

MVI69L-MBS
CompactLogix™ Platform

Modbus Serial Lite Communication
Module

 October 21, 2025

USER MANUAL

MVI69L-MBS ♦ CompactLogix™ Platform Contents
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 2 of 136

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions,
comments, compliments or complaints about our products, documentation, or support, please contact us.

How to Contact Us

ProSoft Technology, Inc.
+1 (661) 716-5100
+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
ps.support@belden.com

MVI69L-MBS User Manual
For Public Use.
October 21, 2025

ProSoft Technology®, is a registered copyright of ProSoft Technology, Inc. All other brand or product names
are or may be trademarks of, and are used to identify products and services of, their respective owners.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or
reliability of these products for specific user applications. It is the duty of any such user or integrator to
perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the
relevant specific application or use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries
shall be responsible or liable for misuse of the information contained herein. Information in this document
including illustrations, specifications and dimensions may contain technical inaccuracies or typographical
errors. ProSoft Technology makes no warranty or representation as to its accuracy and assumes no liability
for and reserves the right to correct such inaccuracies or errors at any time without notice. If you have any
suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical,
including photocopying, without express written permission of ProSoft Technology. All pertinent state,
regional, and local safety regulations must be observed when installing and using this product. For reasons of
safety and to help ensure compliance with documented system data, only the manufacturer should perform
repairs to components. When devices are used for applications with technical safety requirements, the
relevant instructions must be followed. Failure to use ProSoft Technology software or approved software with
our hardware products may result in injury, harm, or improper operating results. Failure to observe this
information can result in injury or equipment damage.

Copyright © 2025 ProSoft Technology, Inc. All Rights Reserved.

For professional users in the European Union

If you wish to discard electrical and electronic equipment (EEE), please contact your dealer
or supplier for further information.

Warning – Cancer and Reproductive Harm – www.P65Warnings.ca.gov

Agency Approvals & Certifications

Please visit our website: www.prosoft-technology.com

http://www.prosoft-technology.com/
mailto:ps.support@belden.com
http://www.p65warnings.ca.gov/
http://www.prosoft-technology.com/

MVI69L-MBS ♦ CompactLogix™ Platform Contents
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 3 of 136

Important Safety Information

ATEX/IECEx Warnings and Conditions of Safe Usage:

Power, Input, and Output (I/O) wiring must be in accordance with the authority having jurisdiction.

A Warning - Explosion Hazard - When in hazardous locations, turn off power before replacing or wiring
modules.

B Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the
area is known to be non-hazardous.

C These products are intended to be mounted in an ATEX/IECEx Certified, tool-secured, IP54 enclosure.
The devices shall provide external means to prevent the rated voltage being exceeded by transient
disturbances of more than 40%. This device must be used only with ATEX certified backplanes.

D Before operating the reset switch, be sure the area is known to be non-hazardous.

If the equipment is used in a manner not specified by the manufacturer, the protection provided by the
equipment may be impaired.

MVI69L-MBS ♦ CompactLogix™ Platform Contents
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 4 of 136

Contents

Your Feedback Please ... 2
How to Contact Us .. 2
Content Disclaimer ... 2
Important Safety Information .. 3

1 Start Here 7

1.1 System Requirements .. 7
1.2 Deployment Checklist ... 8
1.3 Package Contents .. 8
1.4 Setting Jumpers .. 9
1.5 Installing the Module in the Rack .. 10

2 Adding the Module to RSLogix 14

2.1 Creating the Module in an RSLogix 5000 Project... 14
2.1.1 Creating a Module in the Project Using an Add-On Profile 15
2.1.2 Creating a Module in the Project Using a Generic 1769 Module Profile 19

2.2 Installing ProSoft Configuration Builder .. 21
2.3 Generating the AOI (.L5X File) in ProSoft Configuration Builder 22

2.3.1 Setting Up the Project in PCB ... 22
2.3.2 Creating and Exporting the .L5X File .. 24

2.4 Creating a New RSLogix 5000 Project ... 26
2.5 Importing the Add-On Instruction .. 27
2.6 Adding Multiple Modules in the Rack (Optional) ... 31

2.6.1 Adding an Additional Module in PCB .. 31
2.6.2 Adding Additional MVI69L-MBS Modules in RSLogix 5000 33

3 Configuring the MVI69L-MBS Using PCB 40

3.1 Basic PCB Functions .. 40
3.1.1 Creating a New PCB Project and Exporting an .L5X File 40
3.1.2 Renaming PCB Objects .. 40
3.1.3 Editing Configuraiton Parameters ... 40
3.1.4 Printing a Configuration File ... 42

3.2 Module Configuration Parameters .. 43
3.2.1 Module Parameters .. 43
3.2.2 MBS Port 1 Parameters .. 44
3.2.3 Modbus Port 1 Commands ... 48
3.2.4 Ethernet 1 ... 50

3.3 Downloading the Configuration File to the Processor 51
3.4 Uploading the Configuration File from the Processor 54

4 MVI69L-MBS Backplane Data Exchange 57

4.1 General Concepts of the MVI69L-MBS Data Transfer 57
4.2 Backplane Data Transfer .. 57
4.3 Normal Data Transfer ... 58

4.3.1 Write Block: Request from the Processor to the Module 58
4.3.2 Read Block: Response from the Module to the Processor 59

MVI69L-MBS ♦ CompactLogix™ Platform Contents
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 5 of 136

4.3.3 Read and Write Block Transfer Sequences ... 59
4.4 Data Flow Between the Module and Processor ... 60

4.4.1 Slave Mode ... 60
4.4.2 Master Mode ... 62

5 Using Controller Tags 64

5.1 Controller Tags ... 64
5.1.1 MVI69L-MBS Controller Tags ... 65

5.2 User-Defined Data Types (UDTs)... 65
5.2.1 MVI69L-MBS User-Defined Data Types ... 66

5.3 MBS Controller Tag Overview .. 67
5.3.1 MBS.CONFIG ... 67
5.3.2 MBS.DATA .. 67
5.3.3 MBS.CONTROL.. 68
5.3.4 MBS.STATUS ... 71
5.3.5 MBS.UTIL ... 72

6 Diagnostics and Troubleshooting 73

6.1 Ethernet LED Indicators .. 73
6.2 LED Status Indicators ... 74

6.2.1 Clearing a Fault Condition .. 74
6.2.2 Troubleshooting .. 75

6.3 Connecting the PC to the Module's Ethernet Port .. 76
6.3.1 Setting Up a Temporary IP Address ... 77

6.4 Using the Diagnostics Menu in PCB ... 79
6.4.1 Diagnostics Menu ... 81
6.4.2 Monitoring General Information .. 81
6.4.3 Monitoring Network Configuration Information ... 82
6.4.4 Monitoring Backplane Information .. 83
6.4.5 Port 1 Module Information .. 84
6.4.6 Monitoring Data Values in the Module’s Database... 84

6.5 Communication Error Codes .. 85
6.5.1 Standard MODBUS Protocol Exception Code Errors 85
6.5.2 Module Communication Error Codes ... 85
6.5.3 Command List Entry Errors .. 85

6.6 Connecting to the MVI69L-MBS Webpage ... 86

7 Reference 88

7.1 Product Specifications .. 88
7.1.1 MVI69L General Specs ... 88
7.1.2 Hardware Specifications ... 88
7.1.3 General Specifications - Modbus Master/Slave .. 89

7.2 About the Modbus Protocol .. 90
7.2.1 Modbus Master ... 90
7.2.2 Modbus Slave ... 90
7.2.3 Function Codes Supported by the Module ... 91
7.2.4 Read Coil Status (Function Code 01) ... 92
7.2.5 Read Input Status (Function Code 02) ... 94
7.2.6 Read Holding Registers (Function Code 03) .. 95
7.2.7 Read Input Registers (Function Code 04) .. 96
7.2.8 Force Single Coil (Function Code 05) .. 97

MVI69L-MBS ♦ CompactLogix™ Platform Contents
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 6 of 136

7.2.9 Preset Single Register (Function Code 06) .. 98
7.2.10 Diagnostics (Function Code 08) ... 99
7.2.11 Force Multiple Coils (Function Code 15) .. 101
7.2.12 Preset Multiple Registers (Function Code 16) .. 102

7.3 Floating-Point Support .. 103
7.3.1 ENRON Floating-Point Support .. 103
7.3.2 Configuring the Floating-Point Data Transfer ... 104

7.4 Function Blocks... 109
7.4.1 Event Command Blocks (1000 to 1255) ... 110
7.4.2 Slave Polling Disable Block (3000) ... 111
7.4.3 Slave Polling Enable Blocks (3001) .. 111
7.4.4 Slave Polling Status Block (3002 to 3006) ... 112
7.4.5 Command Control Blocks (5001 to 5006) .. 113
7.4.6 Add Event with Data Block (8000) .. 114
7.4.7 Get Event with Data Status Block (8100) ... 115
7.4.8 Get Configuration File Information Block (9000 or -9000) 115
7.4.9 Get Configuration File Block (9001 or -9001) ... 116
7.4.10 Get General Module Status Data Block (9250) .. 117
7.4.11 Set Port and Command Active Bits Block (9500) ... 118
7.4.12 Get Port and Command Active Bits Block (9501)... 119
7.4.13 Pass-through Formatted Block for Functions 6 and 16 with Word Data Block
(9956) 120
7.4.14 Pass-through Formatted Block for Functions 6 and 16 with Float Data Block
(9957) 121
7.4.15 Pass-through Formatted Block for Function 5 (9958)..................................... 122
7.4.16 Pass-through Formatted Block for Function 15 (9959) 123
7.4.17 Pass-through Formatted Block for Function 23 (9961) 124
7.4.18 Pass-through Block for Function 99 (9970) .. 125
7.4.19 Set Module Time Using Received Time Block (9972) 126
7.4.20 Pass Module Time to Processor Block (9973) ... 127
7.4.21 Reset Status Block (9997) .. 128
7.4.22 Warm-boot Control Block (9998) .. 128
7.4.23 Cold-boot Control Block (9999) .. 129

7.5 Ethernet Port Connection ... 130
7.5.1 Ethernet Cable Specifications ... 130

7.6 Modbus Application Port Connection ... 131
7.6.1 RS-232 Wiring... 131
7.6.2 RS-422 Wiring... 134
7.6.3 RS-485 Wiring... 134
7.6.4 DB9 to RJ45 Adaptor (Cable 14) .. 135

8 Support, Service & Warranty 136

8.1 Contacting Technical Support ... 136
8.2 Warranty Information .. 136

MVI69L-MBS ♦ CompactLogix™ Platform Start Here
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 7 of 136

1 Start Here

To get the most benefit from this User Manual, you should have the following skills:

• Rockwell Automation® RSLogix™ software: launch the program, configure ladder
logic, and transfer the ladder logic to the processor

• Microsoft Windows®: install and launch programs, execute menu commands,
navigate dialog boxes, and enter data

• Hardware installation and wiring: install the module, and connect Modbus and
CompactLogix devices to a power source and to the MVI69L-MBS’s application
port(s)

1.1 System Requirements

The MVI69L-MBS requires the following minimum hardware and software components:

• Rockwell Automation CompactLogix® processor (firmware version 10 or higher), with
compatible power supply and one free slot in the rack, for the MVI69L-MBS.

Important: The MVI69L-MBS has a power supply distance rating of 4 (L43 and L45 installations on first 4
slots of 1769 bus). It consumes 450 mA at 5 VDC.

• The module requires 450 mA of available 5 VDC power

• Rockwell Automation RSLogix 5000 programming software version 16 or higher

• Rockwell Automation RSLinx® communication software version 2.51 or higher

• ProSoft Configuration Builder (PCB) (included)

• ProSoft Discovery Service (PDS) (included in PCB)

• Supported operating systems:

o Microsoft Windows 10

o Microsoft Windows 7 Professional (32-or 64-bit)

o Microsoft Windows XP Professional with Service Pack 1 or 2

Note: The Hardware and Operating System requirements in this list are the minimum recommended to
install and run software provided by ProSoft Technology®. Other third-party applications may have different
minimum requirements. Refer to the documentation for any third-party applications for system requirements.

MVI69L-MBS ♦ CompactLogix™ Platform Start Here
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 8 of 136

1.2 Deployment Checklist

Before you begin to configure the module, consider the following questions. Your
answers will help you determine the scope of your project, and the configuration
requirements for a successful deployment.

• Are you creating a new application or integrating the module into an existing
application?

Most applications can use the Sample Add-On Instruction or Sample Ladder Logic
without any modification.

• Which slot number in the chassis does the MVI69L-MBS occupy?

For communication to occur, you must enter the correct slot number in the sample
program.

• Are the RSLogix 5000 and RSLinx software installed?

RSLogix and RSLinx are required to communicate to the CompactLogix processor.

• How many words of data do you need to transfer in your application (from
CompactLogix to Module / to CompactLogix from Module)?

1.3 Package Contents

The following components are included with your MVI69L-MBS, and are all required for
installation and configuration.

Important: Before beginning the installation, please verify that all of the following items are present.

 Qty. Part Name Part Number Part Description

1 MVI69L-MBS MVI69L-MBS Modbus Serial Lite Communication Module

1 Adapter Cable Cable #14 RJ45 to DB9 Male Adapter cable. For DB9
connection to module’s serial application
port

1 Screw Terminal
Adapter

1454-9F DB9 female to 9-pin screw terminal. Used
for RS422 or RS485 connections to Port 1
of the module

If any of these components are missing, please contact ProSoft Technology Technical
Support for replacement parts.

