);

Parameters

comport Communications port to open

altsetup pointer to structure of type MVISPALTSETUP

Description

MVIsp_OpenAlt provides an alternate method to acquire access to a
communications port.

With MVIsp_OpenAlt, the sizes of the serial port data queues can be set by the
application.

See MVIsp_Open for any considerations about opening a port.

Comport specifies which port is to be opened. See MVIsp_Open for valid values.

Altsetup points to a MVISPALTSETUP structure that contains the configuration
information for the port.

The MVISPALTSETUP structure is defined as follows

typedef struct tagMVISPALTSETUP

{

BYTE baudrate;

BYTE parity;

BYTE wordlen;

BYTE stopbits;

int txquesize; /* Transmit queue size */

int rxquesize; /* Receive queue size */

BYTE fifosize; /* UART Internal FIFO size */

} MVISPALTSETUP;

See MVIsp_Open for valid values for the baudrate, parity, wordlen, and stopbits
members of the structure. The txquesize and rxquesize members determine the
size of the data buffers used to queue serial data. Valid values for the queue
sizes can be any value from MINQSIZE to MAXQSIZE. The MVIsp_Open
function uses a queue size of DEFQSIZE. These values are defined as:

#define MINQSIZE 512 /* Minimum Queue Size */

#define DEFQSIZE 1024 /* Default Queue Size */

#define MAXQSIZE 16384 /* Maximum Queue Size */

By default, the API sets the UART’s internal receive fifo size to 8 characters to
permit greater reliability at higher baud rates. In certain serial protocols, this
buffering of characters can cause character timeouts and can be changed or
disabled to meet these requirements. Most applications should set the fifosize to
the default RXFIFO_DEFAULT.

Either MVIsp_OpenAlt or MVIsp_Open must be called before any of the other
API functions can be used.

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 117 of 161
February 20, 2013

Return Value

MVI_SUCCESS Port was opened successfully

MVI_ERR_REOPEN Port is already open

MVI_ERR_NODEVICE UART not found for port

Example

MVISPALTSETUP altsetup;

altsetup.baudrate = BAUD_9600;

altsetup.parity = PARITY_NONE;

altsetup.wordlen = WORDLEN8;

altsetup.stopbits = STOPBITS1;

altsetup.txquesize = DEFQSIZE;

altsetup.rxquesize = DEFQSIZE * 2;

if (MVIsp_OpenAlt(COM1, &altsetup) != MVI_SUCCESS)

{

printf("Open failed!\n");

} else {

printf("Open succeeded!\n");

}

See Also

MVIsp_Open (page 114)

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 118 of 161 ProSoft Technology, Inc.
February 20, 2013

MVIsp_Close

Syntax

int MVIsp_Close(int comport);

Parameters

comport Port to close

Description

This function is used by an application to release control of the a communications
port. comport must be previously opened with MVIsp_Open.

comport specifies which port is to be closed. The valid values for the module are
COM1 (corresponds to PRT1), COM2 (corresponds to PRT2), and COM3
(corresponds to PRT3).

The handshake lines DTR and RTS of the port specified by comport are turned
off by MVIsp_Close.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

MVI_SUCCESS Port was closed successfully

MVI_ERR_NOACCESS Comport has not been opened

Example

MVIsp_Close(COM1);

See Also

MVIsp_Open (page 114)

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 119 of 161
February 20, 2013

7.2 Serial Port API Configuration Functions

MVIsp_Config

Syntax

int MVIsp_Config(int comport, BYTE baudrate, BYTE parity, BYTE wordlen, BYTE

stopbits);

Parameters

comport Communications port to configure

baudrate Baud rate for this port

parity Parity setting for this port

wordlen Number of bits for each character

stopbits Number of stop bits for each character

baudrate Pointer to DWORD to receive baudrate

Description

MVIsp_Config allows the configuration of a serial port to be changed after it has
been opened.

comport specifies which port is to be configured.

baudrate is the desired baud rate.

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLEN5, WORDLEN6, WORDLEN7, and WORDLEN8.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

Note: If the console is enabled or the Setup jumper is installed, the baud rate for COM1 is set as
configured in BIOS Setup and cannot be changed by MVIsp_Open. MVIsp_Config will return
MVI_SUCCESS, but the baud rate will not be affected.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

if (MVIsp_Config(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,STOPBITS1) != MVI_SUCCESS)

{

 printf("Config failed!\n");

} else {

 printf("Config succeeded\n");

}

See Also

MVIsp_Open (page 114)

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 120 of 161 ProSoft Technology, Inc.
February 20, 2013

MVIsp_SetHandshaking

Syntax

int MVIsp_SetHandshaking(int comport, int shake);

Parameters

comport port for which handshaking is to be set

shake desired handshake mode

Description

This function enables handshaking for a port after it has been opened. comport
must be previously opened with MVIsp_Open.

shake is the desired handshake mode. Valid values for shake are
HSHAKE_NONE, HSHAKE_XONXOFF, HSHAKE_RTSCTS, and
HSHAKE_DTRDSR.

Use HSHAKE_XONXOFF to enable software handshaking for a port. Use
HSHAKE_RTSCTS or HSHAKE_DTRDSR to enable hardware handshaking for
a port. Hardware and software handshaking cannot be used together.

Handshaking is supported in both the transmit and receive directions.

