

MCM4-ADM4
ProLinx Standalone

'C' Programmable Modbus
Communication Module

 February 20, 2013

DEVELOPER'S GUIDE

Important Installation Instructions

Power, Input and Output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods, Article 501-4 (b)
of the National Electrical Code, NFPA 70 for installation in the U.S., or as specified in Section 18-1J2 of the Canadian
Electrical Code for installations in Canada, and in accordance with the authority having jurisdiction. The following
warnings must be heeded:

A WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR
CLASS I, DIV. 2;

B WARNING - EXPLOSION HAZARD - WHEN IN HAZARDOUS LOCATIONS, TURN OFF POWER BEFORE
REPLACING OR WIRING MODULES

C WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NONHAZARDOUS.

D THIS DEVICE SHALL BE POWERED BY CLASS 2 OUTPUTS ONLY.

All ProLinx® Products

WARNING – EXPLOSION HAZARD – DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

AVERTISSEMENT – RISQUE D'EXPLOSION – AVANT DE DÉCONNECTER L'EQUIPMENT, COUPER LE
COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DÉSIGNÉ NON DANGEREUX.

Markings

UL/cUL ISA 12.12.01 Class I, Div 2 Groups A, B, C, D

cUL C22.2 No. 213-M1987

 243333 183151

CL I Div 2 GPs A, B, C, D

Temp Code T5

II 3 G

Ex nA nL IIC T5 X

0° C <= Ta <= 60° C

II – Equipment intended for above ground use (not for use in mines).

3 – Category 3 equipment, investigated for normal operation only.

G – Equipment protected against explosive gasses.

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,
compliments or complaints about the product, documentation, or support, please write or call us.

ProSoft Technology

5201 Truxtun Ave., 3rd Floor
Bakersfield, CA 93309
+1 (661) 716-5100
+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
support@prosoft-technology.com

Copyright © 2013 ProSoft Technology, Inc., all rights reserved.

MCM4-ADM4 Developer's Guide

February 20, 2013

ProSoft Technology
®
, ProLinx

®
, inRAx

®
, ProTalk

®
, and RadioLinx

®
 are Registered Trademarks of ProSoft

Technology, Inc. All other brand or product names are or may be trademarks of, and are used to identify products
and services of, their respective owners.

In an effort to conserve paper, ProSoft Technology no longer includes printed manuals with our product shipments.
User Manuals, Datasheets, Sample Ladder Files, and Configuration Files are provided on the enclosed CD-ROM,
and are available at no charge from our web site: www.prosoft-technology.com.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of
these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate
and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or
use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. Information in this document including illustrations, specifications and
dimensions may contain technical inaccuracies or typographical errors. ProSoft Technology makes no warranty or
representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or
errors at any time without notice. If you have any suggestions for improvements or amendments or have found errors
in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including
photocopying, without express written permission of ProSoft Technology. All pertinent state, regional, and local safety
regulations must be observed when installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform repairs to components. When
devices are used for applications with technical safety requirements, the relevant instructions must be followed.
Failure to use ProSoft Technology software or approved software with our hardware products may result in injury,
harm, or improper operating results. Failure to observe this information can result in injury or equipment damage.

© 2013 ProSoft Technology. All rights reserved.

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.

North America: +1.661.716.5100

Asia Pacific: +603.7724.2080

Europe, Middle East, Africa: +33 (0) 5.3436.87.20

Latin America: +1.281.298.9109

http://www.prosoft-technology.com/

Contents MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 5 of 127
February 20, 2013

Contents

Important Installation Instructions ... 2
Your Feedback Please .. 3
Content Disclaimer .. 3

1 Introduction 7

1.1 Operating System .. 7

2 Preparing the PLX-MCM4 Module 9

2.1 Package Contents ... 9
2.2 Setting Port 0 Configuration Jumpers ... 10
2.3 Mounting the gateway on the DIN-rail ... 11
2.4 Connecting Power to the Unit ... 11
2.5 Cable Connections .. 12

3 Setting Up Your Development Environment 17

3.1 Setting Up Your Compiler.. 17

4 Programming the Module 37

4.1 Debugging Strategies .. 37
4.2 RS-485 Programming Note ... 37

5 Understanding the ADM API 39

5.1 API Libraries .. 39
5.2 Development Tools ... 41
5.3 Theory of Operation .. 41
5.4 ADM Functional Blocks ... 41
5.5 ADM API Files ... 43

6 Application Development Function Library - ADM API 45

6.1 ADM API Functions ... 45
6.2 Core Functions .. 47
6.3 Database Functions .. 58
6.4 Clock Functions ... 84
6.5 Console Port Functions ... 88
6.6 LED Functions ... 90
6.7 Serial Port Functions ... 91

7 Reference 103

7.1 Product Specifications ... 103
7.2 MCM Database Definition ... 106

MCM4-ADM4 ♦ ProLinx Standalone Contents
'C' Programmable Modbus Communication Module Developer's Guide

Page 6 of 127 ProSoft Technology, Inc.
 February 20, 2013

7.3 Configuration Data .. 106
7.4 Modbus Error and Status Data Area Addresses .. 109
7.5 Error Codes ... 112
7.6 LED Indicators .. 114

8 DOS 6 XL Reference Manual 117

9 Glossary of Terms 119

10 Support, Service & Warranty 123

10.1 Contacting Technical Support ... 123
10.2 Warranty Information .. 124

Index 125

Introduction MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 7 of 127
February 20, 2013

1 Introduction

In This Chapter

 Operating System .. 7

This document provides information needed for development of application
programs for the MCM4-ADM4 Serial Communication Module.

The modules are programmable to accommodate devices with unique serial
protocols.

Included in this document is information about the available software API libraries
and tools, module configuration and programming information, and example code
for the module.

1.1 Operating System

The module includes General Software Embedded DOS 6-XL. This operating
system provides DOS compatibility along with real-time multitasking functionality.
The operating system is stored in Flash ROM and is loaded by the BIOS when
the module boots.

DOS compatibility allows user applications to be developed using standard DOS
tools, such as Borland compilers.

Note: DOS programs that try to access the video or keyboard hardware directly will not function
correctly on the PLX module. Only programs that use the standard DOS and BIOS functions to
perform console I/O are compatible.

Refer to the General Software Embedded DOS 6-XL Developer’s Guide (page
117) on the MCM4-ADM4 CD-ROM for more information.

MCM4-ADM4 ♦ ProLinx Standalone Introduction
'C' Programmable Modbus Communication Module Developer's Guide

Page 8 of 127 ProSoft Technology, Inc.
February 20, 2013

Preparing the PLX-MCM4 Module MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 9 of 127
February 20, 2013

2 Preparing the PLX-MCM4 Module

In This Chapter

 Package Contents ... 9

 Setting Port 0 Configuration Jumpers .. 10

 Mounting the gateway on the DIN-rail ... 11

 Connecting Power to the Unit .. 11

 Cable Connections .. 12

2.1 Package Contents

The following components are included with your MCM4-ADM4 gateway, and are
all required for installation and configuration.

Important: Before beginning the installation, please verify that all of the following items are
present.

Qty. Part Name Part Number Part Description

1 MCM4-ADM4
gateway

PLX-#### ProLinx communication gateway gateway

1 Cable Cable #15, RS232
Null Modem

For RS232 Connection from a PC to the CFG Port
of the gateway

Varies Cable Cable #9, Mini-DIN8
to DB9 Male
Adapter

For DB9 Connection to gateway’s Port. One DIN to
DB-9M cable included per configurable serial port,
plus one for gateway configuration

Varies Adapter 1454-9F Adapters, DB9 Female to Screw Terminal. For
RS422 or RS485 Connections to each serial
application port of the gateway

1 ProSoft
Solutions CD

 Contains sample programs, utilities and
documentation for the MCM4-ADM4 gateway.

If any of these components are missing, please contact ProSoft Technology
Support for replacements.

MCM4-ADM4 ♦ ProLinx Standalone Preparing the PLX-MCM4 Module
'C' Programmable Modbus Communication Module Developer's Guide

Page 10 of 127 ProSoft Technology, Inc.
February 20, 2013

2.2 Setting Port 0 Configuration Jumpers

Before installing the module on the DIN-rail, you must set the jumpers for the
Port 0 application port.

Note: Ethernet-only ProLinx modules do not use the serial port jumper settings. The serial
configuration jumper settings on an Ethernet-only module have no effect.
Note: The presence of Port 0 depends on the specific combination of protocols in your ProLinx
module. If your module does not have a Port 0, the following jumper settings do not apply.

Port 0 is preconfigured for RS-232. You can move the port configuration jumper
on the back of the module to select RS-485 or RS-422.

Note: Some ProLinx modules do not correctly report the position of the port 0 jumper to the Port
Configuration page on the Config/Debug menu. In cases where the reported configuration differs
from the known jumper configuration, the physical configuration of the jumper is correct.

The following illustration shows the jumper positions for Port 0:

ProLinx 5000/6000 Series Module

Preparing the PLX-MCM4 Module MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 11 of 127
February 20, 2013

2.3 Mounting the gateway on the DIN-rail

ProLinx 5000/6000 Series gateway

2.4 Connecting Power to the Unit

WARNING: Ensure that you do not reverse polarity when applying power to the gateway. This will
cause damage to the gateway’s power supply.

MCM4-ADM4 ♦ ProLinx Standalone Preparing the PLX-MCM4 Module
'C' Programmable Modbus Communication Module Developer's Guide

Page 12 of 127 ProSoft Technology, Inc.
February 20, 2013

2.5 Cable Connections

The application ports on the MCM4-ADM4 module support RS-232, RS-422, and
RS-485 interfaces. Please inspect the module to ensure that the jumpers are set
correctly to correspond with the type of interface you are using.

Note: When using RS-232 with radio modem applications, some radios or modems require
hardware handshaking (control and monitoring of modem signal lines). Enable this in the
configuration of the module by setting the UseCTS parameter to 1.

2.5.1 RS-232

When the RS-232 interface is selected, the use of hardware handshaking
(control and monitoring of modem signal lines) is user definable. If no hardware
handshaking will be used, the cable to connect to the port is as shown below:

RS-232: Modem Connection

This type of connection is required between the module and a modem or other
communication device.

The "Use CTS Line" parameter for the port configuration should be set to 'Y' for
most modem applications.

Preparing the PLX-MCM4 Module MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 13 of 127
February 20, 2013

RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module
requires hardware handshaking (control and monitoring of modem signal lines).

RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field
device communication port.

Note: If the port is configured with the "Use CTS Line" set to 'Y', then a jumper is required between
the RTS and the CTS line on the module connection.

MCM4-ADM4 ♦ ProLinx Standalone Preparing the PLX-MCM4 Module
'C' Programmable Modbus Communication Module Developer's Guide

Page 14 of 127 ProSoft Technology, Inc.
February 20, 2013

2.5.2 RS-232 Configuration/Debug Port

This port is physically a Mini-DIN connection. A Mini-DIN to DB-9 adapter cable
is included with the module. This port permits a PC based terminal emulation
program to view configuration and status data in the module and to control the
module. The cable for communications on this port is shown in the following
diagram:

2.5.3 RS-485

The RS-485 interface requires a single two or three wire cable. The Common
connection is optional and dependent on the RS-485 network. The cable required
for this interface is shown below:

Note: Terminating resistors are generally not required on the RS-485 network, unless you are
experiencing communication problems that can be attributed to signal echoes or reflections. In this
case, install a 120-ohm terminating resistor on the RS-485 line.

Preparing the PLX-MCM4 Module MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 15 of 127
February 20, 2013

2.5.4 RS-422

RS-485 and RS-422 Tip

If communication in the RS-422/RS-485 mode does not work at first, despite all
attempts, try switching termination polarities. Some manufacturers interpret +/-
and A/B polarities differently.

2.5.5 DB9 to Mini-DIN Adaptor (Cable 09)

MCM4-ADM4 ♦ ProLinx Standalone Preparing the PLX-MCM4 Module
'C' Programmable Modbus Communication Module Developer's Guide

Page 16 of 127 ProSoft Technology, Inc.
February 20, 2013

Setting Up Your Development Environment MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 17 of 127
February 20, 2013

3 Setting Up Your Development Environment

In This Chapter

 Setting Up Your Compiler .. 17

3.1 Setting Up Your Compiler

There are some important compiler settings that must be set in order to
successfully compile an application for the ProLinx platforms. The following
topics describe the setup procedures for each of the supported compilers.