MVI69L-MBS ♦ CompactLogix™ Platform Start Here
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 9 of 136

1.4 Setting Jumpers

When the module is manufactured, the port selection jumpers are set to RS-232. To use
RS-422 or RS-485, you must set the jumpers to the correct position. The following
diagram describes the jumper settings.

Note: Jumper pin placement on the circuit board may vary.

The Setup Jumper acts as "write protection" for the module’s firmware. In "write
protected" mode, the Setup pins are not connected, and the module’s firmware cannot
be overwritten. The module is shipped with the Setup jumper OFF. If an update of the
firmware is needed, apply the Setup jumper to both pins.

MVI69L-MBS ♦ CompactLogix™ Platform Start Here
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 10 of 136

The following illustration shows the MVI69L-MBS jumper configuration, with the Setup
Jumper OFF.

1.5 Installing the Module in the Rack

Make sure the processor and power supply are installed and configured before installing
the MVI69L-MBS. Refer to the Rockwell Automation product documentation for
installation instructions.

Warning: Please follow all safety instructions when installing this or any other electronic devices. Failure to
follow safety procedures could result in damage to hardware or data, or even serious injury or death to
personnel. Refer to the documentation for each device to be connected to verify that suitable safety
procedures are in place before installing or servicing the device.

After you verify the jumper placements, insert the MVI69L-MBS into the rack. Use the
same technique recommended by Rockwell Automation to remove and install
CompactLogix modules.

Warning: This module is not hot-swappable! Always remove power from the rack before inserting or
removing this module, or damage may result in the module, the processor, or other connected devices.

MVI69L-MBS ♦ CompactLogix™ Platform Start Here
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 11 of 136

1 Align the module using the upper and lower tongue-and-groove slots with the
adjacent module and slide forward in the direction of the arrow.

2 Move the module back along the tongue-and-groove slots until the bus connectors
on the MVI69 module and the adjacent module line up with each other.

MVI69L-MBS ♦ CompactLogix™ Platform Start Here
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 12 of 136

3 Push the module’s bus lever back slightly to clear the positioning tab and move it
firmly to the left until it clicks. Ensure that it is locked firmly in place.

4 Close all DIN-rail latches.

MVI69L-MBS ♦ CompactLogix™ Platform Start Here
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 13 of 136

5 Press the DIN-rail mounting area of the controller against the DIN-rail. The latches
momentarily open and lock into place.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 14 of 136

2 Adding the Module to RSLogix

To add the MVI69L-MBS in RSLogix 5000, you must:

1 Create a new project in RSLogix 5000.
2 Add the module to the RSLogix 5000 project. There are two ways to do this:

o You can use the Add-On Profile from ProSoft Technology. This is the preferred
way, but requires RSLogix version 15 or later.

o You can manually create the module using a generic 1769 profile, and then
manually configure the module parameters. Use this method if you have RSLogix
version 14 or earlier.

3 Create an Add-On Instruction file using ProSoft Configuration Builder (PCB) and
export the Add-On Instruction to an RSLogix 5000 compatible file (.L5X file).

4 Import the Add-On Instruction (the .L5X file) into RSLogix 5000.

The .L5X file contains the Add-On Instruction, user-defined data types, controller tags
and ladder logic required to configure the MVI69L-MBS.

2.1 Creating the Module in an RSLogix 5000 Project

In an RSLogix 5000 project, there are two ways you can add the MVI69L-MBS to the
project.

• You can use an Add-On Profile (AOP) from ProSoft Technology. The AOP contains
all the configuration information needed to add the module to the project. This is the
preferred way, but requires RSLogix version 15 or later. Refer to Creating a Module
in the Project Using an Add-On Profile (page 15).

• If using an AOP is not an option, you can manually create and configure the module
using a generic 1769 profile. Use this method if you have RSLogix version 14 or
earlier. Refer to Creating a Module in the Project Using a Generic 1769 Module
Profile.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 15 of 136

2.1.1 Creating a Module in the Project Using an Add-On Profile

Installing an Add-On Profile

1 Download the AOP file (MVI69x_RevX.X_AOP.zip) from the product webpage (found
at www.prosoft-technology.com) and extract the files from the zip archive. Make sure
you have shut down RSLogix 5000 and RSLinx before you install the Add-On Profile
(AOP).

2 Run the MPSetup.exe file to start the Setup Wizard. Follow the Setup Wizard to
install the AOP.

3 Continue to follow the steps in the wizard to complete the installation.

http://www.prosoft-technology.com/

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 16 of 136

4 Click FINISH when complete. The AOP is now installed in RSLogix 5000. You do not
need to reboot the PC.

Using an Add-On Profile

1 In RSLogix 5000, expand the I/O CONFIGURATION folder in the Project tree. Right-
click the appropriate communications bus, and then click NEW MODULE.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 17 of 136

This opens the Select Module Type dialog box. In the Module Type Vendor Filters
area, uncheck all boxes except the PROSOFT TECHNOLOGY box. A list of ProSoft
Technology modules appears in the dialog box.

2 Select the MVI69L-MBS in the list and click CREATE:

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 18 of 136

3 A New Module dialog box opens. Edit the NAME and SLOT for the module and click
OK.

Note: This module uses a block transfer size of 240 only. Therefore, it uses an I/O TABLE SIZE of 242/241
words.

The MVI69L-MBS is now visible in the I/O Configuration tree.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 19 of 136

2.1.2 Creating a Module in the Project Using a Generic 1769 Module Profile

This procedure is not required if you installed the ProSoft Technology Add-On Profile for
this module.

1 Expand the I/O CONFIGURATION folder in the Project tree. Right-click the appropriate
communications bus and choose NEW MODULE.

This opens the Select Module Type dialog box.

2 In the Select Module Type dialog, select the 1769-MODULE and click on the
CREATE button.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 20 of 136

3 Set the Module Properties values as follows:

Parameter Value

Name Enter a module identification string. Example: MVI69L_MBS

Description Enter a description for the module. Example: ProSoft
communication module for Serial Modbus communications.

Comm Format Select DATA-INT

Slot Enter the slot number in the rack where the MV69L-MBS
module is installed.

Input Assembly Instance 101

Input Size 242

Output Assembly Instance 100

Output Size 241

Configuration Assembly Instance 102

Configuration Size 0

This module must be configured with a block transfer size of 240 words (input block
size = 242 words, output block size = 241 words).

4 On the Connection tab, set the REQUESTED PACKET INTERVAL value for your project
and click OK. A value of 10.0 ms or more is recommended.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 21 of 136

The MVI69L-MBS is now visible in the I/O Configuration tree.

2.2 Installing ProSoft Configuration Builder

Use the ProSoft Configuration Builder (PCB) software to configure the module. You can
find the latest version of the ProSoft Configuration Builder (PCB) on our web site:
www.prosoft-technology.com. The installation filename contains the PCB version
number. For example, PCB_4.3.4.5.0238.EXE.

Installing PCB from the ProSoft website:

1 Open a browser window and navigate to www.prosoft-technology.com.
2 Perform a search for 'pcb' in the Search bar. Click on the ProSoft Configuration

Builder search result.
3 On the PCB page, click the download link for ProSoft Configuration Builder, and save

the file to your Windows desktop.
4 After the download completes, double-click the file to install. If you are using

Windows 7, right-click the PCB installation file and then choose RUN AS

ADMINISTRATOR. Follow the instructions that appear on the screen.
5 If you want to find additional software specific to your MVI69L-MBS, enter the model

number into the ProSoft website search box and press the ENTER key.

file:///C:/Users/mlewis/Desktop/Working%20Local/MVI69L-MBS/www.prosoft-technology.com
file:///C:/Users/mlewis/Desktop/Working%20Local/MVI69L-MBS/www.prosoft-technology.com

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 22 of 136

2.3 Generating the AOI (.L5X File) in ProSoft Configuration Builder

The following sections describe the steps required to set up a new configuration project
in ProSoft Configuration Builder (PCB), and to export the .L5X file for the project.

2.3.1 Setting Up the Project in PCB

To begin, start PROSOFT CONFIGURATION BUILDER (PCB).

The PCB window consists of a tree view on the left, and an information pane and a
configuration pane on the right side of the window. The tree view consists of folders for
Default Project and Default Location, with a Default Module in the Default Location
folder. The following illustration shows the PCB window with a new project.

Your first task is to add the MVI69L-MBS to the project.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 23 of 136

1 In the Tree view, right-click DEFAULT MODULE, and then click CHOOSE MODULE TYPE.
This opens the Choose Module Type dialog box.

2 In the Product Line Filter area of the dialog box, click MVI69. In the Select Module
Type dropdown list, click MVI69L-MBS, and then click OK to save your settings and
return to the ProSoft Configuration Builder window. The MVI69L-MBS icon is now
visible in the tree view.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 24 of 136

2.3.2 Creating and Exporting the .L5X File

There are two parameters in the PCB configuration that affect the format of the .L5X file
that is exported. Before exporting the .L5X file to the PC/Laptop, check the Block
Transfer Size and Slot Number parameters.

1 Expand the MVI69L-MBS icon by clicking the [+] symbol beside it. Similarly, expand
the icon. Double-click the icon to open the Edit - Module dialog box.

2 Edit the Slot Number indicating where the module is placed in the 1769 bus.

3 Click OK to close the Edit – Module dialog box. The .L5X file is now ready to export
to the PC/Laptop.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 25 of 136

4 Right-click the MVI69L-MBS icon in the project tree and then click EXPORT AOI FILE.

5 Save the .L5X file to the PC/Laptop in an easily found location, such as Windows
Desktop.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 26 of 136

2.4 Creating a New RSLogix 5000 Project

1 Click the FILE menu and then choose NEW.

2 Select your CompactLogix controller model.
3 Select REVISION 16 or newer.
4 Enter a name for your controller, such as My_Controller.
5 Select your CompactLogix chassis type.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 27 of 136

2.5 Importing the Add-On Instruction

1 Open the application in RSLogix 5000.
2 Expand the TASKS folder, and expand the MAINTASK folder.
3 Expand the MAINPROGRAM folder. The MAINROUTINE contains rungs of logic. The

very last rung in this routine is blank. This is where you can import the Add-On
Instruction.

Note: You can place the Add-On Instruction in a different routine than the MainRoutine. Make sure to add a
rung with a jump instruction (JSR) in the MainRoutine to jump to the routine containing the Add-On
Instruction.

4 Right-click an empty rung in the routine and choose IMPORT RUNGS.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 28 of 136

5 Select the .L5X file that you exported from PCB.

This opens the Import Configuration dialog box. Click TAGS under MAINROUTINE to
display the controller tags in the Add-On Instruction.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 29 of 136

Note: If you are using RSLogix version 16 or earlier, the Import Configuration dialog box does not contain
the Import Content tree.

6 If the module is not located in the default slot (or is in a remote rack), edit the
connection input and output variables that define the path to the module in the FINAL

NAME column (NAME column for RSLogix version 16 or less). For example, if your
module is located in slot 3, change Local:1:I in the FINAL NAME column to Local:3:I.
Do the same for Local:1:O.

Note: If your module is located in Slot 1 of the local rack, this step is not required.

7 Click OK to confirm the import.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 30 of 136

When the import is complete, the new Add-On Instruction rung is present.

The procedure also imports new user-defined data types, data objects and the Add-
On instruction to be used in the project with the MVI69L-MBS.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 31 of 136

2.6 Adding Multiple Modules in the Rack (Optional)

Important: This procedure is for multiple MVI69L-MBSs running in the same CompactLogix rack

You can add additional modules of the same type to the rack.

1 Add a new MVI69L-MBS to the ProSoft Configuration Builder (PCB) project.
2 Export the module configuration as an L5X file.
3 Add a new MVI69L-MBS to the RSLogix 5000 project.
4 Import the .L5X file into RSLogix 5000 for the new module as an Add-On Instruction.

2.6.1 Adding an Additional Module in PCB

1 Start ProSoft Configuration Builder.
2 Right click DEFAULT LOCATION (which you can rename) and choose ADD MODULE.

3 Right-click NEW MODULE and choose CHOOSE MODULE TYPE.

4 In the Choose Module Type dialog box, select MVI69L in the PRODUCT LINE FILTER
area, and then select MVI69L-MBS as the MODULE TYPE. Click OK.

5 Select the MVI69L-MBS in the tree and repeat the above steps to add a second (or
more) module in the PCB project.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 32 of 136

Note: You must give each MVI69L-MBS a unique name. The default name on a duplicate module appends
a number to the end such as MVI69L-MBS_000, MVI69L-MBS_001, etc.

6 You can rename the module by right clicking the module and choosing Rename.

7 Configure the module parameters. See Module Configuration Parameters (page 43)
and then export the AOI .L5X file for the new module (right-click the module and
choose EXPORT AOI FILE. See Creating and Exporting the .L5X File.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 33 of 136

2.6.2 Adding Additional MVI69L-MBS Modules in RSLogix 5000

You can place multiple MVI69L-MBS modules in the same rack provided it does not
exceed the power distance rating of the CompactLogix rack, see System Requirements
(page 7). Adding an additional module to the rack is similar to installing a new module;
however, the name of the module must be unique.

1 Start RSLogix 5000 and open the project.
2 In RSLogix 5000, locate the I/O CONFIGURATION folder. Right click COMPACTBUS

LOCAL and choose NEW MODULE.