Important: If hardware handshaking is enabled, using the MVIsp_SetRTS and MVIsp_SetDTR
functions will cause unpredictable results. If software handshaking is enabled, ensure that the XON
and XOFF ASCII characters are not transmitted as data from a port or received into a port because
this will be treated as handshaking controls.

Return Values

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid handshaking mode

Example

if (MVI_SUCCESS != MVIsp_SetHandshaking(COM1, HSHAKE_RTSCTS))

 printf("Error: Set Handshaking failed\n");

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 121 of 161
February 20, 2013

7.3 Serial Port API Status Functions

MVIsp_SetRTS

Syntax

int MVIsp_SetRTS(int comport, int state);

Parameters

comport port for which RTS is to be changed

state desired RTS state

Description

This functions allows the state of the RTS signal to be controlled. comport must
be previously opened with MVIsp_Open.

state specifies desired state of the RTS signal. Valid values for state are ON and
OFF.

Note: If RTS/CTS hardware handshaking is enabled, using the MVIsp_SetRTS function will cause
unpredictable results.

Return Value

MVI_SUCCESS the RTS signal was set successfully.

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid state

Example

int rc;

rc = MVIsp_SetRTS(COM1, ON);

if (rc != MVI_SUCCESS)

 printf("SetRTS failed\n ");

See Also

MVIsp_GetRTS (page 122)

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 122 of 161 ProSoft Technology, Inc.
February 20, 2013

MVIsp_GetRTS

Syntax

int MVIsp_GetRTS(int comport, int *state);

Parameters

comport port for which RTS is requested

state pointer to int for desired state

Description

This function allows the state of the RTS signal to be determined. comport must
be previously opened with MVIsp_Open.

The current state of the RTS signal is copied to the int pointed to by state.

Return Value

MVI_SUCCESS the RTS state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int state;

if (MVIsp_GetRTS(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

 printf("RTS is ON\n");

 else

 printf("RTS is OFF\n");

}

See Also

MVIsp_SetRTS (page 121)

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 123 of 161
February 20, 2013

MVIsp_SetDTR

Syntax

int MVIsp_SetDTR(int comport, int state);

Parameters

comport port for which DTR is to be changed

state desired state

Description

This function allows the state of the DTR signal to be controlled. comport must be
previously opened with MVIsp_Open.

state is the desired state of the DTR signal. Valid values for state are ON and
OFF.

Note: If DTR/DSR handshaking is enabled, changing the state of the DTR signal with
MVIsp_SetDTR will cause unpredictable results.

Return Value

MVI_SUCCESS the DTR signal was set successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid state

Example

if (MVIsp_SetDTR(COM1, ON) != MVI_SUCCESS)

printf("Set DTR failed\n");

See Also

MVIsp_GetDTR (page 124)

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 124 of 161 ProSoft Technology, Inc.
February 20, 2013

MVIsp_GetDTR

Syntax

int MVIsp_GetDTR(int comport, int *state);

Parameters

comport port for which DTR is requested

state pointer to int for desired state

Description

This function allows the state of the DTR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DTR signal is
copied to the int pointed to by state.

Return Values

MVI_SUCCESS the DTR state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int state;

if (MVIsp_GetDTR(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

 printf("DTR is ON\n");

 else

 printf("DTR is OFF\n");

}

See Also

MVIsp_SetDTR (page 123)

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 125 of 161
February 20, 2013

MVIsp_GetCTS

Syntax

int MVIsp_GetCTS(int comport, int *state);

Parameters

comport port for which CTS is requested

state pointer to int for desired state

Description

This function allows the state of the CTS signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the CTS signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS the CTS state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int state;

if (MVIsp_GetCTS(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

 printf("CTS is ON\n");

 else

 printf("CTS is OFF\n");

}

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 126 of 161 ProSoft Technology, Inc.
February 20, 2013

MVIsp_GetDSR

Syntax

int MVIsp_GetDSR(int comport, int *state);

Parameters

comport port for which DSR is requested

state pointer to int for desired state

Description

This function allows the state of the DSR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DSR signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS the DSR state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int state;

if (MVIsp_GetDSR(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

 printf("DSR is ON\n");

 else

 printf("DSR is OFF\n");

}

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 127 of 161
February 20, 2013

MVIsp_GetDCD

Syntax

int MVIsp_GetDCD(int comport, int *state);

Parameters

comport port for which DCD is requested

state pointer to int for desired state

Description

This function allows the state of the DCD signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DCD signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS the DCD state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int state;

if (MVIsp_GetDCD(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

 printf("DCD is ON\n");

 else

 printf("DCD is OFF\n");

}

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 128 of 161 ProSoft Technology, Inc.
February 20, 2013

MVIsp_GetLineStatus

Syntax

int MVIsp_GetLineStatus(int comport, BYTE *status);

Parameters

comport port for which line status is requested

status pointer to BYTE to receive line status

Description

MVIsp_GetLineStatus returns any line status errors received over the serial port.
The status returned indicates if any overrun, parity, or framing errors or break
signals have been detected.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

status points to a BYTE that will receive a set of flags that indicate errors
received over the serial port. If the returned status is 0, no errors have been
detected. If status is non-zero, it can be logically and'ed with the line status error
flags LSERR_OVERRUN, LSERR_PARITY, LSERR_FRAMING,
LSERR_BREAK, and/or QSERR_OVERRUN to determine the exact cause of the
error. The corresponding error flag will be set for each error type detected.