3.1.1 Configuring Digital Mars C++ 8.49

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note: This procedure assumes that you have successfully installed Digital Mars C++ 8.49 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_MCM_TOOL_PLX.ZIP file. This
zip file is available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. When you unzip the file, you will find the
sample code files in \ADM_MCM_TOOL_PLX\SAMPLES\.

Building an Existing Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project Open from the Main
Menu.

MCM4-ADM4 ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module Developer's Guide

Page 18 of 127 ProSoft Technology, Inc.
February 20, 2013

2 From the Folders field, navigate to the folder that contains the project
(C:\ADM_MCM_TOOL_PLX\SAMPLES\…).

3 In the File Name field, click on the project name (56adm-si.prj).
4 Click OK. The Project window appears:

5 Click Project Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

Setting Up Your Development Environment MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 19 of 127
February 20, 2013

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be

accessed by clicking Project Settings from the Main Menu.

Creating a New Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project New from the Main
Menu.

2 Select the path and type in the Project Name.

MCM4-ADM4 ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module Developer's Guide

Page 20 of 127 ProSoft Technology, Inc.
February 20, 2013

3 Click Next.

4 In the Platform field, choose DOS.
5 In the Project Settings choose Release if you do not want debug information

included in your build.
6 Click Next.

7 Select the first source file necessary for the project.
8 Click Add.
9 Repeat this step for all source files needed for the project.
10 Repeat the same procedure for all library files (.lib) needed for the project.

Setting Up Your Development Environment MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 21 of 127
February 20, 2013

11 Choose Libraries (*.lib) from the List Files of Type field to view all library files:

12 Click Next.

13 Add any defines or include directories desired.
14 Click Finish.

MCM4-ADM4 ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module Developer's Guide

Page 22 of 127 ProSoft Technology, Inc.
February 20, 2013

15 The Project window should now contain all the necessary source and library
files as shown in the following window:

16 Click Project Settings from the Main Menu.

17 These settings were set when the project was created. No changes are
required. The executable must be built as a DOS executable in order to run
on the PLX platform.

Setting Up Your Development Environment MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 23 of 127
February 20, 2013

18 Click the Directories tab and fill in directory information as required by your
project’s directory structure.

19 If the fields are left blank then it is assumed that all of the files are in the
same directory as the project file. The output files will be placed in this
directory as well.

20 Click on the Build tab, and choose the Compiler selection. Confirm that the
settings match those shown in the following screen:

MCM4-ADM4 ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module Developer's Guide

Page 24 of 127 ProSoft Technology, Inc.
February 20, 2013

21 Click Code Generation from the Topics field and ensure that the options
match those shown in the following screen:

22 Click Memory Models from the Topics field and ensure that the options
match those shown in the following screen:

Setting Up Your Development Environment MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 25 of 127
February 20, 2013

23 Click Linker from the Topics field and ensure that the options match those
shown in the following screen:

24 Click Packing & Map File from the Topics field and ensure that the options
match those shown in the following screen:

MCM4-ADM4 ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module Developer's Guide

Page 26 of 127 ProSoft Technology, Inc.
February 20, 2013

25 Click Make from the Topics field and ensure that the options match those
shown in the following screen:

26 Click OK.

27 Click Parse Update All from the Project Window Menu. The new settings
may not take effect unless the project is updated and reparsed.

28 Click Project Build All from the Main Menu.
29 When complete, the build results will appear in the Output window:

The executable file will be located in the directory listed in the Compiler Output
Directory box of the Directories tab (that is,
C:\ADM_MCM_TOOL_PLX\SAMPLES\…). The Project Settings window can be

accessed by clicking Project Settings from the Main Menu.

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

Setting Up Your Development Environment MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 27 of 127
February 20, 2013

3.1.2 Configuring Borland C++5.02

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology. using Borland C++ 5.02. After verifying that the
sample code can be successfully compiled and built, you can modify the sample
code to work with your application.

Note: This procedure assumes that you have successfully installed Borland C++ 5.02 on your
workstation.

Downloading the Sample Program

The sample code files are located in the MCM4ADM.zip file. This zip file is
available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. One the file is unzipped, you can find the
sample code files in \MCM4ADM\Sample.

Note: ProSoft recommends using the project file MCMADM.IDE as a starting point for your project.
You can then modify this file for your particular needs.

Building an Existing Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, then click Project Open Project from the Main
Menu.

2 From the Directories field, navigate to the directory that contains the project
(C:\adm\sample).

3 In the File Name field, click on the project name (adm.ide).

MCM4-ADM4 ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module Developer's Guide

Page 28 of 127 ProSoft Technology, Inc.
February 20, 2013

4 Click OK. The Project window appears:

5 Click Project Build All from the Main Menu to create the .exe file. The
Building ADM window appears when complete:

6 When Success appears in the Status field, click OK.

The executable file will be located in the directory listed in the Final field of
the Output Directories (that is, C:\adm\sample). The Project Options window
can be accessed by clicking Options Project Menu from the Main Menu.

Setting Up Your Development Environment MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 29 of 127
February 20, 2013

Creating a New Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click File Project from the Main Menu.

2 Type in the Project Path and Name. The Target Name is created
automatically.

3 In the Target Type field, choose Application (.exe).
4 In the Platform field, choose DOS (Standard).
5 In the Target Model field, choose Large.
6 Ensure that Emulation is checked in the Math Support field.
7 Click OK. A Project window appears:

MCM4-ADM4 ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module Developer's Guide

Page 30 of 127 ProSoft Technology, Inc.
February 20, 2013

8 Click on the .cpp file created and press the Delete key. Click Yes to delete
the .cpp file.

9 Right click on the .exe file listed in the Project window and choose the Add
Node menu selection. The following window appears:

10 Click source file, then click Open to add source file to the project. Repeat this
step for all source files needed for the project.

11 Repeat the same procedure for all library files (.lib) needed for the project.
12 Choose Libraries (*.lib) from the Files of Type field to view all library files:

Setting Up Your Development Environment MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 31 of 127
February 20, 2013

13 The Project window should now contain all the necessary source and library
files as shown in the following window:

14 Click Options Project from the Main Menu.

MCM4-ADM4 ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module Developer's Guide

Page 32 of 127 ProSoft Technology, Inc.
February 20, 2013

15 Click Directories from the Topics field and fill in directory information as
required by your project’s directory structure.

16 Double-click on the Compiler header in the Topics field, and choose the
Processor selection. Confirm that the settings match those shown in the
following screen:

Setting Up Your Development Environment MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 33 of 127
February 20, 2013

17 Click Memory Model from the Topics field and ensure that the options match
those shown in the following screen:

18 Click OK.

19 Click Project Build All from the Main Menu.
20 When complete, the Success window appears:

21 Click OK. The executable file will be located in the directory listed in the Final
box of the Output Directories (that is, C:\adm\sample). The Project Options

window can be accessed by clicking Options Project from the Main
Menu.

MCM4-ADM4 ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module Developer's Guide

Page 34 of 127 ProSoft Technology, Inc.
February 20, 2013

3.1.3 Downloading Files to the Module

1 Connect your PC’s COM port to the ProLinx Configuration/Debug port using
the Null Modem cable and ProLinx Adapter cable.

2 From the Start Menu on your PC, select Programs Accessories

Communications HyperTerminal. The New Connection Screen appears:

3 Enter a name and choose OK. The Connect To window appears:

Setting Up Your Development Environment MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 35 of 127
February 20, 2013

4 Choose the COM port that your ProLinx module is connected to and choose
OK. The COM1 Properties window appears.

5 Ensure that the settings shown on this screen match those on your PC.
6 Click OK. The HyperTerminal window appears with a DOS prompt and

blinking cursor.
7 Apply power to the ProLinx module and hold down the [L] key. The screen

displays information and ultimately displays the Loader menu:

MCM4-ADM4 ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module Developer's Guide

Page 36 of 127 ProSoft Technology, Inc.
February 20, 2013

This menu provides options that allow you to download a configuration file [C], a
WATTCP file [W], or a new executable file [U]. You can also press [V] to view
module version information.

1 Type [U] at the prompt to transfer executable files from the computer to the
ProLinx unit.

2 Type [Y] when the program asks if you want to load an .exe file.

3 From the HyperTerminal menu, select Transfer Send.

4 When the Send To screen appears, browse for the executable file to send to
the module. Be sure to select Y Modem in the Protocol field.

5 Click Send. The program loads the new executable file to the ProLinx
module. When the download is complete, the program returns to the Loader
menu.

If you want to load a new configuration file or a WATTCP file, select the
appropriate option and perform the same steps to download these files.

6 Press [Esc], then [Y] to confirm module reboot.

Programming the Module MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 37 of 127
February 20, 2013

4 Programming the Module

In This Chapter

 Debugging Strategies .. 37

 RS-485 Programming Note ... 37

This section describes how to get your application running on the ProLinx
module. Once an application has been developed using the serial API, it must be
downloaded to the ProLinx module in order to run. The application may then be
run manually from the console command line, or automatically on boot from the
AUTOEXEC.BAT or CONFIG.SYS files.

4.1 Debugging Strategies

For simple debugging, printf’s may be inserted into the module application to
display debugging information on the console connected to the Debug port.

4.2 RS-485 Programming Note

4.2.1 Hardware

The serial port has two driver chips, one for RS-232 and one for RS-422/485.
The Request To Send (RTS) line is used for hardware handshaking in RS-232
and to control the transmitter in RS-422/485.

In RS-485, only one node can transmit at a time. All nodes should default to
listening (RTS off) unless transmitting. If a node has its RTS line asserted, then
all other communication is blocked. An analogy for this is a 2-way radio system
where only one person can speak at a time. If someone holds the talk button,
then they cannot hear others transmitting.

In order to have orderly communication, a node must make sure no other nodes
are transmitting before beginning a transmission. The node needing to transmit
will assert the RTS line then transmit the message. The RTS line must be de-
asserted as soon as the last character is transmitted. Turning RTS on late or off
early will cause the beginning or end of the message to be clipped resulting in a
communication error. In some applications it may be necessary to delay between
RTS transitions and the message. In this case RTS would be asserted, wait for
delay time, transmit message, wait for delay time, and de-assert RTS.

MCM4-ADM4 ♦ ProLinx Standalone Programming the Module
'C' Programmable Modbus Communication Module Developer's Guide

Page 38 of 127 ProSoft Technology, Inc.
February 20, 2013

RS-485 Transmit / Receive

Unit A

Unit B

Unit B

Unit A

RTS

Transmit

Data

RTS

Transmit

Data

RTS On RTS Off

Optional

RTS On

Delay

Optional

RTS Off

Delay

4.2.2 Software

The following is a code sample designed to illustrate the steps required to
transmit in RS-485. Depending on the application, it may be necessary to handle
other processes during this transmit sequence and to not block. This is simplified
to demonstrate the steps required.

int length = 10; // send 10 characters

int CharsLeft;

BYTE buffer[10];

// Set RTS on

MVIsp_SetRTS(COM2, ON);

// Optional delay here (depends on application)

// Transmit message

MVIsp_PutData(COM2, buffer, &length, TIMEOUT_ASAP);

// Check to see that message is done

MVIsp_GetCountUnsent(COM2, &CharsLeft);

// Keep checking until all characters sent

while(CharsLeft)

{

MVIsp_GetCountUnsent(COM2, &CharsLeft);

}

// Optional delay here (depends on application)

// Set RTS off

MVIsp_SetRTS(COM2, OFF);

Understanding the ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 39 of 127
February 20, 2013

5 Understanding the ADM API

In This Chapter

 API Libraries .. 39

 Development Tools ... 41

 Theory of Operation .. 41

 ADM Functional Blocks ... 41

 ADM API Files ... 43

The ADM API Suite allows software developers to access the serial ports without
needing detailed knowledge of the module’s hardware design. The API provides
for Modbus Master/Slave and generic serial ports.

Applications for the MCM4-ADM4 module may be developed using industry-
standard DOS programming tools and the appropriate API components.

This section provides general information pertaining to application development
for the MCM4-ADM4 module.

5.1 API Libraries

Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars C++ or Borland development
tools.

Note: The following compiler versions are intended to be compatible with the PLX module API:
 Digital Mars C++ 8.49
 Borland C++ V5.02
More compilers will be added to the list as the API is tested for compatibility with them.

5.1.1 Calling Convention

The API library functions are specified using the 'C' programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

MCM4-ADM4 ♦ ProLinx Standalone Understanding the ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 40 of 127 ProSoft Technology, Inc.
February 20, 2013

5.1.2 Header File

A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard 'C' format.

5.1.3 Sample Code

A sample application is provided to illustrate the usage of the API functions. Full
source for the sample application is provided. The sample application may be
compiled using Borland C++.

5.1.4 Multithreading Considerations

The DOS 6-XL operating system supports the development of multi-threaded
applications.