3 In the Select Module Type dialog box, select the MVI69L-MBS.

o If you are using an Add-On Profile (AOP), this adds the MVI69L-MBS and
configures the relevant parameters. You must be using RSLogix version 15 or
later to to use an AOP.

o If using an AOP is not an option, select GENERIC 1769 MODULE and click CREATE.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 34 of 136

4 The New Module dialog box appears. Enter a unique name for the new module, and
confirm the slot number of the new module.

5 Click OK. The new module is now visible.

6 You must also import the Add-On Instruction (AOI) for the new module. In the
Controller Organizer pane, double-click MAINROUTINE to open the ladder for the
routine.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 35 of 136

7 Right-click an empty rung in the routine, and then choose IMPORT RUNGS…

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 36 of 136

8 Select the .L5X file you created and exported for the new module, and click IMPORT.
Recall that the new .L5X file has a unique filename that is specific to the new
module.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 37 of 136

9 This opens the IMPORT CONFIGURATION dialog box. Click TAGS to show the controller
tags in the AOI. You must edit the FINAL NAME column of the tags for the second
module to make them unique.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 38 of 136

10 Associate the I/O connection variables to the correct module in the corresponding
slot number. The default values are Local:1:I and Local:1:O. You must edit these
values if the card is placed in a slot location other than slot 1 (Local:1:x means the
card is located in slot 1). Since the second card is placed in slot 2, change the FINAL

NAME to Local:2:I and Local:2:O. Also, you can append a ‘_2’ at the end of the FINAL

NAME of ‘AOI69_MBS’ and ‘MBS’ arrays as shown below.

MVI69L-MBS ♦ CompactLogix™ Platform Adding the Module to RSLogix
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 39 of 136

11 Click OK.

The setup procedure is now complete. Save the project. It is ready to download to the
CompactLogix processor.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 40 of 136

3 Configuring the MVI69L-MBS Using PCB

ProSoft Configuration Builder (PCB) provides a quick and easy way to manage module
configuration files customized to meet your application needs.

You build and edit the module’s configuration in ProSoft Configuration Builder. You use
PCB to download the configuration file to the CompactLogix processor, where it is stored
in the MBS.CONFIG controller tag generated by the previously exported AOI. See
Creating and Exporting the .L5X File. When the MVI69L-MBS boots up, it requests the
processor to send the configuration over the backplane in special Configuration Blocks.

See Adding the Module to RSLogix (page 14) for the procedures to create a new PCB
project and export a .L5X file for the processor. This chapter describes the module
configuration parameters in detail, as well as how to download the configuration to the
processor using PCB.

3.1 Basic PCB Functions

3.1.1 Creating a New PCB Project and Exporting an .L5X File

Please see the chapter Adding the Module to RSLogix (page 14).

3.1.2 Renaming PCB Objects

You can rename objects such as the Default Project and Default Location folders in the
tree view. You can also rename the Module icon to customize the project.

1 Right-click the object you want to rename and then choose RENAME.
2 Type the new name for the object and press Enter.

3.1.3 Editing Configuraiton Parameters

1 Click the [+] sign next to the module icon to expand module information.

2 Click the [+] sign next to any icon to view module information and configuration
options.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 41 of 136

3 Double-click any icon to open an Edit dialog box.
To edit a parameter, select the parameter in the left pane and make your changes in
the right pane.

Note: Depending on the parameter, you must enter text, or a valid number, or select from a list of options.

4 Click OK to save your changes.
5 Double-click any icon to open an Edit dialog box with a table. Use this dialog box

to build and edit Modbus Master commands.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 42 of 136

6 To add a row to the table, click ADD ROW.

7 To edit the row, click EDIT ROW. This opens an Edit dialog box.

3.1.4 Printing a Configuration File

1 In the main PCB window, right-click the MVI69L-MBS icon and then choose VIEW

CONFIGURATION.
2 In the View Configuration dialog box, click the FILE menu and click PRINT.
3 In the Print dialog box, choose the printer to use from the drop-down list, select the

printing options, and click OK.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 43 of 136

3.2 Module Configuration Parameters

3.2.1 Module Parameters

This section contains general module configuration parameters. The module uses 240
words of read data (user input data), fixed at module memory 0 to 239. The module uses
240 words of write data (user output data), fixed at module memory 240 to 479.

In the ProSoft Configuration Builder (PCB) tree view, double-click the MODULE icon.

Parameter Value Description

Module Name ASCII
characters
(max. 38)

Assigns a name to the module that can be viewed using the
configuration/debug port. Use this parameter to identify the
module and the configuration file.

Backplane Fail Count 0 to 65535 Specifies the number of consecutive backplane transfer
failures that can occur before communications are halted.

Error/Status Block
Pointer

-1 to 419 Starting register location in the module’s database for the
error/status table. If a value of -1 is entered, the error/status
data is not placed in the database. All other valid values
determine the starting location of the data. This data must
be placed in the read data range of module memory.
This data area includes the module version information and
all server error/status data. Refer to MBS.STATUS for more
information.

Initialize Input Image Yes or No This parameter determines if the input image data and the
module’s Read Register Data values are initialized with
Read Register Data values from the processor. If you set
the parameter to No, the Read Register Data values in the
module are set to 0 upon initialization. If you set the
parameter to Yes, the data is initialized with Read Register
Data values from the processor. Using this option requires
associated ladder logic to pass the data from the processor
to the module.

Slot Number 1 to x Specifies the slot in the CompactLogix rack for the module.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 44 of 136

3.2.2 MBS Port 1 Parameters

In the ProSoft Configuration Builder tree view, double-click the MODBUS PORT 1 icon.

Configuration Parameters Common to Master and Slave

Parameter Value Description

Start Active Yes or No Specifies whether or not the port and commands are active
upon module boot-up.

Type Master, Slave,
or Slave with
Pass-Through

This parameter specifies which device type the port emulates.
See Slave Mode (page 60) for more information on Slave
Pass-Through options.

Protocol RTU or ASCII Specifies the Modbus protocol for the port.

Baud Rate Multiple options Specifies the baud rate for the port.

Parity None
Odd
Even

Specifies the type of parity error checking to use. All devices
communicating through this port must use the same parity
setting.

Data Bits 7 or 8 Sets the number of data bits for each word used by the
protocol. All devices communicating through this port must use
the same number of data bits.

Stop Bits 1 or 2 Sets the number of stop bits that signal the end of a character
in the data stream. For most applications, use one stop bit. For
slower devices that require more time to re-synchronize, use
two stop bits. All devices communicating through this port must
use the same number of stop bits.

RTS On 0 to 65535
milliseconds

Sets the number of milliseconds to delay after Ready To Send
(RTS) is asserted before data is transmitted.

RTS Off 0 to 65535
milliseconds

Sets the number of milliseconds to delay after the last byte of
data is sent before the RTS modem signal is set low.

Use CTS Line Yes or No Specifies if the Clear To Send (CTS) modem control line is to
be used or not. If you set the parameter to NO, the CTS line is
not monitored. If you set the parameter to YES, the CTS line is
monitored and must be high before the module sends data.
Normally, this parameter is required when half-duplex modems
are used for communication (2-wire). This procedure is
commonly referred to as hardware handshaking.

Enron-Daniels Yes or No Specifies how the Slave driver responds to Function Code 3, 6,
and 16 commands (read and write Holding Registers) from a
remote Master when it is moving 32-bit floating-point data.
Note: Most applications using floating-point data do not need
this parameter enabled.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 45 of 136

If the remote Master expects to receive or sends one complete
32-bit floating-point value for each count of one (1), then set
this parameter to YES. When set to YES, the Slave driver
returns values from two consecutive 16-bit internal memory
registers (32 total bits) for each count in the read command, or
receive 32-bits per count from the Master for write commands.
Example: Count = 10, Slave driver sends 20 16-bit registers for
10 total 32-bit floating-point values.
If, however, the remote Master sends a count of two (2) for
each 32-bit floating-point value it expects to receive or send,
or, if you do not plan to use floating-point data in your
application, then set this parameter to NO, which is the default
setting.
You also need to set the Float Start and Float Offset
parameters to appropriate values whenever the Float Flag
parameter is set to YES. See Floating-Point Support (page
103) for more information.

Enron-Daniels
Float Start

0 to 478 Defines the first register of floating-point data. All requests with
register values greater-than or equal to this value is considered
floating-point data requests. This parameter is only used if the
Float Flag is enabled. For example, if you enter a value of 200,
all requests for registers 200 and above are considered as
floating-point data.

Enron-Daniels
Float Offset

0 to 478 Defines the start register for floating-point data in the internal
database. This parameter is used only if the Float Flag is
enabled. For example, if you set the Float Offset value to 100
and the float start parameter to 200, data requests for register
200 use the internal Modbus register 100.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 46 of 136

Additional Configuration Parameters as Master

The Type parameter must be MASTER to configure these parameters. See Configuration
Parameters Common to Master and Slave (page 44).

Parameter Value Description

Response
Timeout

0 to 65535
milliseconds

Specifies the command response timeout period in 1
millisecond increments. This is the time that a port configured
as a Master waits for a response from the addressed slave
before re-transmitting the command (Retries) or skipping to the
next command in the Command List. The value to specify
depends on the communication network used and the
expected response time (plus or minus) of the slowest device
on the network.

Retry Count 0 to 10 Specifies the number of times a command is retried if it fails.

Minimum
Command Delay

0 to 32767
milliseconds

Specifies the number of milliseconds to wait between receiving
the end of a slave's response to the most recently transmitted
command and the issuance of the next command. You can
use this parameter to place a delay after each command to
avoid sending commands on the network faster than the
slaves can receive them. This parameter does not affect retries
of a command, as retries are issued when a command failure
is recognized.

Error Delay
Counter

0 to 60000 Specifies the number of poll attempts to be skipped before
trying to re-establish communications with a slave that has
failed to respond to a command within the time limit set by the
Response Timeout parameter. After the slave fails to respond,
the master skips sending commands that should have been
sent to the slave until the number of skipped commands
matches the value entered in this parameter. This creates a
sort of slow poll mode for slaves that are experiencing
communication problems.

Inter-character
Timeout

0 to 65535
milliseconds

Specifies a time delay in milliseconds to be added to the 3.5
character time delay used by the module to recognize the end
of a message. Certain applications may require validation of
Modbus messages with more than 3.5 character time between
consecutive bytes (example: modem applications). A value of
0 causes the default end of message delay to be used

Command Error
Offset

-1 to 239 Sets the address in the module’s database where the
command error data is placed. If the value is set to -1, the data
is not transferred to the database. The valid range of values for
this parameter is -1 to 4899. For example, if this parameter is
configured for 230, the command errors are copied to the
database as follows:
230: error code for command 0
231: error code for command 1
…
An error code of 0 means that the command was successfully
sent (no error).

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 47 of 136

Additional Configuration Parameters as Slave

The Type parameter must be SLAVE or PASSTHRU SLAVE to configure these parameters.
See Configuration Parameters Common to Master and Slave (page 44).

Parameter Value Description

Minimum
Response Delay

0 to 65535
milliseconds

Sets the number of milliseconds to wait before responding to a
command received on the port from a remote Master. This delay
is sometimes required to accommodate slower Master devices.

Internal Slave ID 1 to 247 Defines the Slave Node Address for the internal database. All
requests received by the port with this address are processed by
the module. Verify that each device has a unique address on a
network.

Bit Input Offset 0 to 479 Specifies the offset address into the internal Modbus database
for network requests for Modbus function 2 commands. For
example, if you set the value to 150, an address request of 0
returns the value at register 150 in the database.

Word Input Offset 240 to 479 Specifies the offset address into the internal Modbus database
for network requests for Modbus function 4 commands. For
example, if you set the value to 350, an address request of 0
returns the value at register 350 in the database.

Output Offset 0 to 479 Specifies the offset address into the internal Modbus database
for network requests for Modbus function 1, 5 or 15 commands.
For example, if you set the value to 100, an address request of 0
corresponds to register 100 in the database.

Holding Register
Offset

0 to 479 Specifies the offset address in the internal Modbus database for
network requests for Modbus function 3, 6, or 16 commands.
For example, if you set the value to 250, a request for address 0
corresponds to the register 250 in the database.
Note: In Pass-Through mode, this range is limited to 0 to 240.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 48 of 136

3.2.3 Modbus Port 1 Commands

This section defines the master command list specifications for a Master port. In the
ProSoft Configuration Builder tree view, double-click the MODBUS PORT 1 COMMANDS
icon.

In order to interface the MVI69L-MBS with Modbus slave devices, you must create a
command list. The commands in the list specify the slave device to be addressed, the
function to be performed (read or write), the data area in the device to interface with and
the registers in the internal database to be associated with the device data.

The Master command list supports up to 30 commands. The command list is processed
from top (Command #0) to bottom.

Read commands are executed without condition. You can set write commands to
execute only if the data in the write command changes (Conditional Enable). If the
register data values in the command have not changed since the command was last
issued, the command is not executed. You can use this feature to optimize network
performance.

The MBS Modbus Master (and Slave) communication drivers support several data read
and write commands. When a command is configured, the type of data (bit, 16-bit
integer, 32-bit float, etc), and the level of Modbus support in the slave equipment needs
to be considered. For information on floating-point support, please see Floating-Point
Support (page 103).