Note: The QSERR_OVERRUN bit indicates that a receive queue overflow has occurred.

After returning the bit flags in status, line status errors are cleared. Therefore,
MVIsp_GetLineStatus actually returns line status errors detected since the
previous call to this function.

Return Value

MVI_SUCCESS the line status was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

BYTE sts;

if (MVIsp_GetGetLineStatus(COM2,&sts) == MVI_SUCCESS)

{

 if (sts == 0)

 printf("No Line Status Errors Received\n");

 else if ((sts & LSERR_BREAK) != 0)

 printf("A Break Signal was Received\n");

 else

 printf("A Line Status Error was Received\n");

}

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 129 of 161
February 20, 2013

7.4 Serial Port API Communications

MVIsp_Putch

Syntax

int MVIsp_Putch(int comport, BYTE ch, DWORD timeout);

Parameters

comport port to which data is to be sent

ch character to be sent

timeout amount of time to wait to send character

Description

This function transmits a single character across a serial port. comport must be
previously opened with MVIsp_Open.

ch is the byte to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time after this function returns
and the actual time that the character is transmitted across the serial line. This
function attempts to insert the character into the transmission queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the character cannot be
queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until the character is queued successfully.

If the character can be queued immediately, MVIsp_Putch returns
MVI_SUCCESS. If the character cannot be queued immediately, MVIsp_Putch
tries to queue the character until the timeout elapses. If the timeout elapses
before the character can be queued, MVI_ERR_TIMEOUT is returned.

Note: If handshaking is enabled and the receiving serial device has paused transmission, timeouts
may occur after the queue becomes full.

Return Value

MVI_SUCCESS the char was sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid parameter

MVI_ERR_TIMEOUT timeout elapsed before character sent

Example

if (MVIsp_Putch(COM1, ';', 1000L) != MVI_SUCCESS)

 printf("Semicolon could not be sent in 1 second\n");

See Also

MVIsp_GetCh (page 130)
MVIsp_Puts (page 131)
MVIsp_PutData (page 133)

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 130 of 161 ProSoft Technology, Inc.
February 20, 2013

MVIsp_Getch

Syntax

int MVIsp_Getch(int comport, BYTE *ch, DWORD timeout);

Parameters

comport port from which data is to be received

ch pointer to BYTE to receive character

timeout amount of time to wait to receive character

Description

This function receives a single character from a serial port. comport must be
previously opened with MVIsp_Open.

ch points to a BYTE that will receive the character.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Getch.
This function attempts to retrieve a character from the reception queue, and
return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until a character is
retrieved from the reception queue successfully.

If the reception queue is not empty, the oldest character is retrieved from the
queue and MVIsp_Getch returns MVI_SUCCESS. If the queue is empty,
MVIsp_Getch tries to retrieve a character from the queue until the timeout
elapses. If the timeout elapses before a character can be retrieved,
MVI_ERR_TIMEOUT is returned.

Return Value

MVI_SUCCESS a char was retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before character retrieved

Example

BYTE ch;

if (MVIsp_Getch(COM1, &ch, 1000L) == MVI_SUCCESS)

 putch((char)ch);

See Also

MVIsp_PutCh (page 129)
MVIsp_Gets (page 135)

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 131 of 161
February 20, 2013

MVIsp_Puts

Syntax

int MVIsp_Puts(int comport, BYTE *str, BYTE term, int *len, DWORD timeout);

Parameters

comport port to which data is to be sent

str string of characters to be sent

term termination character of string

len pointer to BYTE to receive number of characters sent

timeout amount of time to wait to send character

Description

This function transmits a string of characters across a serial port. comport must
be previously opened with MVIsp_Open.

str is a pointer to an array of characters (or is a string) to be sent.

MVIsp_Puts sends each char in the array str to the serial port until it encounters
the termination character term. Therefore, the character array must end with the
termination character. The termination character is not sent to the serial port.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the characters are transmitted across the serial line. This function
attempts to insert the characters into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the characters
cannot be queued immediately. If timeout is TIMEOUT_FOREVER, the function
will not return until all the characters are queued successfully.

If all the characters can be queued immediately, MVIsp_Puts returns
MVI_SUCCESS. If the characters cannot be queued immediately, MVIsp_Puts
tries to queue the characters until the timeout elapses. If the timeout elapses
before the characters can be queued, MVI_ERR_TIMEOUT is returned.

If len is not NULL, MVIsp_Puts writes to the int pointed to by len the number of
characters queued successfully. len is written for successfully sent characters as
well as timeouts.

Note: If handshaking is enabled and the receiving serial device has paused transmission, timeouts
may occur after the queue becomes full.

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 132 of 161 ProSoft Technology, Inc.
February 20, 2013

Return Value

MVI_SUCCESS the characters were sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid parameter

MVI_ERR_TIMEOUT timeout elapsed before characters sent

Example

char str[] = "Hello, World!";

int nn;

if (MVIsp_Puts(COM1, str, '\0', &nn, 1000L) != MVI_SUCCESS)

 printf("%d characters were sent\n",nn);

See Also

MVIsp_Gets (page 135)

MVIsp_PutCh (page 129)

MVIsp_PutData (page 133)

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 133 of 161
February 20, 2013

MVIsp_PutData

Syntax

int MVIsp_PutData(int comport, BYTE *data, int *len, DWORD timeout);

Parameters

comport port to which data is to be sent

data pointer to array of bytes to be sent

len pointer to number of bytes to send / bytes sent

timeout amount of time to wait to send byte

Description

This function transmits an array of bytes across a serial port. comport must be
previously opened with MVIsp_Open.

data is a pointer to an array of bytes to be sent.