Note: The multi-threading library kernel.lib in the DOS folder on the distribution CD-ROM is
compiler-specific to Borland C++ 5.02. It is not compatible with Digital Mars C++ 8.49. ProSoft
Technology, Inc. does not support multi-threading with Digital Mars C++ 8.49.

Note: The ADM DOS 6-XL operating system has a system tick of 5 milliseconds. Therefore, thread
scheduling and timer servicing occur at 5ms intervals. Refer to the DOS 6-XL Developer’s Guide
on the distribution CD-ROM for more information.

Multi-threading is also supported by the API.

 DOS libraries have been tested and are thread-safe for use in multi-threaded
applications.

 MVIsp libraries are safe to use in multi-threaded applications with the
following precautions: If you call the same MVIsp function from multiple
threads, you will need to protect it, to prevent task switches during the
function's execution. The same is true for different MVIsp functions that share
the same resources (for example, two different functions that access the
same read or write buffer).

WARNING: ADM and ADMNET libraries are not thread-safe. ProSoft Technology, Inc. does not
support the use of ADM and ADMNET libraries in multi-threaded applications.

Understanding the ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 41 of 127
February 20, 2013

5.2 Development Tools

An application that is developed for the MCM4-ADM4 module must be stored on
the module’s Flash ROM disk to be executed. A loader program is provided with
the module, to download an executable, configuration file or wattcp.cfg file via
module port 0, as needed.

5.3 Theory of Operation

5.3.1 ADM API

The ADM API is one component of the ADM API Suite. The ADM API provides a
simple module level interface that is portable between members of the ProLinx
Family. This is useful when developing an application that implements a serial
protocol for a particular device, such as a scale or bar code reader. After an
application has been developed, it can be used on any of the ProLinx family
modules.

5.3.2 ADM API Architecture

The ADM API is composed of a statically-linked library (called the ADM library).
Applications using the ADM API must be linked with the ADM library. The ADM
API encapsulates the hardware making it possible to design ProLinx applications
that can be run on any of the ProLinx family of modules.

The following illustration shows the relationship between the API components.

HARDWARE

MCM-ADM API

Application

5.4 ADM Functional Blocks

5.4.1 Debug / Status Port

The Configuration/Debug Port allows you to transmit or receive configuration
data, view database information in the module and view configuration data. Use
of this port can aid in locating problems that may exist in the user configuration
and attached devices. Refer to Diagnostics and Troubleshooting for information
on using the Config/Debug port.

MCM4-ADM4 ♦ ProLinx Standalone Understanding the ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 42 of 127 ProSoft Technology, Inc.
February 20, 2013

5.4.2 Serial Communications

The developer must provide the serial communication driver code. The serial API
has many useful functions to facilitate writing a driver. A sample communication
driver is included in the example program provided.

5.4.3 Database

The database functions of the ADM API allow the creation of a database in
memory to store data to be accessed via the application ports. The database
consists of word registers that can be accessed as bits, bytes, words, longs,
floats or doubles. Functions are provided for reading and writing the data in the
various data types. The database serves as a holding area for exchanging data
with foreign devices attached to the application ports.

5.4.4 MCM4_ADM.C

The application starts by opening the MCMADM API. The console for the Debug
port and the database is installed. A protocol driver for each port is registered.
Two protocol drivers are available, Modbus (MCM) and user developed (ADM).
When registering ADM protocol drivers the name of the user written functions
must be passed to the registration function.

The startup function is then called, initializing the application and protocol drivers.

The application enters the run loop that calls the run functions of the protocol
drivers.

When an ESC key is received on the Debug port the loop exits and the shutdown
function is called, shutting down the application and the protocol drivers.

5.4.5 MCMADM.H

This header file contains definitions and function declarations for the MCMADM
library.

Understanding the ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 43 of 127
February 20, 2013

5.4.6 adm_prot.c

This file contains sample ADM protocol driver functions. There are startup, run
and shutdown functions for each of the ADM ports.

The ADM driver on Port 0 is an ASCII talker. On 1 second intervals a count value
is retrieved from the database, incremented, and saved back to the database.
This counter value is then sent out of the serial port.

The ADM driver on Port 1 is an ASCII listener. This driver receives a two byte
ASCII value from the serial port (sent from Port 0), swaps the byte order and
saves the value to the database.

5.4.7 adm_prot.h

This header file contains definitions and function declarations for the ADM
protocol driver.

5.5 ADM API Files

Table 1 lists the supplied API file names. These files should be copied to a
convenient directory on the computer where the application is to be developed.
These files need not be present on the module when executing the application.

File Name Description

mcmadm.h Include file

mcmadm.lib Library (16-bit OMF format)

MCM4-ADM4 ♦ ProLinx Standalone Understanding the ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 44 of 127 ProSoft Technology, Inc.
February 20, 2013

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 45 of 127
February 20, 2013

6 Application Development Function Library -
ADM API

In This Chapter

 ADM API Functions ... 45

 Core Functions .. 47

 Database Functions .. 58

 Clock Functions ... 84

 Console Port Functions ... 88

 LED Functions ... 90

 Serial Port Functions ... 91

6.1 ADM API Functions

This section provides detailed programming information for each of the ADM API
library functions. The calling convention for each API function is shown in 'C'
format.

API library routines are categorized according to functionality.

Function Category Function Name Description

Core Functions MCM_Open Opens the API and enables the other
functions to be used

 MCM_RegisterProtocol Registers a Modbus driver on a particular
port

 ADM_RegisterProtocol Registers a ADM driver on a particular port

 ADM_RegisterUserFunc Registers a user process in the application

 MCM_InstallDatabase Creates the database area for the protocols
to pass data to one another

 MCM_InstallConsole Installs the console on the Debug port

 MCM_Startup Performs the module startup process

 MCM_Run Performs the module run process

 MCM_Shutdown Performs the module shutdown process

Database Functions MCM_DBGetBit Get bit value

 MCM_DBSetBit Set bit

 MCM_DBClearBit Clear bit

 MCM_DBGetByte Get byte value

 MCM_DBSetByte Set byte value

 MCM_DBGetWord Get 16-bit word value

 MCM_DBSetWord Set 16-bit word value

 MCM_DBGetLong Get 32-bit long word value

 MCM_DBSetLong Set 32-bit long word value

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 46 of 127 ProSoft Technology, Inc.
February 20, 2013

Function Category Function Name Description

 MCM_DBGetFloat Get 32-bit float value

 MCM_DBSetFloat Set 32-bit float value

 MCM_DBGetDFloat Get 64-bit double float value

 MCM_DBSetDFloat Set 64-bit double float value

 MCM_DBGetBytes Get multiple bytes

 MCM_DBSetBytes Set multiple bytes

 MCM_DBGetWords Get multiple 16-bit words

 MCM_DBSetWords Set multiple 16-bit words

 MCM_DBGetString Get ASCII string

 MCM_DBSetString Set ASCII string

 MCM_DBGetIntPtr Get a pointer to a word location

 MCM_DBBitChanged Test for bit changed

 MCM_DBByteChanged Test for byte changed

 MCM_DBChanged Test for 16-bit word changed

 MCM_DBLongChanged Test for 32-bit long word changed

 MCM_DBFloatChanged Test for 32-bit float changed

 MCM_DBDoubleChanged Test for 64-bit double float changed

Clock Functions MCM_ClockGetHandle Gets access to a timer

 MCM_ClockStart Starts timer

 MCM_ClockCheck Check for timeout

 MCM_ClockGetValue Gets value of timer

Console Port
Functions

MCM_Send Send characters to the console

 MCM_GetKey Get a key from the console

LED Functions MCM_LED_Set Activate/deactivate LEDs

Serial Port Functions MCM_SendBytes Send bytes to the serial port using the built-
in driver

 MCM_SendBytesDirect Send bytes directly to the serial port

 MCM_SetRTS Set the RTS level

 MCM_SetDTR Set the DTR level

 MCM_GetCTS Get the CTS level

 MCM_GetByte Get character from receive buffer

 MCM_GetAsciiString Get an ASCII string from the receive buffer

 MCM_GetDataString Get a multiple bytes from the receive buffer

 MCM_BytesInTransmitBuffer Get the number of bytes in the transmit
buffer still to be sent

 MCM_BytesInReceiveBuffer Get the number of bytes in the receive
buffer

 MCM_FlushTransmitBuffer Clear characters from the transmit buffer

 MCM_FlushReceiveBuffer Clear characters from the receive buffer

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 47 of 127
February 20, 2013

6.2 Core Functions

MCM_Open

Syntax

ADMAPIENTRY MCM_Open(void);

Parameters

None

Description

This function opens the MCMADM API. This function must be called before any
of the other API functions can be used.

Important: After the API has been opened, MCM_Shutdown should always be called before
exiting the application.

Return Value

ADM_SUCCESS API was opened successfully

ADM_ERR_REOPEN API is already open

ADM_ERR_NOACCESS API cannot run on this hardware

Note: ADM_ERR_NOACCESS will be returned if the hardware is not from ProSoft Technology.

Example

/* open MCMADM API */

if(MCM_Open() != ADM_SUCCESS)

{

 printf("\nFailed to open MCMADM API... exiting program\n");

 exit(1);

}

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 48 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_RegisterProtocol

Syntax

ADMAPIENTRYW MCM_RegisterProtocol(int port);

Parameters

port Com port to use (0 to 3)

Description

This function registers and installs an MCM driver on the Com port. This function
must be called in order to use the MCM protocol driver.

Return Value

ADM_SUCCESS MCM driver was installed successfully

ADM_ERR_REOPEN MCM driver is already installed

ADM_ERR_NOACCESS API is not open

ADM_ERR_BADPARAM Com port specified is out of range

Example

MCM_RegisterProtocol(0); // Register MCM driver on port 0

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 49 of 127
February 20, 2013

ADM_RegisterProtocol

Syntax

ADMAPIENTRYW ADM_RegisterProtocol(int port, void (*startup_func)(), void

(*run_func)(), void (*shutdown_func)());

Parameters

port Com port to use (0 to 3)

startup_func Pointer to user startup function

run_func Pointer to user run function

shutdown Pointer to user shutdown function

Description

This function registers and installs an ADM driver on the Com port. This function
must be called in order to use the ADM port driver. A pointer to a startup, run and
shutdown function must be provided. These functions will be called by the
system at various times. The startup function will be called once during the boot
process. When the module enters the run loop the run function will be called
once per loop. When shutdown of the module is requested the shutdown function
will be called once.

Note: The run function should be written to be non-blocking to ensure timely processing of all the
drivers.

Return Value

ADM_SUCCESS ADM driver was installed successfully

ADM_ERR_REOPEN ADM driver is already installed

ADM_ERR_NOACCESS API is not open

ADM_ERR_BADPARAM Com port specified is out of range

Example

/* Set port 0 as an ADM port */

ADM_RegisterProtocol(0,

ADM_Protocol_Startup0,

ADM_Protocol_Run_Talker,

ADM_Protocol_Shutdown0);

/* startup function for port 0 */

void ADM_Protocol_Startup0(void)

{

 printf("ADM Startup0\n");

 MCM_FlushTransmitBuffer(0);

 // if clock handle does not exist get handle

 if(CountTimer == -1)

 CountTimer = MCM_ClockGetHandle();

 /* start 1 second timer */

 MCM_ClockStart(CountTimer, 1000000L);

}

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 50 of 127 ProSoft Technology, Inc.
February 20, 2013

/* run function for port 0 */

void ADM_Protocol_Run_Talker(void)

{

 /* check timer */

 if(MCM_ClockCheck(CountTimer) == TRUE)

 return;

 /* re-start clock, 1 second */

 MCM_ClockStart(CountTimer, 1000000L);

 /* get counter from database */

 Counter = MCM_DBGetWord(COUNTER_OFFSET);

 /* increment count */

 Counter++;

 /* save new count to database */

 MCM_DBSetWord(COUNTER_OFFSET, Counter);

 /* get count from database and swap bytes */

 TxBuff[1] = MCM_DBGetByte(COUNTER_OFFSET*2);

 TxBuff[0] = MCM_DBGetByte((COUNTER_OFFSET*2)+1);

 /* send count message out of port */

 MCM_SendBytes(0, TxBuff, 2);

}

/* shutdown function for port 0 */

void ADM_Protocol_Shutdown0(void)

{

 printf("ADM Shutdown0\n");

}

Note: The pointers to the user functions are the names of the functions.