Parameter Value Description

Enable 0 to 4 This field defines whether the command is to be executed and under
what conditions.
Disabled (0) = The command is disabled and is not executed in the
normal polling sequence.
Continuous (1) = The command is executed each scan of the
command list if the Poll Interval (see below) is set to zero. If the Poll
Interval is set to a nonzero value, the command is executed when the
interval timer expires.
Conditional (2) = For write commands only. The command executes
only if the internal data associated with the command changes.
Bit/Word Override upon Error (3) = For read commands only. If a
command error occurs, the module overrides the associated database
area with the Override Value Upon Error parameter value.
Float Override upon Error (4) = For read commands only. If a
command error occurs, the module overrides the associated database
area (2x word count) with the Override Value Upon Error parameter
value.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 49 of 136

Internal
Address

0 to 479
(word-level)
or
0 to 7679 (bit-
level)

Specifies the module’s internal database register to be associated with
the command.
If the command is a read function, the data read from the slave device
is stored beginning at the module’s internal database register value
entered in this field. This register value must be within the fixed Read
Data area of the module’s memory 0 to 239 (0 to 3839 bit-level).
If the command is a write function, the data to be written to the slave
device is sourced beginning from the module’s internal database
register specified. This register value must be within the fixed Write
Data area of the module’s memory 240 to 479 (3840 to 7679 bit-level).
Note: When using a bit level command, you must define this field at
the bit level. For example, when using function codes 1 or 2 for a Read
command, you must have a enter of 160 to place the data in the
MBS.DATA.ReadData[10] controller tag in RSLogix 5000. Think of it
as the 160th bit of MBS internal memory (MBS Internal register 10 * 16
bits per register = 160). Use this formula for function codes 5 or 15 for
writing bits also.

Poll Interval 0 to 65535
(1/10 second)

Specifies the minimum interval between executions of continuous
commands (Enable code = 1).
Example: The parameter is entered in 1/10th of a second. Therefore, if
a value of 100 is entered, the command executes no more frequently
than every 10 seconds. When the command reaches the top of the
command queue and 10 seconds has not elapsed, it is skipped until
the poll interval has expired.

Register
Count

1 to 125
(words)
or
1 to 800
(coils)

Specifies the number of registers or digital points to be associated with
the command. Modbus Function Codes 5 and 6 ignore this field as
they only apply to a single data point.
For Function Codes 1, 2 and 15, this parameter sets the number of
single bit digital points (inputs or coils) to be associated with the
command.
For Function Codes 3, 4 and 16, this parameter sets the number of 16-
bit registers to be associated with the command.

Swap Code 0,1,2,3 Defines if the data received from the Modbus slave is to be ordered
differently than received from the slave device. This parameter is
helpful when dealing with floating-point or other multi-register values,
as there is no standard method of storage of these data types in slave
devices. You can set this parameter to order the register data received
in an order useful by other applications.
No Change (0)= No change is made in the byte ordering (ABCD =
ABCD)
Word Swap (1)= The words are swapped (ABCD= CDAB)
Word and Byte Swap (2) = The words are swapped, then the bytes in
each word are swapped (ABCD=DCBA)
Byte Swap (3) = The bytes in each word are swapped (ABCD=BADC)
Note: Each pair of characters is a byte. Ex: AB and CD. Two pairs of
characters is 16-bit register Ex: ABCD.

Node Address 1 to 255
(0 =
broadcast)

Specifies the Modbus slave node address on the network to be
considered. Most Modbus devices only accept an address in the range
of 1 to 247. If set to zero, the command is a broadcast message on the
network. The Modbus protocol permits broadcast commands for write
operations. Do not use this node address for read operations.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 50 of 136

Modbus
Function

1,2,3,4,5,6,15
,16

Specifies the Modbus function to be executed.
1 – Read Coil Status (0xxxx)
2 – Read Input Status (1xxxx)
3 – Read Holding Registers (4xxxx)
4 – Read Input Registers (3xxxx)
5 – Force (Write Single) Coil (0xxxx)
6 – Force (Write Single) Holding Register (4xxxx)
15 – Preset (Write) Multiple Coils (0xxxx)
16 – Preset (Write) Multiple Registers (4xxxx)

MB Address in
Device

0 to 65535 Specifies the register or digital point address offset within the Modbus
slave device. The MBS Master reads or writes from/to this address
within the slave.
Refer to the documentation of each Modbus slave device for their
register and digital point address assignments.
Note: The value entered here does not need to include the "Modbus
Prefix" addressing scheme. Also, this value is an offset of the zero-
based Modbus addressing scheme.
Example: Using a Modbus Function Code 3 to read from address
40010 in the slave, a value of ‘9’ would be entered in this parameter.
The firmware (internally) adds a ‘40001’ offset to the value entered.
This is the same for all Modbus addresses (0x, 1x, 3x, 4x).

Override
Value Upon
Error

 This parameter is only applicable for Enable Codes 3 (Bit/Word
Override) or 4 (Float Override).
If an error occurs associated to a read command the module
automatically populates the associated database area with this
override value.

Comment 32-character text field.

3.2.4 Ethernet 1

This section defines the permanent IP address, Subnet Mask, and Gateway of the
module.

In the ProSoft Configuration Builder tree view, double-click the ETHERNET 1 icon.

Parameter Description

IP Address Unique IP address assigned to the module

Netmask Subnet mask of module

Gateway Gateway (if used)

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 51 of 136

3.3 Downloading the Configuration File to the Processor

1 In the ProSoft Configuration Builder tree view, right-click the module icon and choose
DOWNLOAD FROM PC TO DEVICE.

2 In the Download Configuration File dialog box, click RSWHO.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 52 of 136

3 Browse to, and then highlight the CompactLogix processor and click OK.

Note: DF1 serial download via CIPConnect is not supported. Only use Ethernet or EtherNet/IP drivers via
RSWho.

4 Notice the CIPConnect path has been updated in the Download Configuration File
dialog box. Click TEST CONNECTION to verify the path is active and can successfully
connect to the processor.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 53 of 136

5 When ready, click DOWNLOAD to download the configuration file to the processor.
Following the download process, the module reboots.

6 After rebooting, the ladder logic sends the configuration data from the processor to
the module. When that is complete, the module starts Modbus communications.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 54 of 136

3.4 Uploading the Configuration File from the Processor

1 In the ProSoft Configuration Builder tree view, right-click the MVI69L-MBS icon and
choose UPLOAD FROM DEVICE TO PC.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 55 of 136

2 In the Upload Configuration File dialog box, the CIPConnect path should already be
constructed if you have previously downloaded the configuration file from the same
PC. If not, click RSWHO, browse to, and then select the CompactLogix Processor,
and click OK.

MVI69L-MBS ♦ CompactLogix™ Platform Configuring the MVI69L-MBS Using PCB
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 56 of 136

3 Click TEST CONNECTION to verify the path is active and can successfully connect to
the processor.

4 When ready, click UPLOAD. When upload is complete, click CLOSE.

5 ProSoft Configuration Builder now displays the uploaded configuration file.

MVI69L-MBS ♦ CompactLogix™ Platform MVI69L-MBS Backplane Data Exchange
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 57 of 136

4 MVI69L-MBS Backplane Data Exchange

4.1 General Concepts of the MVI69L-MBS Data Transfer

The MVI69L-MBS uses ladder logic to communicate with the CompactLogix processor
across the backplane. The ladder logic handles the module data transfer, configuration
data transfer, special block handling, and status data receipt.

The following topics describe several concepts that are important for understanding the
operation of the MVI69L-MBS. This is the order of operations on power-up:

1 The module begins the following logical functions:

o Initialize hardware components
o Initialize CompactLogix backplane driver
o Test and clear all RAM

2 Read configuration from the CompactLogix processor through ladder logic
3 Allocate and initialize Module Register space
4 Enable Modbus application port(s)

After the module has received the module configuration, the module begins
communicating with other devices on the Modbus network, depending on the Modbus
configuration of the module.

4.2 Backplane Data Transfer

The MVI69L-MBS communicates directly over the CompactLogix backplane. Data is
paged between the module and the CompactLogix processor across the backplane
using the module's input and output images. The update frequency of the images is
determined by the scheduled scan rate that you define for the module and the
communication load on the module. Typical updates are in the range of 1 to 10
milliseconds per block of information.

This bi-directional data transfer is accomplished by the module filling in data in the
module's input image to send to the processor. Data in the input image is placed in the
Controller Tags in the processor by the ladder logic. The input image for the module is
242 words. This data area permits fast throughput of data between the module and the
processor.

The processor inserts data to the module's output image to transfer to the module. The
module's program extracts the data and places it in the module's internal database. The
output image for the module is 241 words.

MVI69L-MBS ♦ CompactLogix™ Platform MVI69L-MBS Backplane Data Exchange
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 58 of 136

The following illustration shows the data transfer method used to move data between the
CompactLogix processor, the MVI69L-MBS and the Modbus Network.

All data transferred between the module and the processor over the backplane is
through the input and output images. Ladder logic in the CompactLogix processor
interfaces the input and output image data with data defined in the Controller Tags. All
data used by the module is stored in its internal database. This database is defined as
virtual MBS data tables with addresses from 0 to 239 each.

4.3 Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module’s internal
database and the status data. These data are transferred through read (input image)
and write (output image) blocks. The following topics describe the structure and function
of each block.

4.3.1 Write Block: Request from the Processor to the Module

These blocks of data transfer information from the processor to the module. The
structure of the output image used to transfer this data is shown below:

Offset Description Length (words)

0 Write Block ID 1

1 to 240 Write Data 240

The Write Block ID is an index value that determines the location in the module’s
database where the data is placed.

MVI69L-MBS ♦ CompactLogix™ Platform MVI69L-MBS Backplane Data Exchange
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 59 of 136

4.3.2 Read Block: Response from the Module to the Processor

These blocks of data transfer information from the module to the processor. The
structure of the input image used to transfer this data is shown below:

Offset Description Length (words)

0 Read Block ID 1

1 Write Block ID 1

2 to 241 Read Data 240

4.3.3 Read and Write Block Transfer Sequences

There are 240 words of data transferred per block along the backplane between the
module and the processor.

The Write Block ID associated with the block requests data from the processor. Under
normal program operation, the module sequentially sends read blocks and requests
write blocks. The application uses one read and one write block, the sequence is as
follows:

 R1W1→R1W1→R1W1→R1W1→

This sequence continues until interrupted by other write block numbers sent by the
controller or by a command request from a node on the Modbus network or operator
control through the module’s Ethernet port.

The backplane parameters are configured as follows:

Database address 0 to 239 is continuously transferred from the module to the processor.
Database address 240 to 479 is continuously transferred from the processor to the
module.

MVI69L-MBS ♦ CompactLogix™ Platform MVI69L-MBS Backplane Data Exchange
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 60 of 136

4.4 Data Flow Between the Module and Processor

The following topics describe the flow of data between the two pieces of hardware
(CompactLogix processor and MVI69L-MBS) and other nodes on the Modbus network.
You can configure each port on the module to emulate a Modbus Master device or a
Modbus Slave device.

4.4.1 Slave Mode

In Slave Driver mode, the MVI69L-MBS responds to read and write commands issued
by a master on the Modbus network. The following diagram shows the data flow for
normal Slave mode.

Step Description

1 Any time the module restarts (boots or reboots), the Modbus slave port driver receives
configuration information from the MBS controller tags. This information configures the
application ports and defines slave node characteristics. The configuration information may
also contain instructions to offset data stored in the database to addresses different from
addresses requested in the received messages.

2 A Modbus Master device, such as a Modicon PLC or an HMI application, issues a read or
write command to the module’s node address. The port driver qualifies the message before
accepting it into the module. Rejected commands cause an Exception Response.

3 After the module accepts the command, the data is immediately transferred to or from the
module’s internal database. On a read command, the data is read from of the database and
a response message is built. On a write command, the data is written directly into the
database and a response message is built.

4 After Steps 2 and 3 have been completed, either a normal response message or an
Exception Response message is sent to the Master.

5 Counters are available in the Status Block to permit the ladder logic program to determine
the level of activity of the Slave driver.

In Slave Pass-Through mode, write commands from the Master are handled differently
than they are in Normal mode. In Slave Pass-Through mode, all write requests are
passed directly to the processor and data is not written directly into the module’s
database.

This mode is especially useful when both a Modbus Master and the module’s processor
logic need to be able to read and write values to the same internal database addresses.

MVI69L-MBS ♦ CompactLogix™ Platform MVI69L-MBS Backplane Data Exchange
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 61 of 136

Note: In Slave Pass-Through mode, the Read Data range is no longer used. The Write Data range now
occupies database address 0 to 239.

The following diagram shows the data flow for a slave port with pass-through enabled:

Step Description

1 Same as normal mode.

2 Same as normal mode.

3 a. In Pass-Through mode, if the Slave driver receives a read request, it looks for the data
in module’s internal database, just as it would in Normal mode.
b. The data needed to respond to the read command is retrieved directly from the
internal database and returned to the Slave driver so it can build a response message.
c. In Pass-Through mode, if the Slave driver receives a write request, it does not send
the data directly to the module’s internal database. It puts the data to be written into a
special Input Image with a special Block ID code to identify it as a Pass-Through Write
Block and substitutes this special block in place of the next regular Read Data Block. The
special block is processed by the ladder logic and the data to be written is placed into the
WriteData controller tag array at an address that corresponds to the Modbus Address
received in the write command.
d. During normal backplane communications, the data from the WriteData array,
including the data updated by the Pass-Through Write Block, is sent to the module’s
internal database. This gives the ladder logic the opportunity to also change the values
stored in these addresses, if need be, before they are written to the database.
Note: The ReadData array is not used in Pass-Through mode.