MVIsp_PutData sends each byte in the array data to the serial port. len should
point to the number of bytes in the array data to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the bytes are transmitted across the serial line. This function
attempts to insert the bytes into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the bytes cannot
be queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until all the bytes are queued successfully.

If all the bytes can be queued immediately, MVIsp_PutData returns
MVI_SUCCESS. If the characters cannot be queued immediately,
MVIsp_PutData tries to queue the bytes until the timeout elapses. If the timeout
elapses before the bytes can be queued, MVI_ERR_TIMEOUT is returned.

When MVIsp_PutData returns, it writes to the int pointed to by len the number of
bytes queued successfully. len is written for successfully sent bytes as well as
timeouts.

Note: If software handshaking is enabled on the external serial device, sending data that contains
XOFF characters may stop transmission from the external serial device.

If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 134 of 161 ProSoft Technology, Inc.
February 20, 2013

Return Value

MVI_SUCCESS the bytes were sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid parameter

MVI_ERR_TIMEOUT timeout elapsed before bytes sent

Example

BYTE dd[5] = { 10, 20, 30, 40, 50 };

int nn;

nn = 5;

if (MVIsp_PutData(COM1, &dd[0], &nn, 1000L) != MVI_SUCCESS)

 printf("%d bytes were sent\n",nn);

See Also

MVIsp_PutCh (page 129)

MVIsp_Puts (page 131)

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 135 of 161
February 20, 2013

MVIsp_Gets

Syntax

int MVIsp_Gets(int comport, BYTE *str, BYTE term, int *len, DWORD timeout);

Parameters

comport port from which data is to be received

str pointer to array of bytes to receive data

term termination character of data

len number of bytes to receive / bytes received

timeout amount of time to wait to receive character

Description

This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

str points to an array of bytes that will receive the data.

len points to the number of bytes to receive.

MVIsp_Gets retrieves bytes from the reception queue until either a byte is equal
to the termination character or the number of bytes pointed to by len are
retrieved. If a byte is retrieved that equals the termination character, the byte is
copied into the array str and the function returns.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Gets. This
function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_Gets returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.
If the function returns because a termination character was retrieved, len
includes the termination character in the length.

Note: If handshaking is enabled and the reception queue is full, this API may pause transmissions
from the external device, and timeouts may then occur.

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 136 of 161 ProSoft Technology, Inc.
February 20, 2013

Return Value

MVI_SUCCESS bytes were retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved

Example

BYTE str[10];

int nn;

nn = 10;

if (MVIsp_Gets(COM1, &str[0], '\r', &nn, 1000L) == MVI_SUCCESS)

 printf("%d bytes were received\n",nn);

See Also

MVIsp_Getch (page 130)

MVIsp_Puts (page 131)

MVIsp_PutData (page 133)

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 137 of 161
February 20, 2013

MVIsp_GetData

Syntax

int MVIsp_GetData(int comport, BYTE *data, int *len, DWORD timeout);

Parameters

comport port from which data is to be received

data pointer to array of bytes to receive data

len number of bytes to receive / bytes received

timeout amount of time to wait to receive character

Description

This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

data points to an array of bytes that will receive the data.

len points to the number of bytes to receive.

MVIsp_GetData retrieves bytes from the reception queue until either the number
of bytes pointed to by len are retrieved or the timeout elapses.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_GetData.
This function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_GetData returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.

Return Value

MVI_SUCCESS bytes were retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 138 of 161 ProSoft Technology, Inc.
February 20, 2013

Example

BYTE data[10];

int nn;

nn = 10;

if (MVIsp_GetData(COM1, data, &nn, 1000L) == MVI_SUCCESS)

 printf("%d bytes were received\n",nn);

See Also

MVIsp_Gets (page 135)

MVIsp_Getch (page 130)

MVIsp_PutData (page 133)

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 139 of 161
February 20, 2013

MVIsp_GetCountUnsent

Syntax

int MVIsp_GetCountUnsent(int comport, int *count);

Parameters

comport Desired communications port

count Pointer to int to receive unsent character count

Description

MVIsp_GetCountUnsent returns the number of characters in the transmit queue
that are waiting to be sent. Since data sent to a port is queued before
transmission across a serial port, the application may need to determine if all
characters have been transmitted or how many characters remain to be
transmitted.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
sent to the serial port but not transmitted. If the returned count is 0, all data has
been transmitted. If it is non-zero, it contains the number of characters put into
the queue with MVIsp_Putch, MVIsp_Puts, or MVIsp_PutData but that have not
been transmitted.