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 51 of 127
February 20, 2013

ADM_RegisterUserFunc

Syntax

ADMAPIENTRYW ADM_RegisterUserFunc(void (*startup_func)(), void (*run_func)(),

void(*shutdown_func)() , int (*debug_func)());

Parameters

startup_func Pointer to user startup function

run_func Pointer to user run function

shutdown Pointer to user shutdown function

debug_func Pointer to user debug function

Description

This function registers and installs a user process. This function is useful for
adding a user-defined process to the application. A pointer to a startup, run and
shutdown function must be provided. These functions will be called by the
system at various times. The startup function will be called once during the boot
process. When the module enters the run loop the run function will be called
once per loop. When shutdown of the module is requested the shutdown function
will be called once.

Note: The run function should be written to be non-blocking to ensure timely processing of all the
drivers.

ADM_SUCCESS ADM driver was installed successfully

ADM_ERR_NOACCESS API is not open

Example

void ADM_Protocol_Startup(void)

{

 /* initialize user function */

 ...

}

void ADM_Protocol_Run(void)

{

 /* run user function */

 ...

}

void ADM_Protocol_Shutdown(void)

{

 /* close user function */

...

}

int ADM_Protocol_Debug(void)

{

 /* print out debugging information */

...

}

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 52 of 127 ProSoft Technology, Inc.
February 20, 2013

...

ADM_RegisterUserFunc(

 ADM_Protocol_Startup,

 ADM_Protocol_Run,

 ADM_Protocol_Shutdown,

 ADM_Protocol_Debug);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 53 of 127
February 20, 2013

MCM_InstallDatabase

Syntax

ADMAPIENTRYW MCM_InstallDatabase(unsigned int size);

Parameters

size Size of database in 16-bit registers

Description

Return Value

ADM_SUCCESS Database was installed successfully

ADM_ERR_DB_MAX_SIZE Database maximum size exceeded

ADM_ERR_MEMORY Insufficient memory for database

ADM_ERR_REOPEN Database is already installed

ADM_ERR_NOACCESS API is not open

ADM_ERR_BADPARAM Size is less than 1000 or greater than 10000

Example

MCM_InstallDatabase(4000); // Install database of 4000 registers

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 54 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_InstallConsole

Syntax

ADMAPIENTRYW MCM_InstallConsole(void);

Parameters

None

Description

This function installs the console on the Debug port. This allows access to the
module through a terminal emulation program such as Hyper Term.

Return Value

ADM_SUCCESS Console was installed successfully

ADM_ERR_NOACCESS API is not open

Example

/* initialize console */

MCM_InstallConsole();

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 55 of 127
February 20, 2013

MCM_Startup

Syntax

ADMAPIENTRYW MCM_Startup(void);

Parameters

None

Description

This function performs the module initialization. The protocol drivers must be
registered before the initialization is performed. During the initialization the
protocol drivers will be initialized and the database will be cleared.

Return Value

ADM_SUCCESS Initialization was performed

ADM_ERR_NOACCESS API is not open

Example

/* Initialize processes */

MCM_Startup();

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 56 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_Run

Syntax

ADMAPIENTRYW MCM_Run(void);

Parameters

None

Description

This function calls startup for all of the processes. The user startup function will
be called by this function. Once startup is complete, the processes will be run.
The user run function will be called repeatedly while the function is running.
When an ESC key is received over the Debug port, the processes will be
shutdown. The user shutdown function will be called at this time. The function will
then exit.

Return Value

ADM_SUCCESS Run was performed

ADM_ERR_NOACCESS API is not open

Example

/* Run protocol drivers */

MCM_Run();

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 57 of 127
February 20, 2013

MCM_Shutdown

Syntax

ADMAPIENTRYW MCM_Shutdown(void);

Parameters

None

Description

This function removes the protocol drivers and closes the database.

Return Value

ADM_SUCCESS Shutdown was performed

Example

MCM_Shutdown();

exit(0);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 58 of 127 ProSoft Technology, Inc.
February 20, 2013

6.3 Database Functions

MCM_DBGetBit

Syntax

ADMAPIENTRY MCM_DBGetBit(unsigned short offset);

Parameters

offset Bit offset into database

Description

This function is used to read a bit from the database at a specified bit offset.

Return Value

Requested bit

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

Example

unsigned short offset;

/* test bit at offset 16 */

offset = 16;

if(MCM_DBGetBit(offset))

printf("bit is set");

else

printf("bit is clear");

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 59 of 127
February 20, 2013

MCM_DBSetBit

Syntax

ADMAPIENTRY MCM_DBSetBit(unsigned short offset);

Parameters

offset Bit offset into database

Description

This function is used to set a bit to a 1 in the database at a specified bit offset.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

Example

unsigned short offset;

/* set bit at offset 16 to 1 */

offset = 16;

MCM_DBSetBit(offset);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 60 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBClearBit

Syntax

ADMAPIENTRY MCM_DBClearBit(unsigned short offset);

Parameters

offset Bit offset into database

Description

This function is used to clear a bit to a 0 in the database at a specified bit offset.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

Example

unsigned short offset;

/* clear bit at offset 16 to 0 */

offset = 16;

MCM_DBClearBit(offset);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 61 of 127
February 20, 2013

MCM_DBGetByte

Syntax

ADMAPIENTRYC MCM_DBGetByte(unsigned short offset);

Parameters

offset Byte offset into database

Description

This function is used to read a byte from the database at a specified byte offset.

Return Value

Requested byte

Example

unsigned short offset;

char c;

/* get byte value at byte offset 1000 (register 500) */

offset = 1000;

c = MCM_DBGetByte(offset);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 62 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBSetByte

Syntax

ADMAPIENTRY MCM_DBSetByte(unsigned short offset, const char val);

Parameters

offset Byte offset into database

val Value to be written to the database

Description

This function is used to write a byte to the database at a specified byte offset.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

Example

unsigned short offset;

const char val;

/* write 25 to byte 1000 (register 500) */

offset = 1000;

val = 25;

MCM_DBSetByte(offset, val);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 63 of 127
February 20, 2013

MCM_DBGetWord

Syntax

ADMAPIENTRY MCM_DBGetWord(unsigned short offset);

Parameters

offset Word offset into database

Description

This function is used to read a word from the database at a specified word offset.

Return Value

Requested word

Example

unsigned short offset;

int i;

i = MCM_DBGetWord(offset);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 64 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBSetWord

Syntax

ADMAPIENTRY MCM_DBSetWord(unsigned short offset, const short val);

Parameters

offset Word offset into database

val Value to be written to the database

Description

This function is used to write a word to the database at a specified word offset.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

Example

unsigned short offset;

const short val;

/* write 300 to register 1000 */

offset = 1000;

val = 300;

MCM_DBSetWord(offset, val);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 65 of 127
February 20, 2013

MCM_DBGetLong

Syntax

ADMAPIENTRYL MCM_DBGetLong(unsigned short offset);

Parameters

offset Long int offset into database

Description

This function is used to read a long int from the database at a specified offset.

Return Value

Requested long int

Example

unsigned short offset;

long l;

/* get long value at long register offset 1000 (register 2000) */

offset = 2000;

l = MCM_DBGetLong(offset);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 66 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBSetLong

Syntax

ADMAPIENTRY MCM_DBSetLong(unsigned short offset, const long val);

Parameters

offset Long int offset into database

val Value to be written to the database

Description

This function is used to write a long int to the database at a specified offset.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

Example

unsigned short offset;

const long val;

/* write 100000 to long register 1000 (register 2000) */

offset = 2000;

val = 100000L;

MCM_DBSetLong(offset, val);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 67 of 127
February 20, 2013

MCM_DBGetFloat

Syntax

ADMAPIENTRYF MCM_DBGetFloat(unsigned short offset);

Parameters

offset float offset into database

Description

This function is used to read a floating-point number from the database at a
specified float offset.

Return Value

Requested floating-point number.

Example

unsigned short offset;

float f;

/* read float from float register 1000 (register 2000) */

offset = 2000;

f = MCM_DBGetFloat(offset);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 68 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBSetFloat

Syntax

ADMAPIENTRY MCM_DBSetFloat(unsigned short offset, const float val);

Parameters

offset float offset into database

val Value to be written to the database

Description

This function is used to write a floating-point number to the database at a
specified float offset.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

Example

unsigned short offset;

const float val;

/* write 25.3 to float register 200 (register 400) */

offset = 400;

val = 25.3;

MCM_DBSetFloat(offset, val);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 69 of 127
February 20, 2013

MCM_DBGetDFloat

Syntax

ADMAPIENTRYD MCM_DBGetDFloat(unsigned short offset);

Parameters

offset double float offset into database

Description

This function is used to read a double floating-point number from the database at
a specified double float offset.

Return Value

Requested double floating-point number

Example

unsigned short offset;

double d;

/* get double value at double offset 1000 (register 2000) */

offset = 2000;

d = MCM_DBGetDFloat(offset);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 70 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBSetDFloat

Syntax

ADMAPIENTRY MCM_DBSetDFloat(unsigned short offset, const double val);

Parameters

offset double float offset into database

val Value to be written to the database

Description

This function is used to write a double floating-point number to the database at a
specified double float offset.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

Example

unsigned short offset;

const double val;

/* write 300.8 to double offset 100 (register 200) */

offset = 200;

val = 300.8;

MCM_DBSetDFloat(offset, val);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 71 of 127
February 20, 2013

MCM_DBGetBytes

Syntax

ADMAPIENTRY MCM_DBGetBytes(unsigned short offset, const unsigned short count,

char* pBytes);

Parameters

offset Character offset into database where the buffer starts

count Number of characters to retrieve

pBytes String buffer to receive characters

Description

This function is used to copy a number of characters in the database to a
character buffer.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

ADM_ERR_MEMORY Insufficient memory for database

Example

unsigned short offset;

const unsigned short char_count;

char *string_buff;

/* get 20 bytes from byte offset 200 (register 100) */

offset = 100;

char_count = 20;

MCM_DBGetBytes(offset, char_count, string_buff);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 72 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBSetBytes

Syntax

ADMAPIENTRY MCM_DBSetBytes(unsigned short offset, const unsigned short count,

const char* pBytes);

Parameters

offset Character offset into database where the buffer starts

count Number of characters to write

pBytes String buffer to copy characters from

Description

This function is used to copy a buffer of characters to the database.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

Example

unsigned short offset;

char *string_buff[] = {1,2,3,4,5};

/* set 5 bytes at byte offset 200 (register 100) */

offset = 100;

MCM_DBSetBytes(offset, 5, string_buff);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 73 of 127
February 20, 2013

MCM_DBGetWords

Syntax

ADMAPIENTRY MCM_DBGetWords(unsigned short offset, const unsigned short count,

unsigned short* pWords);

Parameters

offset Character offset into database where the buffer starts

count Number of integers to retrieve

pWords Register buffer to receive integers

Description

This function is used to copy a buffer of registers in the database to a register
buffer.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

ADM_ERR_MEMORY Insufficient memory for database

Example

unsigned short reg_buff[20];

/* get 20 registers from offset 200 */

MCM_DBGetWords(200, 20, reg_buff);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 74 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBSetWords

Syntax

ADMAPIENTRY MCM_DBSetWords(unsigned short offset, const unsigned short count,

const unsigned short* pWords);

Parameters

offset Character offset into database where the buffer starts

count Number of integers to retrieve

pWords Register buffer to receive integers

Description

This function is used to copy a buffer of registers to the database.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

Example

unsigned short reg_buff[] = {1,2,3,4,5};

/* set 5 registers at offset 200 */

MCM_DBSetWords(200, 5, reg_buff);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 75 of 127
February 20, 2013

MCM_DBGetString

Syntax

ADMAPIENTRY MCM_DBGetString(unsigned short offset, const unsigned short

maxcount, char* str);

Parameters

offset Character offset into database where the buffer starts

maxcount Maximum number of characters to retrieve

str String buffer to receive characters

Description

This function is used to copy a string from the database to a string buffer.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

ADM_ERR_MEMORY Insufficient memory for database

ADM_ERR_DB_MAX_SIZE maxcount is larger than database size

Example

char string_buff[20];

/* get max of 20 bytes from offset 200 (register 100) */

MCM_DBGetString(100, 20, string_buff);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 76 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBSetString

Syntax

ADMAPIENTRY MCM_DBSetString(unsigned short offset, const char* str);

Parameters

offset Character offset into database where the buffer starts

str String buffer to receive characters

Description

This function is used to copy a string to the database from a string buffer.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOT_OPEN Database is not open

ADM_ERR_REG_RANGE Database register is out of range

ADM_ERR_MEMORY Insufficient memory for database

Example

char string_buff[] = {"abc"};

/* set bytes to offset 200 (register 100) */

MCM_DBSetString(100, string_buff);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 77 of 127
February 20, 2013

MCM_DBGetIntPtr

Syntax

ADMAPIENTRYIP MCM_DBGetIntPtr(int offset);

Parameters

offset Word offset into database

Description

This function is used to obtain a pointer to int corresponding to the database +
offset location.