4 Same as normal mode.

5 Same as normal mode.

MVI69L-MBS ♦ CompactLogix™ Platform MVI69L-MBS Backplane Data Exchange
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 62 of 136

4.4.2 Master Mode

In Master mode, the MVI69L-MBS issues read or write commands to slave devices on
the Modbus network. These commands are user-configured in PCB; refer to Modbus
Port 1 Commands (page 47). This list is transferred to the module when the module
receives its configuration from the processor.

The commands can also be issued directly from the CompactLogix processor (Special
Command Blocks).

Command status is returned to the processor for each individual command in the
command list. The location of this command status list in the module’s internal database
is user-defined. The following flow chart and associated table describe the flow of
command data into and out of the module.

Step Description

1 Upon module boot-up, the Master driver obtains configuration data from the MBS
controller tags. The configuration data retrieved includes port configuration and the
Master Command List.
Special Commands can be issued directly from the CompactLogix processor using Event
Commands and Command Control. These command values are used by the Master
driver to determine the types and order of commands to send to slaves on the network.

2 After configuration, the Master driver begins transmitting read and/or write commands to
slave nodes on the network. If the Master driver is writing data to a slave, the data for the
write command is retrieved from the module’s internal database.

3 Once the specified slave has successfully processed the command, it returns a response
message to the Master driver for processing.

4 Data received from a slave in response to a read command is stored in the module’s
internal database.

5 Status is returned to the processor for each command in the Master Command List.

MVI69L-MBS ♦ CompactLogix™ Platform MVI69L-MBS Backplane Data Exchange
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 63 of 136

Important: Take care when constructing each command in the list to ensure predictable operation of the
module. If two commands write to the same internal database address of the module, the results are invalid.
All commands containing invalid data are ignored by the module.

Master Command List

For a port to function in Master Mode, its Master Command List must be defined in
Prosoft Configuration Builder; refer to Modbus Port 1 Commands (page 47). This list
contains up to 30 individual entries, with each entry containing the information required
to construct a valid command. A valid command includes the following items:

• Command enable mode: (0) disabled, (1) continuous or (2) conditional

• Source or destination database address: The module database address where data
is written or read.

• Count: The number of words or bits to be transferred – up to 125 words for Function
Codes 3, 4, or 16, and up to 2000 bits for Function Codes 1, 2, or 15.

Note: 125 words is the maximum count allowed by the Modbus protocol. Some field devices may support
less than the full 125 words. Check with the device manufacturer for the maximum count supported by the
slave device.

• Slave node address

• Modbus Function Code: This is the type of command that is issued.

• Source or destination address in the slave device

Command Error Codes

As the list is read in from the processor and as the commands are processed, an error
value is maintained in the module for each command. The definition for these command
error codes is listed in Communication Error Codes (page 85). You can view the
command error codes through the Ethernet diagnostics port; refer to Diagnostics and
Troubleshooting (page 73). They can also be transferred from the module’s database to
the processor.

To transfer the Command Error List to the processor, set the Command Error Offset
parameter in the port configuration to a module database address that is in the module’s
Read Data area; refer to Additional Configuration Parameters as Master (page 46).

Note: The Command Error List must be placed in the Read Data area of the database, so it can be
transferred to the processor in the input image.

MVI69L-MBS ♦ CompactLogix™ Platform Using Controller Tags
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 64 of 136

5 Using Controller Tags

Controller tags are a feature of the RSLogix software and are part of the MVI69L-MBS
Add-On Instruction. Refer to the section Adding the Module to RSLogix (page 14) for
information on importing the Add-On Instruction into RSLogix.

5.1 Controller Tags

Data related to the MVI69L-MBS is stored in the ladder logic in variables called controller
tags. You use controller tags to manage communication between the MVI69L-MBS and
the CompactLogix processor:

• View the read and write data being transferred between the module and the
processor.

• View status data for the module.

• Set up and trigger special functions.

• Initiate module restarts (Warm Boot or Cold Boot).

Individual controller tags can be grouped into collections of controller tags called
controller tag structures. A controller tag structure can contain any combination of:

• Individual controller tags

• Controller tag arrays

• Lower-level controller tag structures

The controller tags are included in the MVI69L-MBS Add-On Instruction ladder logic.
After you import the Add-On Instruction, you can find the controller tags in the Controller
Tags subfolder, located in the Controller folder in the Controller Organizer pane of the
main RSLogix 5000 window. This controller tag structure is arranged as a tree structure.
Individual controller tags are found at the lowest level of the tree structure. Each
individual controller tag is defined to hold data of a specific type, such as integer or
floating-point data.

The Add-On Instruction also includes user-defined data types (UDTs). UDTs are
collections of data types and declares the data types for the controller tag structures.

The MVI69L-MBS Add-On Instruction is extensively commented to provide information
on the purpose and function of each user-defined data type and controller tag. For most
applications, the Add-On Instruction works without needing any modification.

MVI69L-MBS ♦ CompactLogix™ Platform Using Controller Tags
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 65 of 136

5.1.1 MVI69L-MBS Controller Tags

The main MVI69L-MBS controller tag structure, MBS, is broken down into five lower-
level controller tag structures.

The five lower-level controller tag structures contain other controller tags and controller
tag structures. Click the [+] sign next to any controller tag structure to expand it and view
the next level in the structure.

For example, if you expand the MBS.DATA controller tag structure, you see that it
contains two controller tag arrays, MBS.DATA.ReadData and MBS.DATA.WriteData,
which are 240-element integer arrays.

The controller tags in the Add-On Instruction are commented in the DESCRIPTION
column.

Notice that the DATA TYPE column displays the data types used to declare each
controller tag, controller tag array or controller tag structure. Individual controller tags are
declared with basic data types, such as INT and BOOL. Controller tag arrays are
declared with arrays of basic data types. Controller tag structures are declared with user-
defined data types (UDTs).

5.2 User-Defined Data Types (UDTs)

User-defined data types (UDTs) allow you to organize collections of data types into
groupings. You can use these groupings, or data type structures, to declare the data
types for controller tag structures. Another advantage of defining a UDT is that you may
reuse it in other controller tag structures that use the same data types.

The Add-On Instruction for the MVI69L-MBS has pre-defined UDTs. You can find them
in the User-Defined subfolder, located in the Data Types folder in the Controller
Organizer pane of the main RSLogix window. Like the controller tags, the UDTs are
organized in a multiple-level tree structure.

MVI69L-MBS ♦ CompactLogix™ Platform Using Controller Tags
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 66 of 136

5.2.1 MVI69L-MBS User-Defined Data Types

Twenty different UDTs are defined for the MVI69L-MBS Add-On Instruction. The main
UDT, MBSMODULEDEF, contains all the data types for the module and was used to
create the main controller tag structure, MBS. There are five UDTs one level below
MBSMODULEDEF. These lower-level UDTs were used to create the MBS.CONFIG,
MBS.DATA, MBS. CONTROL, MBS.STATUS, and MBS.UTIL controller tag structures.

Click the [+] signs to expand the UDT structures and view lower-level UDTs.

For example, if you expand MBS.DATA, you see that it contains two UDTs, ReadData
and WriteData. Both of these are 240-element integer arrays.

Notice that these UDTs are the data types used to declare the MBS.DATA.ReadData
and MBS.DATA.WriteData controller tag arrays.

The UDTs are commented in the DESCRIPTION column.

MVI69L-MBS ♦ CompactLogix™ Platform Using Controller Tags
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 67 of 136

5.3 MBS Controller Tag Overview

This and the following sections describe the MBS controller tags in detail.

Tag Name Description

MBS.CONFIG Configuration information

MBS.DATA MBS input and output data transferred between the processor and the
module

MBS.CONTROL Governs the data movement between the PLC rack and the module

MBS.STATUS Status information

MBS.UTIL Generic tags used for internal ladder processing (DO NOT MODIFY)

5.3.1 MBS.CONFIG

When ProSoft Configuration Builder (PCB) downloads the configuration file from the PC
to the processor, the processor stores the configuration file data in the
MBS.CONFIG.FileData array. Its CRC is also included in this array.

You cannot edit this array directly. You must use PCB to edit the module configuration
since PCB calculates a unique CRC to protect data integrity. Any change to the
configuration parameters directly in this array will not match the calculated CRC.

Tag Name Description

MBS.CONFIG.FileData

This parameter contains the MBS configuration data after it has been
downloaded from PCB. It is displayed in ASCII format.
Note: MBS configuration changes cannot be made directly in this
array; the configuration must be downloaded with PCB.

MBS.CONFIG.FileSize Configuration file size (MBS.CONFIG.FileData array) in bytes.

MBS.CONFIG.FileCRC32 CRC checksum of the configuration file stored in the array.

MBS.CONFIG.FileStatus Configuration file status. 0 = No file present, 1 = File present

5.3.2 MBS.DATA

This structure contains the Read Data and Write Data arrays for processor-to-module
communication.

Tag Name Description

MBS.DATA.ReadData Data area copied from the module to the processor. This 240 element
array stores the Modbus data coming into the module from the Modbus
network.

MBS.DATA.WriteData Data area copied from the processor to the module. This 240 element
array stores the outgoing data sent from the module to the Modbus
network.

MVI69L-MBS ♦ CompactLogix™ Platform Using Controller Tags
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 68 of 136

5.3.3 MBS.CONTROL

This array handles special tasks requested by the processor.

MBS.CONTROL.PortControl

This array allows port commands to be controlled by the processor.

Tag Name Range Description

Set 0 or 1 Sends Port Control to module

Get 0 or 1 Reads Port Control from module

Port1 n/a Definition of Port 1 Control

Port1.Active 0 or 1 Port Control: Disable = 0, Enable = 1

Port1.CmdEnableBits[x] 0 or 1 Index of command to be controlled.
Example: Command 20 in port 1 command list can be
controlled at CmdEnableBits[1].3 - This is the 20th bit
offset.

MBS.CONTROL.CmdControl

This array allows the processor to dynamically enable configured commands.

Tag Name Range Description

CmdControlTrigger 0 or 1 One-shot command control: Disable = 0, Enable = 1

NumberOfCommands 0 to 6 Total number of commands to be executed.

PortNumber 1 Port number to be associated with command.

CommandIndex[x] 0 or 29 Command Index of port command [x] to be enabled. Up
to 6 command indexes can be populated at a time.

MBS.CONTROL.EventCmd_DBData

This array allows the processor to dynamically build Modbus commands with data
associated to the MBS database. This feature is meant for periodic execution such as
resetting the clock and zeroing-out counters.

Tag Name Range Description

EventCmdTrigger 0 or 1 Toggle to send Event Command.
0 = Disable, 1 = Enable

PortNumber 1 Port number to be associated with command.

SlaveID 1 to 248 Slave ID of Modbus slave

InternalDBAddress 0 to 479 or
0 to 3839
(bit-level)

Used only if UseModuleDBAddress = 1. Allowable
range is 0 to 479 for Modbus Function Codes 3, 4, 6, or
16, and 0 to 3839 for Function Codes 1, 2, 5, or 15

PointCount 0 to 125 Number of bit/words used in this command.

SwapCode 0 to 3 Swap code 0 = no swap, 1 = word swap, 2 = words &
byte swap, 3 = byte swap

ModbusFunctionCode - Modbus function code (1,2,3,4,5,6,15, or 16)

DeviceDBAddress 0 to 9999 Modbus address of the target slave database

EventCmdStatusReturned - Event status returned by the module

MVI69L-MBS ♦ CompactLogix™ Platform Using Controller Tags
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 69 of 136

MBS.CONTROL.EventCmd_ProcessorData

This array allows the processor to dynamically build Modbus commands with processor
data. This feature is meant for periodic execution such as resetting the clock and
zeroing-out counters.

Tag Name Range Description

CmdTrigger 0 or 1 Toggle to send Event Command.
0 = Disable, 1 = Enable

GetStatusTrigger 0 or 1 Toggle to retrieve event status.
0 = Disable, 1 = Enable

PortNumber 1 Port number to be associated with command

SlaveAddress 1 to 248 Slave ID of Modbus slave

ModbusFunctionCode - Modbus function code (5,6,15, or 16)

DeviceDBAddress 0 to 9999 Modbus address of the target slave database

PointCount 0 to 125 Number of bit/words associated with this command.

Data[x] 0 to 49 Data values to be sent to the slave

EventCmdStatusReturned - Command status

Port1Status - Port 1 Status array

Port1Status.Status - Status code. See Communication Error Codes
(page 85).

Port1Status.LastError - Last error code

MBS.CONTROL.SlavePoll

This array allows the processor to enable, disable and retrieve status for slaves.

Tag Name Range Description

Port1 - Port 1 slave polling control array

Port1.EnableSlaves 0 or 1 Slave Poll request
0 = Disable, 1 = Enable

Port1.EnableSlaveCount 1 to 60 Number of slaves to be enabled

Port1.EnableSlavesIDs[x] - Data array associated to enable slave request
where word x corresponds to slave ID x (0-based).
1 = Enable slave

Port1.DisableSlaves 0 or 1 Triggers disable slaves request
0 = Disable, 1 = Enable

Port1.DisableSlaveCount 1 to 60 Number of slaves to be disabled

Port1.DisableSlavesIDs[x] - Data array associated to disable slave request
where word x corresponds to slave ID x (0-based).
1 = Disable slave

Port1.GetSlavesStatus 0 or 1 Triggers request to read slave status
0 = Disable, 1 = Enabled

Port1.SlavesStatus[x] - Data array with status

MVI69L-MBS ♦ CompactLogix™ Platform Using Controller Tags
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 70 of 136

MBS.CONTROL.Time

This array allows the processor to get or set module time.