Return Value

MVI_SUCCESS count retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int count;

if (MVIsp_GetCountUnsent(COM2,&count) == MVI_SUCCESS)

{

 if (count == 0)

 printf("All chars sent\n");

 else

 printf("%d characters remaining\n",count);

}

See Also

MVIsp_Putch (page 129)

MVIsp_Puts (page 131)

MVIsp_PutData (page 133)

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 140 of 161 ProSoft Technology, Inc.
February 20, 2013

MVIsp_GetCountUnread

Syntax

int MVIsp_GetCountUnread(int comport, int *count);

Parameters

comport Desired communications port

count Pointer to int to receive unread character count

Description

MVIsp_GetCountUnread returns the number of characters in the receive queue
that are waiting to be read. Since data received from a port is queued after
reception from a serial port, the application may need to determine if all
characters have been read or how many characters remain to be read.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
received from the serial port but not read by the application. If the returned count
is 0, all received data has been read. If it is non-zero, it contains the number of
characters placed into the receive queue after reception from a serial port but
that have not been read from the queue with MVIsp_Getch, MVIsp_Gets, or
MVIsp_GetData.

Return Value

MVI_SUCCESS count retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example

int count;

if (MVIsp_GetCountUnread(COM2,&count) == MVI_SUCCESS)

{

 if (count == 0)

 printf("All chars read\n");

 else

 printf("%d characters remaining\n",count);

}

See Also

MVIsp_Getch (page 130)

MVIsp_Gets (page 135)

MVIsp_GetData (page 137)

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 141 of 161
February 20, 2013

7.5 Serial Port API Miscellaneous Functions

MVIsp_GetVersionInfo

Syntax

int MVIsp_GetVersionInfo(MVISPVERSIONINFO *verinfo);

Parameters

verinfo Pointer to structure of type MVISPVERSIONINFO

Description

MVIsp_GetVersionInfo retrieves the current version of the API. The version
information is returned in the structure verinfo.

The MVISPVERSIONINFO structure is defined as follows:

typedef struct tagMVISPVERSIONINFO

{

 WORD APISeries; /* API series */

 WORD APIRevision; /* API revision */

} MVISPVERSIONINFO;

Return Value

MVI_SUCCESS The version information was read successfully.

Example

MVISPVERSIONINFO verinfo;

/* print version of API library */

MVIsp_GetVersionInfo(&verinfo);

printf("Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 142 of 161 ProSoft Technology, Inc.
February 20, 2013

7.6 RAM Functions

ADM_EEPROM_ReadConfiguration

Syntax

long ADM_EEPROM_ReadConfiguration(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

ADM_EEPROM_ReadConfiguration read configuration information from a
configuration file located on the EEPROM.

Return Value

Length of the data read from the configuration file.

Example

 if (!ADM_EEPROM_ReadConfiguration(adm_handle)) //if no configuration data,

return

 {

 printf("ERROR: No configuration return\n");

 return (1);

 }

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 143 of 161
February 20, 2013

ADM_RAM_Find_Section

Syntax

char huge * ADM_RAM_Find_Section(ADMHANDLE adm_handle, char * SubSec);

Parameters

adm_handle Handle returned by previous call to ADM_Open

SubSec String of Sub-section that you'd like to find in the configuration file.

Description

ADM_RAM_Find_Section tries to find the section passed to the function.

Return Value

Pointer to the location found in the file or NULL if the sub-section is not found.

Example

 if((tptr = ADM_RAM_Find_Section(adm_handle, "[Module]")) != NULL)

 {

 cptr = (char*)ADM_RAM_GetString(tptr, "Module Name");

 if(cptr == NULL)

 strcpy(module.name, "No Module Name");

 else

 {

 strcpy(module.name, cptr);

 }

 }

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 144 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_RAM_GetString

Syntax

char huge ADM_RAM_GetString (ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetString tries to find the Topic name passed to the function in the
file.

Return Value

Pointer to the string found in the file or NULL if the sub-section is not found.

Example

 cptr = (char*)ADM_RAM_GetString(adm_handle, tptr, "Module Name");

 if(cptr == NULL)

 strcpy(module.name, "No Module Name");

 else

 {

 if(strlen(cptr) > 80)

 *(cptr+80) = 0;

 strcpy(module.name, cptr);

 if(module.name[strlen(module.name)-1] < 32)

 module.name[strlen(module.name)-1] = 0;

 }

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 145 of 161
February 20, 2013

ADM_RAM_GetInt

Syntax

unsigned short ADM_RAM_GetInt(ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetInt tries to find the Topic name passed to the function in the file.

Return Value

Value of type Integer found under the Topic name or 0 if the sub-section is not
found.

Example

 module.err_offset = ADM_RAM_GetInt(adm_handle, tptr, "Baud Rate");

 if(module.err_offset < 0 || module.err_offset > module.max_regs-61)

 {

 module.err_offset = -1;

 module.err_freq = 0;

 }

 else

 {

 module.err_freq = 500;

 }

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 146 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_RAM_GetLong

Syntax

unsigned long ADM_RAM_GetLong (ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetLong tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Long found under the Topic name or 0 if the sub-section is not
found.

Example

 module.err_offset = ADM_RAM_GetLong(adm_handle, tptr, "Baud Rate");

 if(module.err_offset < 0 || module.err_offset > module.max_regs-61)

 {

 module.err_offset = -1;

 module.err_freq = 0;

 }

 else

 {

 module.err_freq = 500;

 }

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 147 of 161
February 20, 2013

ADM_RAM_GetFloat

Syntax

float ADM_RAM_GetFloat (ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetFloat tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Float found under the Topic name or 0 if the sub-section is not
found.