Return Value

Returns NULL if not successful.

Returns pointer to int if successful.

Example

int i;

/* get the value from offset 100 using a pointer to the location */

i = *(MCM_DBGetIntPtr(100));

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 78 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBBitChanged

Syntax

ADMAPIENTRY MCM_DBBitChanged(int offset);

Parameters

offset Bit offset into database

Description

This function is used to check to see if a bit has changed since the last call to

MCM_DBBitChanged.

Return Value

0 No change

1 Bit has changed

Example

if(MCM_DBBitChanged(offset))

printf("Bit has changed");

else

printf("Bit is unchanged");

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 79 of 127
February 20, 2013

MCM_DBByteChanged

Syntax

ADMAPIENTRY MCM_DBByteChanged(unsigned short offset);

Parameters

offset Byte offset into database

Description

This function is used to check to see if a byte has changed since the last call to

MCM_DBByteChanged.

Return Value

0 No change

1 Byte has changed

Example

if(MCM_DBByteChanged(offset))

printf("Byte has changed");

else

printf("Byte is unchanged");

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 80 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBChanged

Syntax

ADMAPIENTRY MCM_DBChanged(unsigned short offset);

Parameters

offset Word offset into database

Description

This function is used to check to see if a register has changed since the last call
to

MCM_DBChanged.

Return Value

0 No change

1 Register has changed

Example

/* test register 100 for change */

if(MCM_DBChanged(100))

printf("Data has changed");

else

printf("Data is unchanged");

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 81 of 127
February 20, 2013

MCM_DBLongChanged

Syntax

ADMAPIENTRY MCM_DBLongChanged(unsigned short offset);

Parameters

offset long offset into database

Description

This function is used to check to see if a long int has changed since the last call
to

MCM_DBLongChanged.

Return Value

0 No change

1 long int has changed

Example

/* test long int 100 for change */

if(MCM_DBLongChanged(200))

printf("Data has changed");

else

printf("Data is unchanged");

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 82 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBFloatChanged

Syntax

ADMAPIENTRY MCM_DBFloatChanged(unsigned short offset);

Parameters

offset float offset into database

Description

This function is used to check to see if a float has changed since the last call to

MCM_DBFloatChanged.

Return Value

0 No change

1 float has changed

Example

/* test float 100 for change */

if(MCM_DBFloatChanged(200))

printf("Data has changed");

else

printf("Data is unchanged");

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 83 of 127
February 20, 2013

MCM_DBDoubleChanged

Syntax

ADMAPIENTRY MCM_DBDoubleChanged(unsigned short offset);

Parameters

offset double offset into database

Description

This function is used to check to see if a double has changed since the last call
to

MCM_DBDoubleChanged.

Return Value

0 No change

1 double has changed

Example

/* test double 100 for change */

if(MCM_DBDoubleChanged(200))

printf("Data has changed");

else

printf("Data is unchanged");

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 84 of 127 ProSoft Technology, Inc.
February 20, 2013

6.4 Clock Functions

MCM_ClockGetHandle

Syntax

ADMAPIENTRY MCM_ClockGetHandle(void);

Parameters

None

Description

This function gets access to a clock. There approximately 300 clocks available to
the user. This number depends on the number of MCM drivers and the system
processes used.

Return Value

ClockHandle Handle for accessing clock

ADM_ERR_NOACCESS There are no clocks available.

Example

int handle;

handle = MCM_ClockGetHandle(); // Get clock handle

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 85 of 127
February 20, 2013

MCM_ClockStart

Syntax

ADMAPIENTRY MCM_ClockStart(int ClockHandle, long MicroSecondCount);

Parameters

ClockHandle The handle to the clock returned by MCM_ClockGetHandle

MicroSecondCount The number of microseconds to run

Description

This function starts the clock timing for the period of MicroSecondCount.

Return Value

ClockHandle L

Example

ClockStart(ClockHandle, 1000L); // Start clock timing for 1 millisecond

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 86 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_ClockCheck

Syntax

ADMAPIENTRY MCM_ClockCheck(int ClockHandle); // returns true if clock running

Parameters

ClockHandle The handle to the clock returned by MCM_ClockGetHandle

Description

This function checks the clock to see if it has expired.

Return Value

true Clock is running.

false Clock has timed out. L

Example

If(MCM_ClockCheck(ClockHandle) == false)

{

 printf("Clock timed out\n");

}

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 87 of 127
February 20, 2013

MCM_ClockGetValue

Syntax

ADMAPIENTRYL MCM_ClockGetValue(int ClockHandle);

Parameters

ClockHandle The handle to the clock returned by MCM_ClockGetHandle

Description

This function gets the current microsecond value of the clock.

Return Value

The current long word microsecond value of the clock.

Example

long ClockValue;

ClockValue = MCM_ClockGetValue(ClockHandle);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 88 of 127 ProSoft Technology, Inc.
February 20, 2013

6.5 Console Port Functions

MCM_Send

Syntax

ADMAPIENTRY MCM_Send(const char*p_Data);

Parameters

p_Data Pointer to text string to send

Description

This function sends a string of text to the console (Debug port).

Return Value

Returns number of characters placed in the console buffer.

Example

char text[] = "hello";

MCM_Send(text);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 89 of 127
February 20, 2013

MCM_GetKey

Syntax

ADMAPIENTRY MCM_GetKey(char *Char);

Parameters

Char pointer to char to hold key from console port

Description

This function will get a key from the console port if a key is waiting. If no key is
waiting the function will exit without waiting for a key.

Return Value

0 if no valid keypress

1 if valid keypress

Example

char z = 0;

/* check for key press from console */

if(MCM_GetKey(&z) == 1)

{

 /* print out key received */

 printf("key: %c\n", z);

}

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 90 of 127 ProSoft Technology, Inc.
February 20, 2013

6.6 LED Functions

MCM_LED_Set

Syntax

ADMAPIENTRY MCM_LED_Set(unsigned short LED, int On);

Parameters

LED The LED to be controlled

MCM_LED_OFF Fault, CFG, APP ERR, Port 0 ERR LED OFF

MCM_LED_FLT Fault LED

MCM_LED_CFG CFG LED

MCM_LED_APP APP ERR LED

MCM_LED_P0 Port 0 ERR LED

MCM_LED_P1 Port 1 ERR LED

MCM_LED_P2 Port 2 ERR LED

MCM_LED_P3 Port 3 ERR LED

MCM_LED_POFF Port 1 to 3 ERR LED OFF

On On=ON, Off=OFF

Description

This function sets an LED to the desired on/off state.

Return Value

ADM_SUCCESS LED was set to desired state

ADM_ERR_BADPARAM Invalid LED designation

Example

MCM_LED_Set(MCM_LED_FLT, ON); // Set the Fault LED on

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 91 of 127
February 20, 2013

6.7 Serial Port Functions

MCM_SendBytes

Syntax

ADMAPIENTRY MCM_SendBytes(int port, unsigned char *data, int len);

Parameters

port port to use to send bytes (0 to 3)

data pointer to buffer holding bytes to send

len number of bytes to send

Description

MCM_SendBytes puts bytes in the serial port state machine to be sent out of the
port. The state machine handles hardware handshaking and the internal data
analyzer for the port.

Return Value

Number of bytes sent

ADM_ERR_NOACCESS port value is out of range

Example

unsigned char TxBuff[] = {1,2,3,4,5};

MCM_SendBytes(0, TxBuff, 5);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 92 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_SendBytesDirect

Syntax

ADMAPIENTRY MCM_SendBytesDirect(int port, unsigned char *data, int len);

Parameters

port port to use to send bytes (0 to 3)

data pointer to buffer holding bytes to send

len number of bytes to send

Description

MCM_SendBytesDirect sends a number of bytes out of the port without using the
serial port state machine. Hardware handshaking has to be handled by the
application.

Return Value

Number of bytes sent

ADM_ERR_NOACCESS port value is out of range

Example

unsigned char TxBuff[] = {1,2,3,4,5};

MCM_SendBytesDirect(0, TxBuff, 5);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 93 of 127
February 20, 2013

MCM_SetRTS

Syntax

ADMAPIENTRY MCM_SetRTS(int port, int state);

Parameters

port port for which RTS is to be changed (0 to 3)

state desired RTS state

Description

This functions allows the state of the RTS signal to be controlled. state specifies
desired state of the RTS signal. Valid values for state are ON and OFF.

Return Value

ADM_SUCCESS RTS was set to desired state

ADM_ERR_NOACCESS port value is out of range

Example

int rc;

rc = MCM_SetRTS(COM1, ON);

if (rc != ADM_SUCCESS)

printf("SetRTS failed\n ");

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 94 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_SetDTR

Syntax

ADMAPIENTRY MCM_SetDTR(int port, int state);

Parameters

port port for which DTR is to be changed (0 to 3)

state desired RTS state

Description

This function allows the state of the DTR signal to be controlled. state is the
desired state of the DTR signal. Valid values for state are ON and OFF.

Return Value

ADM_SUCCESS RTS was set to desired state

ADM_ERR_NOACCESS port value is out of range

Example

int rc;

rc = MCM_SetDTR(COM1, ON);

if (rc != ADM_SUCCESS)

printf("SetDTR failed\n ");

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 95 of 127
February 20, 2013

MCM_GetCTS

Syntax

ADMAPIENTRY MCM_GetCTS(int port);

Parameters

port port for which CTS is requested (0 to 3)

Description

This function allows the state of the CTS signal to be determined.

Return Value

The state of CTS line

ADM_ERR_NOACCESS port value is out of range

Example

int state;

state = MCM_GetCTS(0);

if(state == ON)

printf("CTS is ON\n");

else

printf("CTS is OFF\n");

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 96 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_GetByte

Syntax

ADMAPIENTRY MCM_GetByte(int port);

Parameters

port port from which data is to be received

Description

This function is used to receive a single character from a serial port.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MCM_GetByte.

Return Value

Byte from receive buffer of serial port

ADM_ERR_NOACCESS port value is out of range

Example

int ch;

ch = MCM_GetByte(0);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 97 of 127
February 20, 2013

MCM_GetAsciiString

Syntax

ADMAPIENTRY MCM_GetAsciiString(int port, unsigned char *buffer, char endChar,

int *count);

Parameters

port port from which data is to be received

buffer buffer to hold string

endChar character marking the end of the string (ex. LF)

count max number of bytes to get

Description

This function is used to get a string terminated by endChar from a serial port.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by
MCM_GetAsciiString.

Return Value

Number of bytes in string

ADM_ERR_NOACCESS port value is out of range

Example

#define LF 0x0A

unsigned char RxBuff[21];

MCM_GetAsciiString(0, RxBuff, LF, 20);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 98 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_GetDataString

Syntax

ADMAPIENTRY MCM_GetDataString(int port, unsigned char *buffer, int count);

Parameters

port port from which data is to be received

buffer buffer to hold string

count max number of bytes to get

Description

This function is used to receive an array of bytes from a serial port.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by
MCM_GetDataString.

Return Value

Number of bytes in string

ADM_ERR_NOACCESS port value is out of range

Example

unsigned char RxBuff[21];

MCM_GetDataString(0, RxBuff, 20);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 99 of 127
February 20, 2013

MCM_BytesInTransmitBuffer

Syntax

ADMAPIENTRY MCM_BytesInTransmitBuffer(int port);

Parameters

port port whose transmit buffer is to be queried

Description

MCM_BytesInTransmitBuffer returns the number of characters in the transmit
queue that are waiting to be sent. Since data sent to a port is queued before
transmission across a serial port, the application may need to determine if all
characters have been transmitted or how many characters remain to be
transmitted.

Return Value

Returns number of bytes in buffer

ADM_ERR_NOACCESS port value is out of range

Example

int count;

count = MCM_BytesInTransmitBuffer(COM2)

if(count == 0)

printf("All chars read\n");

else

printf("%d characters remaining\n",count);

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 100 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_BytesInReceiveBuffer

Syntax

ADMAPIENTRY MCM_BytesInReceiveBuffer(int port);

Parameters

port port whose receive buffer is to be queried

Description

MCM_BytesInReceiveBuffer returns the number of characters in the receive
queue that are waiting to be read. Since data received from a port is queued after
reception from a serial port, the application may need to determine if all
characters have been read or how many characters remain to be read.