Tag Name Range Description

SetTime 0 or 1 Sends the PLC time to the module
0 = Disable, 1 = Enable

GetTime 0 or 1 Retrieves the time from the module to PLC
0 = Disable, 1 = Enable

Year 0 to 9999 Four digit year value. Example: 2015

Month 1 to 12 Month

Day 1 to 31 Day

Hour 0 to 23 Hour

Minute 0 to 59 Minute

Second 0 to 59 Second

Milliseconds 0 to 999 Millisecond

MBS.CONTROL.GetStatus

This tag allows the processor to retrieve status from the module.

Tag Name Range Description

GetStatus 0 or 1 Triggers status retrieval from the module
0 = Disable, 1 = Enable

MBS.CONTROL.ResetStatus

This tag allows the processor to reset the module status counters.

Tag Name Range Description

ResetStatus 0 or 1 Triggers module status counter reset
0 = Disable, 1 = Enable

MBS.CONTROL.ColdBoot

This tag allows the processor to Coldboot the module (full reboot).

Tag Name Range Description

ColdBoot 0 or 1 Triggers a cold boot of the module
0 = Disable, 1 = Enable

MBS.CONTROL.WarmBoot

This tag allows the processor to Warmboot the module (driver reboot).

Tag Name Range Description

WarmBoot 0 or 1 Triggers a warm boot the module
0 = Disable, 1 = Enable

MVI69L-MBS ♦ CompactLogix™ Platform Using Controller Tags
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 71 of 136

5.3.4 MBS.STATUS

This array contains status data for the module.

Tag Name Description

PassCnt Program cycle counter – this value is incremented each time a
complete program cycle occurs in the module

Product Product code

Rev Firmware revision level number

OP Operating level number

Run Run number

Port1Stats Port 1 status

Port1Stats.CmdListReq Total number of requests made from port 1 to slave devices on
the network

Port1Stats.CmdListResp Total number of slave response messages received on port 1

Port1Stats.CmdListErr Total number of command errors processed on port 1. These
errors could be due to a bad response or command

Port1Stats.PortReq Total number of messages sent out of port 1

Port1Stats.PortResp Total number of messages received on port 1

Port1Stats.PortErrSent Total number of message errors sent out of port 1

Port1Stats.PortErrRec Total number of message errors received on port 1

Port1Stats.CurrErr Not used

Port1Stats.LastErr Not used

Block Backplane transfer status

Block.Read Total number of read blocks transferred from the module to the
processor

Block.Write Total number of write blocks transferred from the processor to
the module

Block.Parse Total number of blocks successfully parsed that were received
from the processor

Block.Event Total number of event command blocks received from the
processor

Block.Cmd Total number of command blocks received from the processor

Block.Err Total number of block transfer errors recognized by the module

Port1LastErr For a slave port, this field contains the value of the current error
code returned.
For a master port, this field contains the index of the currently
executing command.

Port1PreviousErr For a slave port, this field contains the value of the last error
code returned.
For a master port, this field contains the index of the command
with an error.

MVI69L-MBS ♦ CompactLogix™ Platform Using Controller Tags
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 72 of 136

5.3.5 MBS.UTIL

The array is used for internal ladder processing, and must not be modified.

Tag Name Description

ReadDataSizeGet Holds Read Data array size (240)

WriteDataSizeGet Holds Write Data array size (240)

ReadDataBlkCount Number of Read Data blocks (1)

WriteDataBlkCount Number of Write Data blocks (1)

RBTSremainder Not used

WBTSremainder Not used

BlockIndex Computed block offset for data

LastRead Latest Read Block ID received from the module

LastWrite Latest Write Block ID to be sent to the module

LastWriteInit Latest Write Block ID used during initialization

ConfigFile Holds variables for configuration file transfer

ConfigFile.WordLength Length of configuration data to be included in block transfer

ConfigFile.BlockCount Not used

ConfigFile.FileOffset Offset in configuration file to use as a starting point for copying
over configuration data

ConnectionInputSize Holds size of the Connection Input array (240)

BlockTransferSize Size of the backplane transfer blocks (240)

SlotNumber Slot number of the module in the rack

EventBlockID Holds Block ID for Event Command

EventCmdPending Keeps an Event Command message from being sent to the
module before the previous Event Command is completed

PollStatusOffset Offset in slave status data array to use as a starting point for
copying over slave status data

CmdsAddedToQueue Number of Command Control messages added to the command
queue

CmdControlBlockID Holds Block ID for Command Control

CmdCntrlPending Keeps a Command Control message from being sent to the
module before the previous Command Control is completed

EventDataCmdPending Keeps an Event Command with Data message from being sent
to the module before the previous Event Command with Data is
completed

BootTimer Timer used to clear both cold and warm boot requests

PassThru[] Array Holds variables used for processing pass-through messages

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 73 of 136

6 Diagnostics and Troubleshooting

The MVI69L-MBS provides information on diagnostics and troubleshooting in the
following forms:

• LED status indicators on the front of the module provide general information on the
module's status.

• You can view status data contained in the module through the Ethernet port, using
the troubleshooting and diagnostic capabilities of ProSoft Configuration Builder
(PCB).

• You can transfer status data values from the module to processor memory and can
monitor them in the processor manually or by customer-created logic.

6.1 Ethernet LED Indicators

The Ethernet LEDs indicate the module's Ethernet port status.

LED State Description

Data OFF Ethernet connected at 10 Mbps duplex speed

 AMBER Solid Ethernet connected at 100 Mbps duplex speed

Link OFF No physical network connection is detected. No Ethernet
communication is possible. Check wiring and cables.

 GREEN Solid
or Blinking

Physical network connection detected. This LED must be ON solid
for Ethernet communication to be possible.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 74 of 136

6.2 LED Status Indicators

The LEDs indicate the module’s operating status.

LED Status Indication

ETH On Ethernet communications are ok

 Off No Ethernet cable connected

P1 Green Data is being transferred between the module and the Modbus
network on Port 1

Red Communication error detected

 Off No Modbus network activity detected

CFG Green Configuration is ok

Yellow Module is reading configuration

 Red Error setting up Modbus protocol driver, failed startup, or module
shutting down

 Off Processor is in Program mode

BP Green The LED is on when the module is performing a write operation on
the backplane. Under normal operation, the LED should blink
rapidly on and off.

Red Major fault or module shutting down

OK Green Module is ok

Red The program has detected an error or is being configured. If the
LED remains red for over 10 seconds, the program has probably
halted.

During module configuration, the OK LED is red and the BP ACT LED is on. If the APP,
BP ACT and OK LEDs blink at a rate of every one-second, this indicates a serious
problem with the module. Call ProSoft Technology Technical Support to arrange for
repairs.

6.2.1 Clearing a Fault Condition

Typically, if the OK LED on the front of the module remains RED for more than ten
seconds, a hardware problem has been detected or the program has exited.

To clear the condition, follow these steps:

1 Turn off power to the rack.
2 Remove the card from the rack.
3 Verify that all jumpers are set correctly.
4 If the module requires a Compact Flash card, verify it is installed correctly.
5 Re-insert the card in the rack and turn the power back on.
6 Verify correct configuration data is being transferred to the module from the

CompactLogix controller.

If the module's OK LED does not turn GREEN, verify that the module is inserted
completely into the rack. If this does not cure the problem, contact ProSoft Technology
Technical Support.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 75 of 136

6.2.2 Troubleshooting

Use the following troubleshooting steps if you encounter problems when the module is
powered up. If these steps do not resolve your problem, please contact ProSoft
Technology Technical Support.

Processor Errors

Problem description Steps to take

Processor fault Verify that the module is securely plugged into the slot that has been
configured for the module in the I/O Configuration in RSLogix.
Verify that the slot location in the rack has been configured correctly in
the ladder logic.

Processor I/O LED
flashes

This indicates a problem with backplane communications. A problem
could exist between the processor and any installed I/O module, not just
the MVI69L-MBS. Verify that all modules in the rack are correctly
configured.

Module Errors

Problem description Steps to take

BP ACT LED (not
present on MVI56E
modules) remains OFF
or blinks slowly
MVI69 modules with
scrolling LED display:
<Backplane Status>
condition reads ERR

This indicates that backplane transfer operations are failing. Connect to
the module’s Configuration/Debug port to check this.
To establish backplane communications, verify the following items:

▪ The processor is in RUN or REM RUN mode.
▪ The backplane driver is loaded in the module.
▪ The module is configured for read and write data block transfer.
▪ The ladder logic handles all read and write block situations.
▪ The module is properly configured in the processor I/O configuration

and ladder logic.

OK LED remains RED The program has halted or a critical error has occurred. Connect to the
Configuration/Debug (or Communication) port to see if the module is
running. If the program has halted, turn off power to the rack, remove the
card from the rack, then re-insert it, and then restore power to the rack.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 76 of 136

6.3 Connecting the PC to the Module's Ethernet Port

With the module securely mounted, connect one end of the Ethernet cable to the ETH1
Port, and the other end to an Ethernet hub or switch accessible from the same network
as the PC. Or, connect directly from the Ethernet Port on the PC to the ETH 1 Port on
the module.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 77 of 136

6.3.1 Setting Up a Temporary IP Address

Important: ProSoft Configuration Builder (PCB) locates MVI69L-MBSs through UDP broadcast messages.
These messages may be blocked by routers or layer 3 switches. In that case, ProSoft Discovery Service is
unable to locate the modules.

To use ProSoft Configuration Builder, arrange the Ethernet connection so that there is no router/ layer 3
switch between the computer and the module, OR reconfigure the router/ layer 3 switch to allow routing of
the UDP broadcast messages.

1 In the tree view in ProSoft Configuration Builder (PCB), select the MVI69L-MBS. (For
instructions on opening and using a project in PCB, please refer to Configuring the
MVI69L-MBS Using PCB (page 40).

2 Right-click the module icon in the tree and choose DIAGNOSTICS.

3 In the Diagnostics window, click the SET UP CONNECTION button.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 78 of 136

4 In the Connection Setup dialog box, click BROWSE DEVICE(S) to start ProSoft
Discovery Service. Right-click the module and choose ASSIGN TEMPORARY IP.

5 The module’s default IP address is usually 192.168.0.250. Choose an unused IP
within your subnet, and then click OK.

Important: The temporary IP address is only valid until the next time the module is initialized. For
information on how to set the module’s permanent IP address, see Ethernet 1 (page 50).

6 Close the ProSoft Discovery Service window. Enter the temporary IP address in the
ETHERNET ADDRESS field of the Connection Setup dialog box, then click TEST

CONNECTION to verify that the module is accessible with the current settings.
7 If the Test Connection is successful, click CONNECT. The Diagnostics window is now

accessible.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 79 of 136

6.4 Using the Diagnostics Menu in PCB

ProSoft Configuration Builder (PCB) provides diagnostic menus for debugging and
troubleshooting.

To connect to the module’s Configuration/Debug Ethernet port

1 In the tree view in ProSoft Configuration Builder, right-click the MVI69L-MBS and
then choose DIAGNOSTICS. For instructions on opening and using a project in PCB,
please refer to Configuring the MVI69L-MBS Using PCB (page 40).

2 After the Diagnostics window opens, click the SET UP CONNECTION button to browse
for the module’s IP address.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 80 of 136

3 In the Ethernet field of the Connection Setup dialog box, enter the current IP
address, whether it is temporary or permanent. Click TEST CONNECTION to verify that
the module is accessible with the current settings.

4 If the TEST CONNECTION is successful, click CONNECT. The Diagnostics window is
now visible.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 81 of 136

6.4.1 Diagnostics Menu

In the Diagnostics window in ProSoft Configuration Builder, the Diagnostics menu is
available through the Ethernet configuration port. The menu is arranged as a tree
structure.

6.4.2 Monitoring General Information

In the Diagnostics window in ProSoft Configuration Builder, click MODULE and then
click VERSION to view module version information.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 82 of 136

6.4.3 Monitoring Network Configuration Information

In the Diagnostics window in Prosoft Configuration Builder, click NETWORK and then
click CONFIG to view the Ethernet network configuration information.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 83 of 136

6.4.4 Monitoring Backplane Information

In the Diagnostics window in ProSoft Configuration Builder, click BACKPLANE to view
the backplane information. This menu has two submenus:

• CONFIGURATION

• STATUS

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 84 of 136

6.4.5 Port 1 Module Information

The MODBUS PORT 1 menu includes the following submenus:

• Configuration

• Status (General status for the port)

• Master Commands (Used when port is configured as a Modbus master)

• Slave Status List (Status of each slave on the network, used when port is configured
as a Modbus master)

• Master Command Status (Status code for each master command, used when port is
configured as a Modbus master)

6.4.6 Monitoring Data Values in the Module’s Database

In the Diagnostics window in ProSoft Configuration Builder, click DATABASE and then
click DECIMAL to view the contents of the MVI69L-MBS’s internal database. You can
view data values in ASCII, Hexadecimal, and Float format.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 85 of 136

6.5 Communication Error Codes

Note: If an error code is reported that is not listed below, check with the documentation of the Modbus
device(s) on the module's application ports. Modbus devices can produce device-specific error codes.