Example

 module.time = ADM_RAM_GetFloat(adm_handle, tptr, "Time");

 if(module.time < 0 || module.time > module.max_regs-61)

 {

 module.time = -1;

 module.err_freq = 0;

 }

 else

 {

 module.err_freq = 500;

 }

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 148 of 161 ProSoft Technology, Inc.
February 20, 2013

ADM_RAM_GetDouble

Syntax

double ADM_RAM_GetDouble(ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetDouble tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Double found under the Topic name or 0 if the sub-section is not
found.

Example

 module.time = ADM_RAM_GetDouble(adm_handle, tptr, "Time");

 if(module.time < 0 || module.time > module.max_regs-61)

 {

 module.time = -1;

 module.err_freq = 0;

 }

 else

 {

 module.err_freq = 500;

 }

Serial Port Library Functions ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 149 of 161
February 20, 2013

ADM_RAM_GetChar

Syntax

unsigned char ADM_RAM_GetChar (ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetChar tries to find the Topic name passed to the function in the
file.

Return Value

Character found under the Topic name or ' ' if the sub-section is not found.

Example

 module.enable = ADM_RAM_GetChar(adm_handle, tptr, "Enable");

 if(module.enable == ' ')

 {

 module.time = -1;

 module.err_freq = 0;

 }

 else

 {

 module.err_freq = 500;

 }

ProLinx ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module Developer's Guide

Page 150 of 161 ProSoft Technology, Inc.
February 20, 2013

DOS 6 XL Reference Manual ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 151 of 161
February 20, 2013

8 DOS 6 XL Reference Manual

The DOS 6 XL Reference Manual makes reference to compilers other than
Digital Mars C++ or Borland Compilers. The PLX-ADM and ADMNET modules
only support Digital Mars C++ and Borland C/C++ Compiler Version 5.02.
References to other compilers should be ignored.

ProLinx ADM ♦ 'C' Programmable DOS 6 XL Reference Manual
Application Development Module Developer's Guide

Page 152 of 161 ProSoft Technology, Inc.
February 20, 2013

Glossary of Terms ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 153 of 161
February 20, 2013

9 Glossary of Terms

A

API

Application Program Interface

B

Backplane

Refers to the electrical interface, or bus, to which modules connect when inserted
into the rack. The module communicates with the control processor(s) through
the processor backplane.

BIOS

Basic Input Output System. The BIOS firmware initializes the module at power
up, performs self-diagnostics, and provides a DOS-compatible interface to the
console and Flashes the ROM disk.

Byte

8-bit value

C

CIP

Control and Information Protocol. This is the messaging protocol used for
communications over the ControlLogix backplane. Refer to the ControlNet
Specification for information.

Connection

A logical binding between two objects. A connection allows more efficient use of
bandwidth, because the message path is not included after the connection is
established.

Consumer

A destination for data.

Controller

The PLC or other controlling processor that communicates with the module
directly over the backplane or via a network or remote I/O adapter.

ProLinx ADM ♦ 'C' Programmable Glossary of Terms
Application Development Module Developer's Guide

Page 154 of 161 ProSoft Technology, Inc.
February 20, 2013

D

DLL

Dynamic Linked Library

E

Embedded I/O

Refers to any I/O which may reside on a CAM board.

ExplicitMsg

An asynchronous message sent for information purposes to a node from the
scanner.

H

HSC

High Speed Counter

I

Input Image

Refers to a contiguous block of data that is written by the module application and
read by the controller. The input image is read by the controller once each scan.
Also referred to as the input file.

L

Library

Refers to the library file containing the API functions. The library must be linked
with the developer’s application code to create the final executable program.

Linked Library

Dynamically Linked Library. See Library.

Local I/O

Refers to any I/O contained on the CPC base unit or mezzanine board.

Long

32-bit value.

M

Module

Refers to a module attached to the backplane.

Glossary of Terms ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 155 of 161
February 20, 2013

Mutex

A system object which is used to provide mutually-exclusive access to a
resource.

MVI Suite

The MVI suite consists of line products for the following platforms:

 Flex I/O
 ControlLogix
 SLC
 PLC
 CompactLogix

MVI46

MVI46 is sold by ProSoft Technology under the MVI46-ADM product name.

MVI56

MVI56 is sold by ProSoft Technology under the MVI56-ADM product name.

MVI69

MVI69 is sold by ProSoft Technology under the MVI69-ADM product name.

MVI71

MVI71 is sold by ProSoft Technology under the MVI71-ADM product name.

MVI94

MVI94 and MVI94AV are the same modules. The MVI94AV is now sold by
ProSoft Technology under the MVI94-ADM product name

O

Originator

A client that establishes a connection path to a target.

Output Image

Table of output data sent to nodes on the network.

P

Producer

A source of data.

PTO

Pulse Train Output

PTQ Suite

The PTQ suite consists of line products for Schneider Electronics platforms:

Quantum (ProTalk)

ProLinx ADM ♦ 'C' Programmable Glossary of Terms
Application Development Module Developer's Guide

Page 156 of 161 ProSoft Technology, Inc.
February 20, 2013

S

Scanner

A DeviceNet node that scans nodes on the network to update outputs and inputs.