Return Value

Returns number of bytes in buffer

ADM_ERR_NOACCESS port value is out of range

Example

int count;

count = MCM_BytesInReceiveBuffer(COM2)

if(count == 0)

printf("All chars read\n");

else

printf("%d characters remaining\n",count);

Application Development Function Library - ADM API MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 101 of 127
February 20, 2013

MCM_FlushTransmitBuffer

Syntax

ADMAPIENTRY MCM_FlushTransmitBuffer(int port);

Parameters

port port whose transmit data is to be purged

Description

MCM_FlushTransmitBuffer deletes all data waiting in the transmit queue. The
data is discarded and is not transmitted.

Return Value

ADM_SUCCESS the data was purged successfully

ADM_ERR_BADPARAM Com port specified is out of range

ADM_ERR_NOACCESS the comport has not been opened

Example

if (MCM_FlushTransmitBuffer (COM1) == ADM_SUCCESS)

printf("Transmit Data purged.\n");

MCM4-ADM4 ♦ ProLinx Standalone Application Development Function Library - ADM API
'C' Programmable Modbus Communication Module Developer's Guide

Page 102 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_FlushReceiveBuffer

Syntax

ADMAPIENTRY MCM_FlushReceiveBuffer(int port)

Parameters

port The port whose receive data is to be purged.

Description

MCM_FlushReceiveBuffer deletes all data waiting in the receive queue. The data
is discarded and is no longer available for reading.

Return Value

ADM_SUCCESS the data was purged successfully

ADM_ERR_BADPARAM Com port specified is out of range

ADM_ERR_NOACCESS the comport has not been opened

Example

if (MCM_FlushReceiveBuffer (COM1) == ADM_SUCCESS)

printf("Receive Data purged.\n");

Reference MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 103 of 127
February 20, 2013

7 Reference

In This Chapter

 Product Specifications ... 103

 MCM Database Definition.. 106

 Configuration Data .. 106

 Modbus Error and Status Data Area Addresses 109

 Error Codes ... 112

 LED Indicators ... 114

7.1 Product Specifications

7.1.1 General Specifications

The MCM4-ADM4 module acts as an input/output module between the ADM4
network and the user protocol. The data transfer from the user protocol is
asynchronous from the actions on the MODBUS network. A 1000 to 10,000-word
register space in the module exchanges data between the user protocol and the
MODBUS network.

Some of the general specifications include:

 Support for the storage and transfer of up to 10,000 registers
 Module memory usage that is completely user definable
 Four ports to emulate any combination of MODBUS master or slave device

and user protocol
 Configurable MCM port parameters include:

Parameter Value

Protocol RTU or ASCII

Baud Rate 110 to 115,200 (up to 38,400 on Port 0)

Parity None, Odd and Even

Data Bits 5 to 8

Stop Bits 1 or 2

RTS On and Off Timing 0 to 65535 milliseconds

Minimum Response Delay 0 to 65535 milliseconds

Use of CTS Modem Line Yes or No

Floating-Point Support

MCM4-ADM4 ♦ ProLinx Standalone Reference
'C' Programmable Modbus Communication Module Developer's Guide

Page 104 of 127 ProSoft Technology, Inc.
February 20, 2013

Slave Functional Specifications

The MCM4-ADM4 module accepts MODBUS commands from an attached
MODBUS master unit. A port configured as a virtual MODBUS slave permits a
remote master to interact with all data contained in the module. This data can be
derived from other MODBUS slave devices on the network through a master port
or from the user protocol.

Master Functional Specifications

A port configured as a virtual MODBUS master device on the MCM4-ADM4
module will actively issue MODBUS commands to other nodes on the MODBUS
network. One hundred commands are supported on each port. Additionally, the
master ports have an optimized polling characteristic that will poll slaves with
communication problems less frequently.

7.1.2 Hardware Specifications and Equipment Ratings

Type Specifications

Serial Ports

Serial Port Cable

(DB-9M Connector)

A mini-DIN to DB-9M cable is included with the unit

Debug RS-232/422/485 - jumper selectable

DB-9M connector

No hardware handshaking

Serial Port Isolation 2500V RMS port-to-port isolation per UL 1577.

3000V DC min. port to ground and port to logic power isolation.

Serial Port Protection RS-485/422 port interface lines TVS diode protected at +/- 27V
standoff voltage.

RS-232 port interface lines fault protected to +/- 36V power on, +/-
40V power off.

General Signal Connections For highest EMI/RFI immunity, signal connections shall use the
interconnect cable as specified by the protocol in use. Interconnect
cable shields shall be connected to earth ground.

Example Interconnect Cable
Types

Rockwell Automation RIO and DH+ protocols use Belden 9463
type shielded cable or equivalent. Schneider Electric Modbus Plus
protocol uses Belden 9841 type shielded cable or equivalent.

Power

External Power Supply Voltage: 24 VDC nominal, 18 to 32 VDC allowed

Supply Current: 500 mA (max. at 24 VDC)

Center terminal shall be connected to earth ground.

Power Connector +/-/GND screw connectors, rated for 24 AWG to 14 AWG tinned
copper, stranded, insulated wire.

Use 2.5 mm screwdriver blade.

Environmental

Operating Temperature -20 to 60 C (-4 to 140 F)

Storage Temperature -40 to 85 C (-40 to 185 F)

Reference MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 105 of 127
February 20, 2013

Type Specifications

Relative Humidity 5% to 95% (non-condensing)

Shock (Unpackaged) Operational - Pending testing

Non-operational - Pending testing

Vibration (Unpackaged) Pending testing

Dimensions 3.71H x 6.06 W x 4.70 D inches

94.2 H x 153.9 W x 119.3 D mm

Weight (max.) Pending

Altitude Shipping and storage: up to 3000 m (9843 Feet). Operation: up to
2000 m (6562 Feet).

Corrosion Immunity Rated in accordance with IEC 68.

Pollution Degree Rated to pollution degree 2. Equipment may be exposed to non-
conductive pollution. Occasional conductivity due to condensation
may occur. Equipment may not function properly until condensation
evaporates.

Overvoltage Category Rated to over voltage category I. Reverse polarity, improper lead
connection, and/or voltages outside of the range of 18 VDC to 36
VDC applied to the power connector may damage the equipment.

7.1.3 Ports

Serial (Mini DIN 8)

The ProLinx module serial ports are capable of supporting several protocols as
either Master or Slave on up to four ports. Each port is individually configurable,
thereby providing a great deal of flexibility.

When configured as a Master port, the serial ports can be used to continuously
interface with slave devices over a serial Communication Interface (RS-232,
RS-422, or RS-485). Each Master port supports 100 user-defined commands
that determine the read/write commands issued to each slave attached to the
port.

In addition, the module may be configured to place slave devices that are not
responding to commands at a lower priority. If the module recognizes that a slave
device has failed to respond to a message after the user-defined retry count, it
marks the slave as "in communication failure" and sets the error delay counter to
the user-specified value.

Alternatively, the serial port can be configured to emulate a slave device.

Every gateway module is shipped with one Mini DIN 8 to DB-9 conversion cable
per configurable port on the module.

MCM4-ADM4 ♦ ProLinx Standalone Reference
'C' Programmable Modbus Communication Module Developer's Guide

Page 106 of 127 ProSoft Technology, Inc.
February 20, 2013

7.2 MCM Database Definition

This section contains a listing of the internal database of the MCM4-ADM4
module. This information can be used to interface other devices to the data
contained in the module.

Content Offset from top of user data

MCM Port 0 Status 0

MCM Port 1 Status 10

MCM Port 2 Status 20

MCM Port 3 Status 30

MCM Port 0 Configuration 40

MCM Port 1 Configuration 70

MCM Port 2 Configuration 100

MCM Port 3 Configuration 130

MCM Port 0 Commands 160

MCM Port 1 Commands 960

MCM Port 2 Commands 1760

MCM Port 3 Commands 2560

The User Data area holds data collected from other nodes on the network
(master read commands) or data received from the processor (write blocks).

Detailed definition of the miscellaneous status data area can be found in Misc.
Status.

Definition of the configuration data areas can be found in the data definition
section of this document and in Configuration Data Definition.

7.3 Configuration Data

This section contains listings of the MCM4-ADM4 module's database that are
related to the module's configuration. This data is available to any node on the
network and is read from the config file when the module first initializes.
Additionally, this section contains the miscellaneous status data and command
control database layout.

7.3.1 MCM Port x Configuration

Offset Content Description

0 Enable This parameter defines if this MODBUS port will be used. If the
parameter is set to 0, the port is disabled. A value of 1 enables the
port.

1 Type This parameter specifies if the port will emulate a MODBUS master
device (0), a MODBUS slave device without pass-through (1), or a
MODBUS slave device with unformatted pass-through (2), or a
MODBUS slave device with formatted pass-through and data
swapping (3).

Reference MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 107 of 127
February 20, 2013

Offset Content Description

2 Float Flag This flag specifies if the floating-point data access functionality is to
be implemented. If the float flag is set to 1, MODBUS functions 3, 6,
and 16 will interpret floating-point values for registers as specified
by the two following parameters.

3 Float Start This parameter defines the first register of floating-point data. All
requests with register values greater than or equal to this value will
be considered floating-point data requests. This parameter is only
used if the Float Flag is enabled.

4 Float Offset This parameter defines the start register for floating-point data in the
internal database. This parameter is only used if the Float Flag is
enabled.

5 Protocol This parameter specifies the MODBUS protocol to be used on the
port. Valid protocols are: 0 = MODBUS RTU and 1 = MODBUS
ASCII.

6 Baud Rate This is the baud rate to be used on the port. Enter the baud rate as
a value. For example, to select 19K baud, enter 19200. Valid entries
are 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 28800,
38400, 576, and 115.

7 Parity This is the parity code to be used for the port. Values are None,
Odd, Even.

8 Data Bits This parameter sets the number of data bits for each word used by
the protocol. Valid entries for this field are 5 through 8.

9 Stop Bits This parameter sets the number of stop bits to be used with each
data value sent. Valid entries are 1 and 2.

10 RTS On This parameter sets the number of milliseconds to delay after RTS
is asserted before the data will be transmitted. Valid values are in
the range of 0 to 65535 milliseconds.

11 RTS Off This parameter sets the number of milliseconds to delay after the
last byte of data is sent before the RTS modem signal will be set
low. Valid values are in the range of 0 to 65535.

12 Minimum
Response Time

This parameter specifies the minimum number of milliseconds to
delay before responding to a request message. This pre-send delay
is applied before the RTS on time. This may be required when
communicating with slow devices.

13 Use CTS Line This parameter specifies if the CTS modem control line is to be
used. If the parameter is set to 0, the CTS line will not be monitored.
If the parameter is set to 1, the CTS line will be monitored and must
be high before the module will send data. This parameter is
normally only required when half-duplex modems are used for
communication (2-wire).

14 Slave ID This parameter defines the virtual MODBUS slave address for the
internal database. All requests received by the port with this
address are processed by the module. Verify that each device has a
unique address on a network. Valid range for this parameter is 1 to
255 (247 on some networks).

15 Bit in Offset This parameter specifies the offset address in the internal MODBUS
database to use with network requests for MODBUS Function 2
commands. For example, if the value is set to 150, an address
request of 0 will return the value at register 150 in the database.

MCM4-ADM4 ♦ ProLinx Standalone Reference
'C' Programmable Modbus Communication Module Developer's Guide

Page 108 of 127 ProSoft Technology, Inc.
February 20, 2013

Offset Content Description

16 Word in Offset This parameter specifies the offset address in the internal MODBUS
database to use with network request for MODBUS function 4
commands. For example, if the value is set to 150, an address
request of 0 will return the value at register 150 in the database.

17 Out in Offset This parameter specifies the offset address in the internal MODBUS
database to use with network requests for MODBUS function 1,5, or
15 commands. For example, if the value is set to 100, an address
request of 0 will correspond to register 100 in the database.

18 Holding Reg
Offset

This parameter specifies the offset address in the internal MODBUS
database to use with network requests for MODBUS function 3, 6,
or 16 commands. For example, if a value of 50 is entered, a request
for address 0 will correspond to the register 50 in the database.

19 Command
Count

This parameter specifies the number of commands to be processed
by the MODBUS master port.

20 Minimum
Command
Delay

This parameter specifies the number of milliseconds to wait
between issuing each command. This delay value is not applied to
retries.

21 Command Error
Pointer

This parameter sets the address in the internal MODBUS database
where the command error will be placed. If the value is set to -1, the
data will not be transferred to the database. The valid range of
values for this parameter is -1 to 4999.