6.5.1 Standard MODBUS Protocol Exception Code Errors

Code Description

1 Illegal Function Code

2 Illegal Data Address

3 Illegal Data Value

4 Failure in Associated Device

5 Acknowledge

6 Busy, Rejected Message

6.5.2 Module Communication Error Codes

Code Description

-1 CTS modem control line not set before transmit

-2 Timeout while transmitting message

-11 Timeout waiting for response after request

253 Incorrect slave address in response

254 Incorrect function code in response

255 Invalid CRC/LRC value in response

6.5.3 Command List Entry Errors

Code Description

-41 Invalid enable code

-42 Internal address > maximum address

-43 Invalid node address (< 0 or > 255)

-44 Count parameter set to 0

-45 Invalid function code

-46 Invalid swap code

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 86 of 136

6.6 Connecting to the MVI69L-MBS Webpage

The module’s internal web server provides access to module version and status
information, as well as the ability to set the date and time, reboot the module, and
download firmware upgrade to the module. Enter the assigned IP address of the module
into a web browser or use the following steps in PCB.

1 In the PCB Diagnostics window, click the SET UP CONNECTION button.

2 In the Connection Setup dialog box, click BROWSE DEVICE(S) to start ProSoft
Discovery Service.

3 Right-click the module icon and choose VIEW MODULE’S WEBPAGE to launch your
default browser and display the module’s webpage.

MVI69L-MBS ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 87 of 136

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 88 of 136

7 Reference

7.1 Product Specifications

The MVI69L-MBS allows Rockwell Automation® CompactLogix® I/O compatible
processors to interface easily with other Modbus protocol compatible devices.

The module acts as an input/output communications module between the Modbus
network and the CompactLogix backplane. The data transfer from the CompactLogix
processor is asynchronous from the actions on the Modbus network. Databases are
user-defined and stored in the module to hold the data required by the protocol.

7.1.1 MVI69L General Specs

• Single-slot, 1769 backplane-compatible

• The module is recognized as an Input/Output module and has access to
processor memory for data transfer between processor and module.

• Ladder Logic is used for data transfer between module and processor. Sample
Add-On Instruction file included.

• Configuration data obtained from and stored in the processor.

• Supports CompactLogix processors with 1769 I/O bus capability and at least 800
mA of 5 VDC backplane current available.

7.1.2 Hardware Specifications

Specification Description

Dimensions Standard 1769 Single-slot module

Current Load 500 mA max @ 5 VDC
Power supply distance rating of 4 (L43 and L45
installations on first 2 slots of 1769 bus)

Operating Temp. 32° F to 140° F (0° C to 60°C)

Storage Temp. -40° F to 185° F (-40° C to 85° C)

Relative Humidity 5% to 95% (with no condensation)

LED Indicators Module OK Status
Backplane Activity
Ethernet Port Activity
Configuration Activity

CFG Port (ETH) Diagnostics over Ethernet connection

App Port (P1)

RS-232, RS-485 or RS-422 (jumper selectable)
RJ45 Port (DB-9F with supplied cable)
500V Optical isolation from backplane

Shipped with Unit RJ45 to DB-9M cable for application port

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 89 of 136

7.1.3 General Specifications - Modbus Master/Slave

Specification Description

Communication
Parameters

Baud rate: 110 to 115K baud
Stop bits: 1 or 2
Data size: 7 or 8 bits
Parity: None, Even, Odd
RTS timing delays: 0 to 65535 milliseconds

Modbus Modes RTU mode (binary) with CRC-16
ASCII mode with LRC error checking

Floating-Point
Data

Floating-point data movement supported, including configurable
support for Enron, Daniel®, and other implementations

Modbus Function
Codes Supported

1: Read Coil Status
2: Read Input Status
3: Read Holding Registers
4: Read Input Registers
5: Force (Write) Single Coil
6: Preset (Write) Single
 Holding Register
8: Diagnostics (Slave Only,
 Responds to
 Subfunction 00)

15: Force(Write) Multiple Coils
16: Preset (Write) Multiple
 Holding Registers
17: Report Slave ID (Slave Only)
22: Mask Write Holding
 Register (Slave Only)
23: Read/Write Holding
 Registers (Slave Only)

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 90 of 136

7.2 About the Modbus Protocol

Modbus is a widely-used protocol originally developed by Modicon in 1978. Since that
time, the protocol has been adopted as a standard throughout the automation industry.

The original Modbus specification uses a serial connection to communicate commands
and data between Master and Slave devices on a network. Later enhancements to the
protocol allow communication over other types of networks.

Modbus is a Master/Slave protocol. The Master establishes a connection to the remote
Slave. When the connection is established, the Master sends the Modbus commands to
the Slave. The MVI69L-MBS can work as a Master and as a Slave.

The MVI69L-MBS also works as an input/output module between itself and the Rockwell
Automation backplane and CompactLogix processor. The module uses an internal
database to pass data and commands between the processor and Master and Slave
devices on Modbus networks.

7.2.1 Modbus Master

A port configured as a virtual Modbus Master actively issues Modbus commands to
other nodes on the Modbus network, supporting up to 30 commands on the port. The
Master port has an optimized polling characteristic that polls slaves with communication
problems less frequently.

Command List Up to 30 commands per Master port, each fully configurable for
function, slave address, register to/from addressing and word/bit
count.

Polling of command list Configurable polling of command list, including continuous and
on change of data, and dynamically user or automatic enabled.

Status Data Error codes available on an individual command basis. In
addition, a slave status list is maintained per active Modbus
Master port.

7.2.2 Modbus Slave

A port configured as a Modbus slave permits a remote Master to interact with all data
contained in the module. This data can be derived from other Modbus slave devices on
the network, through a Master port, or from the CompactLogix processor.

Node address 1 to 247 (software selectable)

Status Data Error codes, counters and port status available per configured
slave port

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 91 of 136

7.2.3 Function Codes Supported by the Module

The format of each command in the list depends on the Modbus Function Code being
executed. The following table lists the Function Codes supported by the MVI69L-MBS.

Function Code Definition Supported as Master Supported as Slave

1 Read Coil Status 0x X X

2 Read Input Status 1x X X

3 Read Holding Registers 4x X X

4 Read Input Registers 3x X X

5 Set Single Coil 0x X X

6 Single Register Write 4x X X

8 Diagnostics X

15 Multiple Coil Write 0x X X

16 Multiple Register Write 4x X X

17 Report Slave ID X

22 Mask Write 4X X

23 Read/Write X

Each command list record has the same general format. The first part of the record
contains the information relating to the communication module and the second part
contains information required to interface to the Modbus slave device.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 92 of 136

7.2.4 Read Coil Status (Function Code 01)

Query

This function allows you to obtain the ON/OFF status of logic coils (Modbus 0x range)
used to control discrete outputs from the addressed slave only. Broadcast mode is not
supported with this function code. In addition to the slave address and function fields, the
message requires that the information field contain the initial coil address to be read
(Starting Address) and the number of locations that are interrogated to obtain status
data.

The addressing allows up to 2000 coils to be obtained at each request; however, the
specific slave device may have restrictions that lower the maximum quantity. The coils
are numbered from zero; (coil number 1 = zero, coil number 2 = one, coil number 3 =
two, and so on).

The following table is a sample read output status request to read coils 0020 to 0056 (37
coils) from slave device number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display

Node
Address

Function
Code

Data Start
Point High

Data Start
Point Low

Number of
Points High

Number of
Points Low

Error Check
Field (2 bytes)

0B 01 00 13 00 25 CRC

Response

An example response to Read Coil Status is as shown in the table below. The data is
packed one bit for each coil. The response includes the slave address, function code,
quantity of data characters, the data characters, and error checking. Data is packed with
one bit for each coil (1 = ON, 0 = OFF). The low order bit of the first character contains
the addressed coil, and the remainder follows. For coil quantities that are not even
multiples of eight, the last characters are filled in with zeros at high order end. The
quantity of data characters is always specified as quantity of RTU characters, that is, the
number is the same whether RTU or ASCII is used.

Because the slave interface device is serviced at the end of a controller's scan, data
reflects coil status at the end of the scan. Some slaves limit the quantity of coils provided
each scan; thus, for large coil quantities, multiple PC transactions must be made using
coil status from sequential scans.

Node
Address

Func
Code

Byte
Count

Data Coil
Status 20
to 27

Data Coil
Status 28
to 35

Data Coil
Status 36
to 43

Data Coil
Status 44
to 51

Data Coil
Status 52
to 56

Error Check
Field
(2 bytes)

0B 01 05 CD 6B B2 OE 1B CRC

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 93 of 136

The status of coils 20 to 27 is shown as CD (HEX) = 1100 1101 (Binary). Reading from
left to right, this shows that coils 27, 26, 23, 22, and 20 are all on. The other Data Coil
Status bytes are decoded similarly. Due to the quantity of coil statuses requested, the
last data field, which is shown 1B (HEX) = 0001 1011 (Binary), contains the status of
only 5 coils (52 to 56) instead of 8 coils. The 3 left most bits are provided as zeros to fill
the 8-bit format.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 94 of 136

7.2.5 Read Input Status (Function Code 02)

Query

This function allows you to obtain the ON/OFF status of discrete inputs (Modbus 1x
range) in the addressed slave. PC Broadcast mode is not supported with this function
code. In addition to the slave address and function fields, the message requires that the
information field contain the initial input address to be read (Starting Address) and the
number of locations that are interrogated to obtain status data.

The addressing allows up to 2000 inputs to be obtained at each request; however, the
specific slave device may have restrictions that lower the maximum quantity. The inputs
are numbered form zero; (input 10001 = zero, input 10002 = one, input 10003 = two, and
so on, for a 584).

The following table is a sample read input status request to read inputs 10197 to 10218
(22 coils) from slave number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Node
Address

Function
Code

Data Start
Point High

Data Start
Point Low

Number of
Points High

Number of
Points Low

Error Check Field
(2 bytes)

0B 02 00 C4 00 16 CRC

Response

An example response to Read Input Status is as shown in the table below. The data is
packed one bit for each input. The response includes the slave address, function code,
quantity of data characters, the data characters, and error checking. Data is packed with
one bit for each input (1=ON, 0=OFF). The lower order bit of the first character contains
the addressed input, and the remainder follows. For input quantities that are not even
multiples of eight, the last characters are filled in with zeros at high order end. The
quantity of data characters is always specified as a quantity of RTU characters, that is,
the number is the same whether RTU or ASCII is used.

Because the slave interface device is serviced at the end of a controller's scan, the data
reflect input status at the end of the scan. Some slaves limit the quantity of inputs
provided each scan; thus, for large coil quantities, multiple PC transactions must be
made using coil status for sequential scans.

Node
Address

Func
Code

Byte
Count

Data Discrete
Input 10197 to
10204

Data Discrete
Input 10205 to
10212

Data Discrete
Input 10213 to
10218

Error Check
Field
(2 bytes)

0B 02 03 AC DB 35 CRC

The status of inputs 10197 to 10204 is shown as AC (HEX) = 10101 1100 (binary).
Reading left to right, this show that inputs 10204, 10202, and 10199 are all on. The other
input data bytes are decoded similar.

Due to the quantity of input statuses requested, the last data field which is shown as 35
HEX = 0011 0101 (binary) contains the status of only 6 inputs (10213 to 102180) instead
of 8 inputs. The two left-most bits are provided as zeros to fill the 8-bit format.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 95 of 136

7.2.6 Read Holding Registers (Function Code 03)

Query

This function allows you to retrieve the contents of holding registers 4xxxx (Modbus 4x
range) in the addressed slave. The registers can store the numerical values of
associated timers and counters which can be driven to external devices. The addressing
allows retrieving up to 125 registers at each request; however, the specific slave device
may have restrictions that lower this maximum quantity. The registers are numbered
form zero (40001 = zero, 40002 = one, and so on). The broadcast mode is not allowed.

The example below reads registers 40108 through 40110 (three registers) from slave
number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Node
Address

Function
Code

Data Start
Registers
High

Data Start
Registers Low

Data Number
of Registers
High

Data Number
of Registers
Low

Error Check Field
(2 bytes)

0B 03 00 6B 00 03 CRC

Response

The addressed slave responds with its address and the function code, followed by the
information field. The information field contains 1 byte describing the quantity of data
bytes to be returned. The contents of the registers requested (DATA) are two bytes
each, with the binary content right justified within each pair of characters. The first byte
includes the high order bits and the second, the low order bits.

Because the slave interface device is normally serviced at the end of the controller's
scan, the data reflect the register content at the end of the scan. Some slaves limit the
quantity of register content provided each scan; thus for large register quantities,
multiple transmissions are made using register content from sequential scans.

In the example below, the registers 40108 to 40110 have the decimal contents 555, 0,
and 100 respectively.

Node
Address

Function
Code

Byte
Count

High
Data

Low
Data

High
Data

Low
Data

High
Data

Low
Data

Error Check
Field
(2 bytes)

0B 03 06 02 2B 00 00 00 64 CRC

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 96 of 136

7.2.7 Read Input Registers (Function Code 04)

Query

This function retrieves the contents of the controller's input registers from the Modbus 3x
range. These locations receive their values from devices connected to the I/O structure
and can only be referenced, not altered from within the controller, The addressing allows
retrieving up to 125 registers at each request; however, the specific slave device may
have restrictions that lower this maximum quantity. The registers are numbered for zero
(30001 = zero, 30002 = one, and so on). Broadcast mode is not allowed.