Side-connect

Refers to the electronic interface or connector on the side of the PLC-5, to which
modules connect directly through the PLC using a connector that provides a fast
communication path between the - module and the PLC-5.

T

Target

The end-node to which a connection is established by an originator.

Thread

Code that is executed within a process. A process may contain multiple threads.

W

Word

16-bit value

Support, Service & Warranty ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 157 of 161
February 20, 2013

10 Support, Service & Warranty

In This Chapter

 Contacting Technical Support ... 157

 Warranty Information ... 158

10.1 Contacting Technical Support

ProSoft Technology, Inc. (ProSoft) is committed to providing the most efficient
and effective support possible. Before calling, please gather the following
information to assist in expediting this process:

1 Product Version Number
2 System architecture
3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any
2 Module operation and any unusual behavior
3 Configuration/Debug status information
4 LED patterns
5 Details about the serial, Ethernet or fieldbus devices interfaced to the module,

if any.

Note: For technical support calls within the United States, an after-hours answering system allows
24-hour/7-days-a-week pager access to one of our qualified Technical and/or Application Support
Engineers. Detailed contact information for all our worldwide locations is available on the following
page.

ProLinx ADM ♦ 'C' Programmable Support, Service & Warranty
Application Development Module Developer's Guide

Page 158 of 161 ProSoft Technology, Inc.
February 20, 2013

Internet Web Site: www.prosoft-technology.com/support

E-mail address: support@prosoft-technology.com

Asia Pacific

(location in Malaysia)

Tel: +603.7724.2080, E-mail: asiapc@prosoft-technology.com

Languages spoken include: Chinese, English

Asia Pacific

(location in China)

Tel: +86.21.5187.7337 x888, E-mail: asiapc@prosoft-technology.com

Languages spoken include: Chinese, English

Europe

(location in Toulouse,
France)

Tel: +33 (0) 5.34.36.87.20,

E-mail: support.EMEA@prosoft-technology.com

Languages spoken include: French, English

Europe

(location in Dubai, UAE)

Tel: +971-4-214-6911,

E-mail: mea@prosoft-technology.com

Languages spoken include: English, Hindi

North America

(location in California)

Tel: +1.661.716.5100,

E-mail: support@prosoft-technology.com

Languages spoken include: English, Spanish

Latin America

(Oficina Regional)

Tel: +1-281-2989109,

E-Mail: latinam@prosoft-technology.com

Languages spoken include: Spanish, English

Latin America

(location in Puebla, Mexico)

Tel: +52-222-3-99-6565,

E-mail: soporte@prosoft-technology.com

Languages spoken include: Spanish

Brasil

(location in Sao Paulo)

Tel: +55-11-5083-3776,

E-mail: brasil@prosoft-technology.com

Languages spoken include: Portuguese, English

10.2 Warranty Information

Complete details regarding ProSoft Technology’s TERMS AND CONDITIONS
OF SALE, WARRANTY, SUPPORT, SERVICE AND RETURN MATERIAL
AUTHORIZATION INSTRUCTIONS can be found at www.prosoft-
technology.com/warranty.

Documentation is subject to change without notice.

http://www.prosoft-technology/warranty
http://www.prosoft-technology/warranty

Index ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 159 of 161
February 20, 2013

Index

A

ADM API • 39
ADM API Architecture • 39
ADM API Clock Functions • 105
ADM API Database Functions • 70
ADM API Debug Port Functions • 63
ADM API Files • 42
ADM API Functions • 47
ADM API Initialization Functions • 61
ADM API Miscellaneous Functions • 108
ADM Functional Blocks • 39
ADM Interface Structure • 42
ADM LED Functions • 107
ADM_CheckDBPort • 69
ADM_CheckTimer • 105, 106
ADM_Close • 61, 62
ADM_ConPrint • 68
ADM_DAWriteRecvCtl • 64, 65
ADM_DAWriteRecvData • 66, 67
ADM_DAWriteSendCtl • 64, 65
ADM_DAWriteSendData • 66, 67
ADM_DBAND_Byte • 101
ADM_DBBitChanged • 98
ADM_DBChanged • 97
ADM_DBClearBit • 74, 75
ADM_DBClose • 70, 71
ADM_DBGetBit • 73
ADM_DBGetBuff • 86, 87
ADM_DBGetByte • 76, 77
ADM_DBGetDFloat • 84, 85
ADM_DBGetFloat • 82, 83
ADM_DBGetLong • 80, 81
ADM_DBGetRegs • 88, 89
ADM_DBGetString • 90, 91
ADM_DBGetWord • 78, 79, 92
ADM_DBNAND_Byte • 102
ADM_DBNOR_Byte • 100
ADM_DBOpen • 70, 71, 72
ADM_DBOR_Byte • 99
ADM_DBSetBit • 74, 75
ADM_DBSetBuff • 86, 87
ADM_DBSetByte • 76, 77
ADM_DBSetDFloat • 84, 85
ADM_DBSetFloat • 82, 83
ADM_DBSetLong • 80, 81
ADM_DBSetRegs • 88, 89
ADM_DBSetString • 90, 91
ADM_DBSetWord • 78, 79, 92
ADM_DBSwapDWord • 93
ADM_DBXNOR_Byte • 104
ADM_DBXOR_Byte • 103
ADM_DBZero • 72