22 Response
Timeout

This parameter represents the message response timeout period in
1-millisecond increments. This is the time that a port configured as
a master will wait before re-transmitting a command if no response
is received from the addressed slave. The value is set depending
upon the communication network used and the expected response
time of the slowest device on the network.

23 Retry Count This parameter specifies the number of times a command will be
retried if it fails. If the master port does not receive a response after
the last retry, the slave devices communication will be suspended
on the port for Error Delay Counter scans.

24 Error Delay
Counter

This parameter specifies the number of polls to skip on the slave
before trying to re-establish communications. After the slave fails to
respond, the master will skip commands to be sent to the slave the
number of times entered in this parameter.

25 Spare

26 Spare

27 Spare

28 Spare

29 Spare

7.3.2 MCM Port x Commands

Offset Content Description

0 to 7 Command #1 This set of registers contains the parameters for the
first command in the master command list. Refer to
the data object section of the documentation.

8 to 15 Command #2 Command #2 data set

- - -

782 to 789 Command #100 Command #100 data set

Reference MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 109 of 127
February 20, 2013

7.4 Modbus Error and Status Data Area Addresses

Modbus error and status data are stored in registers based on port number.
Starting register addresses are shown in the following table.

Modbus Port Starting Address

0 4400

1 4800

2 5200

3 5600

Note: None of the addresses are available in the Modbus address range. In order to view them via
a Modbus request, they must be moved into the 0 to 3999 address range using the Data Map
section of the configuration file. For additional information on how to move data within the
gateway's internal database, see Moving Data.

7.4.1 Modbus Ports: Error and Status

The serial port (Modbus Master/Slave) Error and Status Data areas are
discussed in this section.

The data area is initialized with zeros whenever the gateway is restarted. This
occurs during a cold-start (power-on), reset (reset push-button pressed) or a
warm-boot operation (commanded from a debug menu or after downloading a
new configuration). The addresses listed are for Port 0 only; but the format is the
same for each port. The start address for each port is given in the previous
section, Modbus Error and Status Data Area Addresses (page 109).

Example Internal
Database Address

Offset Description

4400 0 Number of Command Requests

4401 1 Number of Command Responses

4402 2 Number of Command Errors

4403 3 Number of Requests

4404 4 Number of Responses

4405 5 Number of Errors Sent

4406 6 Number of Errors Received

4407 7 Configuration Error Code

4408 8 Current Error/Index

4409 9 Last Error/Index

Refer to the following Error Codes (page 112) section to interpret the status/error
codes present in the data area.

MCM4-ADM4 ♦ ProLinx Standalone Reference
'C' Programmable Modbus Communication Module Developer's Guide

Page 110 of 127 ProSoft Technology, Inc.
February 20, 2013

7.4.2 Master Port: Command List Errors

The individual command errors for each Master port are returned to the address
locations specified in the following table. Each port can have up to 100
commands configured. Each configured command will use one word of these
data areas to store a value representing the execution status from the most
recent command execution attempt.

Modbus Port Address Range

0 4410 to 4509

1 4810 to 4909

2 5210 to 5309

3 5610 to 5709

The first word in the defined register location contains the status/error code for
the first command in the port's Command List. Successive words in the
Command Error List are associated with corresponding commands in the list.

Refer to Error Codes (page 112) to interpret the status/error codes present in this
data area.

Port 0 Command Error List Layout

The addresses listed are for Port 0 only; but the format is the same for each port.
The start address for each port is given in the previous section, Master Port:
Command List Errors (page 110).

Internal Database
Address (Example)

Offset Description

4410 0 Command #0 Error Status

4411 1 Command #1 Error Status

4412 2 Command #2 Error Status

4413 3 Command #3 Error Status

4414 4 Command #4 Error Status

...

...

...

4507 97 Command #97 Error Status

4508 98 Command #98 Error Status

4509 99 Command #99 Error Status

Note that the values in the Command Error List tables are initialized to zero (0) at
power-up, cold boot, and warm boot. If a command executes successfully, the
value in the associated register will remain at zero (0), indicating no command
error was detected. Any non-zero value in this table indicates the corresponding
command experienced an error. The Error Code (page 112) shown will provide
valuable troubleshooting information.

Reference MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 111 of 127
February 20, 2013

The data in this table is dynamic. It is updated each time a command is
executed. Therefore, if the command fails once and succeeds on the next
attempt, the Error Code from the previously failed attempt will be replace with
zero and lost. Error Codes are not archived in the gateway's database. To see if
the port has experienced an error since the most recent restart and what the
most recently occurring error was, if any, you can check the Last Error/Index
(page 109).

7.4.3 Master Port: Modbus Slave List Status

The slave status list contains the current poll status of each slave device on a
Master port. Slaves attached to a Master port can have one of three states.

0 The slave has not defined in the command list for the Master port and will not be polled
from the Command List.

1 The slave is configured to be polled by the Master port and the most recent
communication attempt was successful.

2 The Master port has failed to communicate with the slave device. Communication with
the slave is suspended for a user defined period based on the scanning of the
command list.

Slaves are defined to the system when the gateway loads the Master Command
List during start-up and initialization. Each slave defined will be set to a state
value of 1 in this initial step. If the Master port fails to communicate with a slave
device (timeout expired on a command, retries failed), the Master will set the
state of the slave to a value of 2 in this status table. This suspends
communication with the slave device for a user-specified Error Delay Count.

When the Master first suspends polling of a particular slave, it creates a Error
Delay Counter for this slave address and set the value in that counter equal to
the Error Delay Counter parameter in the configuration file. Then, each time a
command in the list is scanned that has the address of a suspended slave, the
delay counter value for that slave will be decremented. When the value reaches
zero, the slave state will be set to 1. This will re-enable polling of the slave.

The first word in the defined register locations contains the status code for slave
node address 1. Each successive word in the list is associated with the next
node in sequence, up to slave node address 255.

The individual Slave List Status for each Modbus port are returned to the address
locations specified in the following table.

Modbus Port Address Range

0 4510 to 4764

1 4910 to 5164

2 5310 to 5564

3 5710 to 5965=4

MCM4-ADM4 ♦ ProLinx Standalone Reference
'C' Programmable Modbus Communication Module Developer's Guide

Page 112 of 127 ProSoft Technology, Inc.
February 20, 2013

Port 0 Slave List Status Layout

The addresses listed are for Port 0 only; but the format is the same for each port.
The start address for each port is given in the previous section, Master Port:
Modbus Slave List Status. (page 111)

Internal Database Address (Example) Offset Description

4510 0 Slave #1 Status

4511 1 Slave #2 Status

4512 2 Slave #3 Status

4513 3 Slave #4 Status

4514 4 Slave #5 Status

 . .

 . .

 . .

Note that the values in the Slave List Status tables are initialized to zero (0) at
power-up, cold boot and during warm boot.

7.5 Error Codes

These are error codes that are part of the Modbus protocol or are extended
codes unique to this gateway.

7.5.1 Modbus Error Codes

These error codes are generated or returned on both the Master and slave ports.
These codes are the standard Modbus errors.

Code Description

1 Illegal Function

2 Illegal Data Address

3 Illegal Data Value

4 Failure in Associated Device

5 Acknowledge

6 Busy, Rejected Message

7.5.2 gateway Communication Error Codes

These gateway-specific error codes are also returned from the command polling
process and stored in the Command Error List memory area.

Code Description

-1 CTS modem control line not set before transmit

-2 Timeout while transmitting message

-11 Timeout waiting for response after request

253 Incorrect slave address in response

254 Incorrect function code in response

255 Invalid CRC/LRC value in response

Reference MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 113 of 127
February 20, 2013

7.5.3 Command List Error Codes

These command-specific error codes are detected during initial command list
loading at power-up or gateway reset and are stored in the Command Error List
memory region.

CODE Description

-41 Invalid enable code

-42 Internal address > maximum address

-43 Invalid node address (<0 or > 255)

-44 Count parameter set to 0

-45 Invalid function code

-46 All parameters set to 0

-47 All parameters set to -1

7.5.4 Modbus Configuration Error Word

Modbus Configuration Error Word errors are stored in protocol-specific registers.
The following table lists the Port/Register address configuration.

Modbus Port Configuration Error Word Register

0 4407

1 4807

2 5207

3 5607

A register containing a code indicates a problem with the configuration. The
following table lists the codes, a description of the problem, and parameters to
correct the error condition within the configuration file.

Bit Code Description

0 0x0001 Invalid Enabled parameter (Yes or No)

1 0x0002 Invalid RS-Interface parameter (0 to 2)

2 0x0004 Invalid Type (Master or Slave)

3 0x0008 Invalid Protocol (RTU or ASCII)

4 0x0010 Invalid Baud Rate

5 0x0020 Invalid Parity (None, Odd, Even)

6 0x0040 Invalid Data Bits (7 or 8 bits)

7 0x0080 Invalid Stop Bits (1 or 2)

8 0x0100 Invalid Use CTS Line (Yes or No)

9 0x0200 Retry Count Invalid (0 to 10)

10 0x0400 Invalid Floating Point Data:

Float Flag not Yes or No

Float Start less than 0 or

Float Offset is Invalid

11 0x0800 Invalid Internal Slave ID (1 to 255) (Slave Only)

MCM4-ADM4 ♦ ProLinx Standalone Reference
'C' Programmable Modbus Communication Module Developer's Guide

Page 114 of 127 ProSoft Technology, Inc.
February 20, 2013

Bit Code Description

12 0x1000 Invalid Entry for Register Offset Data (Slave Only)

13 0x2000 Reserved

14 0x4000 Reserved

15 0x8000 Reserved

7.6 LED Indicators

LED indicators provide a means of monitoring the operation of the system and
individual ports. There are extremely useful for troubleshooting. The gateway
provides LEDs to help monitor each port. In addition, system configuration errors,
application errors, and fault indications are all indicated by LEDs, providing alerts
to possible problems.

7.6.1 Common gateway LEDs

LED State Description

Power Off Power is not connected to the power terminals or source is insufficient
to properly power the gateway (800mA at 24vdc minimum required)

Green Solid Power is connected to the power terminals. Verify that the other LEDs
for operational and functional status come on briefly after power-up
(check for burned-out LEDs).

Fault Off Normal operation.

Red Solid A critical error has occurred. Program executable has failed or has
been user-terminated and is no longer running. Press Reset p/b or
cycle power to clear error. If not, use the Debug procedures described
later in this manual.

Cfg Off Normal operation.

Amber Solid The unit is in configuration mode. The configuration file is currently
being downloaded or, after power-up, is being read, the unit is
implementing the configuration values, and initializing the hardware.
This will occur during power cycle, or after pressing the reset button. It
also occurs after a cold/warm boot command is received.

Err Off Normal operation.

Flashing An error condition has been detected and is occurring on one of the
application serial ports. Check configuration and troubleshoot for
communication errors.

Solid Red This error flag is cleared at the start of each command attempt
(master/client) or on each receipt of data (slave/adapter/server); so, if
this condition exists, it indicates a large number of errors are occurring
in the application (due to bad configuration) or on one or more ports
(network communication failures).

Reference MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 115 of 127
February 20, 2013

7.6.2 LEDs for Serial Ports

ProLinx gateways may have as many as five (5) serial ports. Each of these serial
ports has two LEDs indicating status.

LED Color Description

Debug - ACT

Port 0 - ACT

Port 1 - ACT

Port 2 - ACT

Port 3 - ACT

Off No activity on the port.

Green

Flash

The port is actively transmitting or receiving data

Debug - ERR

Port 0 - ERR

Port 1 - ERR

Port 2 - ERR

Port 3 - ERR

Off Normal state. When off and Port Active led is indicating
activity, there are no communication errors

RED

On Solid or
Flashing

Activity on this LED indicates communication errors
areoccurring. To determine the exact error, connect the
Debug terminal to the Debug port and use the built-in
Diagnostic Menus.

MCM4-ADM4 ♦ ProLinx Standalone Reference
'C' Programmable Modbus Communication Module Developer's Guide

Page 116 of 127 ProSoft Technology, Inc.
February 20, 2013

DOS 6 XL Reference Manual MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 117 of 127
February 20, 2013

8 DOS 6 XL Reference Manual

The DOS 6 XL Reference Manual makes reference to compilers other than
Digital Mars C++ or Borland Compilers. The PLX-ADM and ADMNET modules
only support Digital Mars C++ and Borland C/C++ Compiler Version 5.02.
References to other compilers should be ignored.