ADM_EEPROM_ReadConfiguration • 142
ADM_GetDBCptr • 94
ADM_GetDBInt • 96
ADM_GetDBIptr • 95
ADM_GetVersionInfo • 108
ADM_InstallDatabase • 51
ADM_Open • 50, 61, 62
ADM_PLX_FindSection • 112
ADM_PLX_ReadConfiguration • 111
ADM_ProcessDebug • 63
ADM_ProtocolConfigInfo • 57
ADM_RAM_Find_Section • 143
ADM_RAM_GetChar • 149
ADM_RAM_GetDouble • 148
ADM_RAM_GetFloat • 147
ADM_RAM_GetInt • 145
ADM_RAM_GetLong • 146
ADM_RAM_GetString • 144
ADM_RegisterMNET • 56
ADM_RegisterProtocol • 52, 56
ADM_RegisterUserFunc • 54
ADM_Run • 59
ADM_SetConsolePort • 109, 110
ADM_SetConsoleSpeed • 109, 110
ADM_SetLed • 107
ADM_Shutdown • 60
ADM_StartTimer • 105, 106
ADM_Startup • 58
All ProLinx® Products • 2
API • 153
API Libraries • 37
Application Development Function Library - ADM API •

47

B

Backplane • 153
BIOS • 153
Building an Existing Borland C++ 5.02 ADM Project •

23
Building an Existing Digital Mars C++ 8.49 ADM

Project • 13
Byte • 153

C

Calling Convention • 37
CIP • 153
Commdrv.c • 41
Configuring Borland C++5.02 • 23
Configuring Digital Mars C++ 8.49 • 13
Connecting Power to the Unit • 11
Connection • 153
Consumer • 153
Contacting Technical Support • 157
Controller • 153
Core Functions • 50
Creating a New Borland C++ 5.02 ADM Project • 25
Creating a New Digital Mars C++ 8.49 ADM Project •

15

ProLinx ADM ♦ 'C' Programmable Index
Application Development Module Developer's Guide

Page 160 of 161 ProSoft Technology, Inc.
February 20, 2013

D

Database • 39
Debugging Strategies • 34
Debugprt.c • 40
Development Tools • 38
DLL • 154
DOS 6 XL Reference Manual • 7, 151
Downloading Files to the Module • 30
Downloading the Sample Program • 13, 23

E

Embedded I/O • 154
Example • 40
Example Code Files • 41
ExplicitMsg • 154

H

Hardware • 34
Hardware Specifications and Equipment Ratings • 33
Header File • 38
HSC • 154

I

Important Installation Instructions • 2
Input Image • 154
Introduction • 7

L

Library • 154
LIMITED WARRANTY • 158
Linked Library • 154
Local I/O • 154
Long • 154

M

Main_app.c • 40
Module • 154
Mounting the gateway on the DIN-rail • 11
Multithreading Considerations • 38
Mutex • 155
MVI Suite • 155
MVI46 • 155
MVI56 • 155
MVI69 • 155
MVI71 • 155
MVI94 • 155
Mvicfg.c • 40
MVIsp_Close • 115, 118
MVIsp_Config • 119
MVIsp_Getch • 129, 130, 136, 138, 140
MVIsp_GetCountUnread • 140
MVIsp_GetCountUnsent • 139
MVIsp_GetCTS • 125
MVIsp_GetData • 137, 140
MVIsp_GetDCD • 127
MVIsp_GetDSR • 126
MVIsp_GetDTR • 123, 124

MVIsp_GetLineStatus • 128
MVIsp_GetRTS • 121, 122
MVIsp_Gets • 130, 132, 135, 138, 140
MVIsp_GetVersionInfo • 141
MVIsp_Open • 114, 117, 118, 119
MVIsp_OpenAlt • 116
MVIsp_Putch • 129, 130, 132, 134, 139
MVIsp_PutData • 129, 132, 133, 136, 138, 139
MVIsp_Puts • 129, 131, 134, 136, 139
MVIsp_SetDTR • 123, 124
MVIsp_SetHandshaking • 120
MVIsp_SetRTS • 121, 122

O

Operating System • 7
Originator • 155
Output Image • 155

P

Package Contents • 9
Pinouts • 2
Preparing the PLX-ADM Module • 9
Producer • 155
Programming the Module • 33
PTO • 155
PTQ Suite • 155

R

RAM Functions • 142
RS-232 Configuration Port Serial Connection • 12
RS-485 Programming Note • 34

S

Sample Code • 38
Scanner • 156
Serial API Architecture • 46
Serial API Files • 46
Serial Communications • 40
Serial Port API Communications • 129
Serial Port API Configuration Functions • 119
Serial Port API Initialization Functions • 114
Serial Port API Miscellaneous Functions • 141
Serial Port API Status Functions • 121
Serial Port Library Functions • 113
Setting Port 0 Configuration Jumpers • 10
Setting Up Your Compiler • 13
Setting Up Your Development Environment • 13
Side-connect • 156
Software • 35
Support, Service & Warranty • 157

T

Target • 156
Theory of Operation • 39
Thread • 156

U

Understanding the ADM API • 37

Index ProLinx ADM ♦ 'C' Programmable
Developer's Guide Application Development Module

ProSoft Technology, Inc. Page 161 of 161
February 20, 2013

W

Word • 156

Y

Your Feedback Please • 3