MCM4-ADM4 ♦ ProLinx Standalone DOS 6 XL Reference Manual
'C' Programmable Modbus Communication Module Developer's Guide

Page 118 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM4-ADM4 ♦ ProLinx Standalone Glossary of Terms
'C' Programmable Modbus Communication Module Developer's Guide

ProSoft Technology, Inc. Page 119 of 127
February 20, 2013

9 Glossary of Terms

A

API

Application Program Interface

B

Backplane

Refers to the electrical interface, or bus, to which modules connect when inserted
into the rack. The module communicates with the control processor(s) through
the processor backplane.

BIOS

Basic Input Output System. The BIOS firmware initializes the module at power
up, performs self-diagnostics, and provides a DOS-compatible interface to the
console and Flashes the ROM disk.

Byte

8-bit value

C

CIP

Control and Information Protocol. This is the messaging protocol used for
communications over the ControlLogix backplane. Refer to the ControlNet
Specification for information.

Connection

A logical binding between two objects. A connection allows more efficient use of
bandwidth, because the message path is not included after the connection is
established.

Consumer

A destination for data.

Controller

The PLC or other controlling processor that communicates with the module
directly over the backplane or via a network or remote I/O adapter.

Glossary of Terms MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

Page 120 of 127 ProSoft Technology, Inc.
 February 20, 2013

D

DLL

Dynamic Linked Library

E

Embedded I/O

Refers to any I/O which may reside on a CAM board.

ExplicitMsg

An asynchronous message sent for information purposes to a node from the
scanner.

H

HSC

High Speed Counter

I

Input Image

Refers to a contiguous block of data that is written by the module application and
read by the controller. The input image is read by the controller once each scan.
Also referred to as the input file.

L

Library

Refers to the library file containing the API functions. The library must be linked
with the developer’s application code to create the final executable program.

Linked Library

Dynamically Linked Library. See Library.

Local I/O

Refers to any I/O contained on the CPC base unit or mezzanine board.

Long

32-bit value.

M

Module

Refers to a module attached to the backplane.

MCM4-ADM4 ♦ ProLinx Standalone Glossary of Terms
'C' Programmable Modbus Communication Module Developer's Guide

ProSoft Technology, Inc. Page 121 of 127
February 20, 2013

Mutex

A system object which is used to provide mutually-exclusive access to a
resource.

MVI Suite

The MVI suite consists of line products for the following platforms:

 Flex I/O
 ControlLogix
 SLC
 PLC
 CompactLogix

MVI46

MVI46 is sold by ProSoft Technology under the MVI46-ADM product name.

MVI56

MVI56 is sold by ProSoft Technology under the MVI56-ADM product name.

MVI69

MVI69 is sold by ProSoft Technology under the MVI69-ADM product name.

MVI71

MVI71 is sold by ProSoft Technology under the MVI71-ADM product name.

MVI94

MVI94 and MVI94AV are the same modules. The MVI94AV is now sold by
ProSoft Technology under the MVI94-ADM product name

O

Originator

A client that establishes a connection path to a target.

Output Image

Table of output data sent to nodes on the network.

P

Producer

A source of data.

PTO

Pulse Train Output

PTQ Suite

The PTQ suite consists of line products for Schneider Electronics platforms:

Glossary of Terms MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

Page 122 of 127 ProSoft Technology, Inc.
 February 20, 2013

Quantum (ProTalk)

S

Scanner

A DeviceNet node that scans nodes on the network to update outputs and inputs.

Side-connect

Refers to the electronic interface or connector on the side of the PLC-5, to which
modules connect directly through the PLC using a connector that provides a fast
communication path between the - module and the PLC-5.

T

Target

The end-node to which a connection is established by an originator.

Thread

Code that is executed within a process. A process may contain multiple threads.

W

Word

16-bit value

MCM4-ADM4 ♦ ProLinx Standalone Support, Service & Warranty
'C' Programmable Modbus Communication Module Developer's Guide

ProSoft Technology, Inc. Page 123 of 127
February 20, 2013

10 Support, Service & Warranty

In This Chapter

 Contacting Technical Support ... 123

 Warranty Information ... 124

10.1 Contacting Technical Support

ProSoft Technology, Inc. (ProSoft) is committed to providing the most efficient
and effective support possible. Before calling, please gather the following
information to assist in expediting this process:

1 Product Version Number
2 System architecture
3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any
2 Module operation and any unusual behavior
3 Configuration/Debug status information
4 LED patterns
5 Details about the serial, Ethernet or fieldbus devices interfaced to the module,

if any.

Note: For technical support calls within the United States, an after-hours answering system allows
24-hour/7-days-a-week pager access to one of our qualified Technical and/or Application Support
Engineers. Detailed contact information for all our worldwide locations is available on the following
page.

Support, Service & Warranty MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

Page 124 of 127 ProSoft Technology, Inc.
 February 20, 2013

Internet Web Site: www.prosoft-technology.com/support

E-mail address: support@prosoft-technology.com

Asia Pacific

(location in Malaysia)

Tel: +603.7724.2080, E-mail: asiapc@prosoft-technology.com

Languages spoken include: Chinese, English

Asia Pacific

(location in China)

Tel: +86.21.5187.7337 x888, E-mail: asiapc@prosoft-technology.com

Languages spoken include: Chinese, English

Europe

(location in Toulouse,
France)

Tel: +33 (0) 5.34.36.87.20,

E-mail: support.EMEA@prosoft-technology.com

Languages spoken include: French, English

Europe

(location in Dubai, UAE)

Tel: +971-4-214-6911,

E-mail: mea@prosoft-technology.com

Languages spoken include: English, Hindi

North America

(location in California)

Tel: +1.661.716.5100,

E-mail: support@prosoft-technology.com

Languages spoken include: English, Spanish

Latin America

(Oficina Regional)

Tel: +1-281-2989109,

E-Mail: latinam@prosoft-technology.com

Languages spoken include: Spanish, English

Latin America

(location in Puebla, Mexico)

Tel: +52-222-3-99-6565,

E-mail: soporte@prosoft-technology.com

Languages spoken include: Spanish

Brasil

(location in Sao Paulo)

Tel: +55-11-5083-3776,

E-mail: brasil@prosoft-technology.com

Languages spoken include: Portuguese, English

10.2 Warranty Information

Complete details regarding ProSoft Technology’s TERMS AND CONDITIONS
OF SALE, WARRANTY, SUPPORT, SERVICE AND RETURN MATERIAL
AUTHORIZATION INSTRUCTIONS can be found at www.prosoft-
technology.com/warranty.

Documentation is subject to change without notice.

http://www.prosoft-technology/warranty
http://www.prosoft-technology/warranty

Index MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 125 of 127
February 20, 2013

Index

A

ADM API • 41
ADM API Architecture • 41
ADM API Files • 43
ADM API Functions • 45
ADM Functional Blocks • 41
adm_prot.c • 43
adm_prot.h • 43
ADM_RegisterProtocol • 49
ADM_RegisterUserFunc • 51
All ProLinx® Products • 2
API • 119
API Libraries • 39
Application Development Function Library - ADM API •

45

B

Backplane • 119
BIOS • 119
Building an Existing Borland C++ 5.02 ADM Project •

27
Building an Existing Digital Mars C++ 8.49 ADM

Project • 17
Byte • 119

C

Cable Connections • 12
Calling Convention • 39
CIP • 119
Clock Functions • 84
Command List Error Codes • 113
Common gateway LEDs • 114
Configuration Data • 106
Configuring Borland C++5.02 • 27
Configuring Digital Mars C++ 8.49 • 17
Connecting Power to the Unit • 11
Connection • 119
Console Port Functions • 88
Consumer • 119
Contacting Technical Support • 123
Controller • 119
Core Functions • 47
Creating a New Borland C++ 5.02 ADM Project • 29
Creating a New Digital Mars C++ 8.49 ADM Project •

19

D

Database • 42
Database Functions • 58
DB9 to Mini-DIN Adaptor (Cable 09) • 15
Debug / Status Port • 41

Debugging Strategies • 37
Development Tools • 41
DLL • 120
DOS 6 XL Reference Manual • 7, 117
Downloading Files to the Module • 34
Downloading the Sample Program • 17, 27

E

Embedded I/O • 120
Error Codes • 109, 110, 112
ExplicitMsg • 120

G

gateway Communication Error Codes • 112
General Specifications • 103

H

Hardware • 37
Hardware Specifications and Equipment Ratings • 104
Header File • 40
HSC • 120

I

Important Installation Instructions • 2
Input Image • 120
Introduction • 7

L

LED Functions • 90
LED Indicators • 114
LEDs for Serial Ports • 115
Library • 120
LIMITED WARRANTY • 124
Linked Library • 120
Local I/O • 120
Long • 120

M

Master Functional Specifications • 104
Master Port

Command List Errors • 110
Modbus Slave List Status • 111, 112

MCM Database Definition • 106
MCM Port x Commands • 108
MCM Port x Configuration • 106
MCM_BytesInReceiveBuffer • 100
MCM_BytesInTransmitBuffer • 99
MCM_ClockCheck • 86
MCM_ClockGetHandle • 84
MCM_ClockGetValue • 87
MCM_ClockStart • 85
MCM_DBBitChanged • 78
MCM_DBByteChanged • 79
MCM_DBChanged • 80
MCM_DBClearBit • 60
MCM_DBDoubleChanged • 83
MCM_DBFloatChanged • 82
MCM_DBGetBit • 58

MCM4-ADM4 ♦ ProLinx Standalone Index
'C' Programmable Modbus Communication Module Developer's Guide

Page 126 of 127 ProSoft Technology, Inc.
February 20, 2013

MCM_DBGetByte • 61
MCM_DBGetBytes • 71
MCM_DBGetDFloat • 69
MCM_DBGetFloat • 67
MCM_DBGetIntPtr • 77
MCM_DBGetLong • 65
MCM_DBGetString • 75
MCM_DBGetWord • 63
MCM_DBGetWords • 73
MCM_DBLongChanged • 81
MCM_DBSetBit • 59
MCM_DBSetByte • 62
MCM_DBSetBytes • 72
MCM_DBSetDFloat • 70
MCM_DBSetFloat • 68
MCM_DBSetLong • 66
MCM_DBSetString • 76
MCM_DBSetWord • 64
MCM_DBSetWords • 74
MCM_FlushReceiveBuffer • 102
MCM_FlushTransmitBuffer • 101
MCM_GetAsciiString • 97
MCM_GetByte • 96
MCM_GetCTS • 95
MCM_GetDataString • 98
MCM_GetKey • 89
MCM_InstallConsole • 54
MCM_InstallDatabase • 53
MCM_LED_Set • 90
MCM_Open • 47
MCM_RegisterProtocol • 48
MCM_Run • 56
MCM_Send • 88
MCM_SendBytes • 91
MCM_SendBytesDirect • 92
MCM_SetDTR • 94
MCM_SetRTS • 93
MCM_Shutdown • 57
MCM_Startup • 55
MCM4_ADM.C • 42
MCMADM.H • 42
Modbus Configuration Error Word • 113
Modbus Error and Status Data Area Addresses • 109
Modbus Error Codes • 112
Modbus Ports

Error and Status • 109, 111
Module • 120
Mounting the gateway on the DIN-rail • 11
Multithreading Considerations • 40
Mutex • 121
MVI Suite • 121
MVI46 • 121
MVI56 • 121
MVI69 • 121
MVI71 • 121
MVI94 • 121

O

Operating System • 7

Originator • 121
Output Image • 121

P

Package Contents • 9
Pinouts • 2, 12, 15
Port 0 Command Error List Layout • 110
Port 0 Slave List Status Layout • 112
Ports • 105
Preparing the PLX-MCM4 Module • 9
Producer • 121
Product Specifications • 103
Programming the Module • 37
PTO • 121
PTQ Suite • 121

R

Reference • 103
RS-232 • 12

Modem Connection • 12
Null Modem Connection (Hardware Handshaking)

• 13
Null Modem Connection (No Hardware

Handshaking) • 13
RS-232 Configuration/Debug Port • 14
RS-422 • 15
RS-485 • 14
RS-485 and RS-422 Tip • 15
RS-485 Programming Note • 37

S

Sample Code • 40
Scanner • 122
Serial (Mini DIN 8) • 105
Serial Communications • 42
Serial Port Functions • 91
Setting Port 0 Configuration Jumpers • 10
Setting Up Your Compiler • 17
Setting Up Your Development Environment • 17
Side-connect • 122
Slave Functional Specifications • 104
Software • 38
Support, Service & Warranty • 123

T

Target • 122
Theory of Operation • 41
Thread • 122

U

Understanding the ADM API • 39

W

Word • 122

Y

Your Feedback Please • 3

Index MCM4-ADM4 ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module

ProSoft Technology, Inc. Page 127 of 127
February 20, 2013