The example below requests the contents of register 30009 in slave number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Node
Address

Function
Code

Data Start
Point High

Data Start
Point Low

Data Number
of Points High

Data Number
of Points Low

Error Check
Field
(2 bytes)

0B 04 00 08 00 01 CRC

Response

The addressed slave responds with its address and the function code followed by the
information field. The information field contains 1 byte describing the quantity of data
bytes to be returned. The contents of the registers requested (DATA) are 2 bytes each,
with the binary content right justified within each pair of characters. The first byte
includes the high order bits and the second, the low order bits.

Because the slave interface is normally serviced at the end of the controller's scan, the
data reflect the register content at the end of the scan. Each PC limits the quantity of
register contents provided each scan; thus for large register quantities, multiple PC
scans are required, and the data provided is from sequential scans.

In the example below the register 30009 contains the decimal value 0.

Node
Address

Function
Code

Byte Count Data Input
Register High

Data Input
Register Low

Error Check Field
(2 bytes)

0B 04 02 00 00 CRC

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 97 of 136

7.2.8 Force Single Coil (Function Code 05)

Query

This Function Code forces a single coil (Modbus 0x range) either ON or OFF. Any coil
that exists within the controller can be forced to either state (ON or OFF). However,
because the controller is actively scanning, unless the coil is disabled, the controller can
also alter the state of the coil. Coils are numbered from zero (coil 0001 = zero, coil 0002
= one, and so on). The data value 65,280 (FF00 HEX) sets the coil ON and the value
zero turns it OFF; all other values are illegal and do not affect that coil.

The use of slave address 00 (Broadcast Mode) forces all attached slaves to modify the
desired coil.

Note: Functions 5, 6, 15, and 16 are the only messages that are recognized as valid for broadcast.

The example below is a request to slave number 11 to turn ON coil 0173.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Node
Address

Function
Code

Data Start Bit
High

Data Start Bit
Low

Number of
Bits High

Number of
Bits Low

Error Check
Field (2 bytes)

0B 05 00 AC FF 00 CRC

Response

The normal response to the Command Request is to re-transmit the message as
received after the coil state has been altered.

Node
Address

Function
Code

Data Coil Bit
High

Data Coil Bit
Low

Data On/Off Data Error Check
Field (2 bytes)

0B 05 00 AC FF 00 CRC

The forcing of a coil via Modbus function 5 happens regardless of whether the
addressed coil is disabled or not (In ProSoft products, the coil is only affected if you
implement the necessary ladder logic).

Note: The Modbus protocol does not include standard functions for testing or changing the DISABLE state
of discrete inputs or outputs. Where applicable, this may be accomplished via device specific Program
commands (In ProSoft products, this is only accomplished through ladder logic programming).

Coils that are reprogrammed in the controller logic program are not automatically cleared
upon power up. Thus, if such a coil is set ON by function Code 5 and (even months
later), an output is connected to that coil, the output is "hot".

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 98 of 136

7.2.9 Preset Single Register (Function Code 06)

Query

This Function Code allows you to modify the contents of a Modbus 4x range in the slave.
This writes to a single register only. Any holding register that exists within the controller
can have its contents changed by this message. However, because the controller is
actively scanning, it also can alter the content of any holding register at any time. The
values are provided in binary up to the maximum capacity of the controller. Unused high
order bits must be set to zero. When used with slave address zero (Broadcast mode), all
slave controllers load the specified register with the contents specified.

Note: Functions 5, 6, 15, and 16 are the only messages that are recognized as valid for broadcast.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

The example below is a request to write the value ‘3’ to register 40002 in slave 11.

Node
Address

Function
Code

Data Start Bit
High

Data Start
Bit Low

Preset Data
Register High

Preset Data
Register Low

Error Check
Field (2 bytes)

0B 06 00 01 00 03 CRC

Response

The response to a preset single register request is to re-transmit the query message
after the register has been altered.

Node
Address

Function
Code

Data Register
High

Data Register
Low

Preset Data
Register High

Preset Data
Register Low

Error Check
Field (2 bytes)

0B 06 00 01 00 03 CRC

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 99 of 136

7.2.10 Diagnostics (Function Code 08)

This function provides a series of tests for checking the communication system between
a master device and a slave, or for checking various internal error conditions within a
slave.

The function uses a two-byte sub-function code field in the query to define the type of
test to be performed. The slave echoes both the function code and sub-function code in
a normal response. Some of the diagnostics commands cause data to be returned from
the remote device in the data field of a normal response.

In general, issuing a diagnostic function to a remote device does not affect the running of
the user program in the remote device. Device memory bit and register data addresses
are not accessed by the diagnostics. However, certain functions can optionally reset
error counters in some remote devices.

A server device can, however, be forced into 'Listen Only Mode' in which it monitors the
messages on the communications system but not respond to them. This can affect the
outcome of your application program if it depends upon any further exchange of data
with the remote device. Generally, the mode is forced to remove a malfunctioning
remote device from the communications system.

Sub-function Codes Supported

Only Sub-function 00 is supported by the MVI69L-MBS.

00 Return Query Data

The data passed in the request data field is to be returned (looped back) in the
response. The entire response message should be identical to the request.

Sub-function Data Field (Request) Data Field (Response)

00 00 Any Echo Request Data

Example and State Diagram

Here is an example of a request to remote device to Return Query Data. This uses a
sub-function code of zero (00 00 hex in the two-byte field). The data to be returned is
sent in the two-byte data field (A5 37 hex).

Request Response

Field Name (Hex) Field Name (Hex)

Function 08 Function 08

Sub-function Hi 00 Sub-function Hi 00

Sub-function Lo 00 Sub-function Lo 00

Data Hi A5 Data Hi A5

Data Lo 37 Data Lo 27

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 100 of 136

The data fields in responses to other kinds of queries could contain error counts or other
data requested by the sub-function code.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 101 of 136

7.2.11 Force Multiple Coils (Function Code 15)

Query

This function forces each coil (Modbus 0x range) in a consecutive block of coils to a
desired ON or OFF state. Any coil that exists within the controller can be forced to either
state (ON or OFF). However, because the controller is actively scanning, unless the coils
are disabled, the controller can also alter the state of the coil. Coils are numbered from
zero (coil 00001 = zero, coil 00002 = one, and so on). The desired status of each coil is
packed in the data field, one bit for each coil (1= ON, 0= OFF). The use of slave address
0 (Broadcast Mode) forces all attached slaves to modify the desired coils.

Note: Functions 5, 6, 15, and 16 are the only messages (other than Loopback Diagnostic Test) that are
recognized as valid for broadcast.

The following example forces 10 coils starting at address 20 (13 HEX). The two data
fields, CD =1100 and 00 = 0000 000, indicate that coils 27, 26, 23, 22, and 20 are to be
forced on.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Node
Address

Func
Code

Coil
Address
High

Coil
Address
Low

Number of
Coils High

Number of
Coils Low

Byte
Count

Force
Data High
20 to 27

Force
Data Low
28 to 29

Error Check
Field (2 bytes)

0B 0F 00 13 00 0A 02 CD 01 CRC

Response

The normal response is an echo of the slave address, function code, starting address,
and quantity of coils forced.

Node
Address

Func
Code

Coil
Address
High

Coil
Address
Low

Number of
Coils High

Number of
Coils Low

Error Check
Field (2 bytes)

0B 0F 00 13 00 0A CRC

Writing to coils with Modbus function 15 is accomplished regardless of whether the
addressed coils are disabled or not.

Coils that are not programmed in the controller logic program are not automatically
cleared upon power up. Thus, if such a coil is set ON by function code 15 and (even
months later) an output is connected to that coil, the output is hot.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 102 of 136

7.2.12 Preset Multiple Registers (Function Code 16)

Query

This Function Code allows you to modify the contents of a Modbus 4x range in the slave.
This writes up to 125 registers at time. Since the controller is actively scanning, it also
can alter the content of any holding register at any time.

Note: Function codes 5, 6, 15, and 16 are the only messages that are recognized as valid for broadcast.

The example below is a request to write 2 registers starting at register 40002 in slave 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Node
Address

Func
Code

Data Start
Address
High

Data Start
Address
Low

Number
of Points
High

Number
of Points
Low

Byte
Count

Data
High

Data
Low

Data
High

Data
Low

Error
Check
Field (2
bytes)

0B 10 00 01 00 02 04 00 0A 01 02 CRC

Response

The normal response to a function 16 query is to echo the address, function code,
starting address and number of registers to be loaded.

Node
Address

Func
Code

Data Start
Address
High

Data Start
Address
Low

Number
of Points
High

Number
of Points
Low

Error Check
Field (2 bytes)

0B 10 00 01 00 02 CRC

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 103 of 136

7.3 Floating-Point Support

You can easily move Floating-Point data between the MBS module and other devices as
long as the device supports IEEE 754 Floating-Point format. This IEEE format is a 32-bit
single-precision floating-point format.

The logic necessary to move the floating-point data takes advantage of the COP
instruction in RSLogix 5000. The COP instruction is unique for data movement
commands in that it is an untyped function, meaning that no data conversion is done
when data is moved between controller tags with different data types (that is, it is an
image copy, not a value copy).

The COP instruction to move data from a floating-point controller tag into an integer
controller tag (something you would do to move floating-point values to the module) is
shown below.

This instruction moves one floating-point value in two 16-bit integer images to
MBS.DATA.WriteData[0], which is an integer tag. For multiple floating-point values
increase the Length field by a factor of 2 per floating-point value.

The COP instruction to move data from MBS.DATA.ReadData[0], which is an integer
tag, to a floating-point tag (something you would do to receive floating-point values from
the module) is shown below.

This instruction moves two 16-bit integer registers containing one Floating-Point value
image into the floating-point tag. For multiple values increase the Length field.

7.3.1 ENRON Floating-Point Support

Many manufacturers have implemented special support in their drivers for what is
commonly called the Enron version of the Modbus protocol. In this implementation,
addresses greater than 7000 are presumed to contain floating-point values. The
significance to this is that the count descriptor for a data transfer now denotes the
number of floating-point values to transfer, instead of the number of words.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 104 of 136

7.3.2 Configuring the Floating-Point Data Transfer

A common question is how to handle floating-point data when using the module as a
Modbus master. This really depends on the slave device and how it addresses this
application.

Just because your application is reading or writing floating-point data, does not mean
that you must configure the Float Flag, Float Start, and Float Offset parameters within
the module.

These parameters are only used to support what is typically referred to as Enron or
Daniel Modbus, where one register address must have 32 bits, or one Floating-Point
value. Below is an example:

Example #1

Modbus Address Data Type Parameter

47101 32 bit REAL TEMP Pump #1

47102 32 bit REAL Pressure Pump #1

47103 32 bit REAL TEMP Pump #2

47104 32 bit REAL Pressure Pump #2

With the module configured as a master, you only need to enable these parameters to
support a write to this type of addressing (Modbus FC 6 or 16).

If the slave device uses addressing as shown in Example #2, then you do not need to do
anything with the Float Flag or Float Start parameters, as this addressing scheme uses
two Modbus addresses to represent each floating-point value:

Example #2

Modbus Address Data Type Parameter

47101 32 bit REAL TEMP Pump #1

47103 32 bit REAL Pressure Pump #1

47105 32 bit REAL TEMP Pump #2

47107 32 bit REAL Pressure Pump #2

Because each 32 bit REAL value is represented by two Modbus addresses (example
47101 and 47102 represent TEMP Pump #1), then you do not need to set the Float
Flag, or Float Start for the module for Modbus FC 6 or 16 commands being written to the
slave.

The next few pages show three specific examples.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 105 of 136

Example #1: Master issuing Modbus command with FC 16 (with Float Flag: Yes) to transfer Float
data to slave.

(Float specific module parameters)

Float Flag: "Y" tells the master to consider the data values that need to be sent to the
slave as Floating-Point data where each data value is composed of 2 words (4 bytes or
32 bits).

Float Start - Tells the master that if this address number is <= the address number in
Addr in Dev parameter to double the byte count quantity to be included in the Command
FC6 or FC16 to be issued to the slave. Otherwise the master ignores the Float Flag: Y
and treat data as composed of 1 word, 2 bytes.

(Modbus Command parameters)

DB Addr - Tells the master where in its data memory is the beginning of data to obtain
and write out to the slave device.

Reg Count - Tells the master how many data points to send to the slave. Two counts
mean two Floating-Points with Float Flag: Y and the Addr in Dev greater than or equal to
the Float Start Parameter.

Swap Code - Tells the master how to orient the Byte and Word structure of the data
value. This is device dependent. Check Command Entry formats Section.

Func Code - Tells the master to write the float values to the slave. FC16.

Addr in Dev - Tells the master where in the slave's database to locate the data.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 106 of 136

In the above example, the master's Modbus command to transmit inside the Modbus
packet is as follows:

 Slave
Address

Function
Code

Address in
Device

Reg Count Byte Count Data

DEC 01 16 7100 2 8 85.37 22.86

HEX 01 10 1B BC 00 02 08 BD 71 42 AA E1 48 41 B6

In this example, the master's Modbus packet contains the data byte and data word
counts that have been doubled from the amount specified by Reg Count due to the Float
flag set to Y. Some slaves look for the byte count in the data packet to know the length
of the data to read from the wire. Other slaves know at which byte the data begins and
read from the wire the remaining bytes in the packet as the data the master is sending.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 107 of 136

Example #2: Master issuing Modbus command with FC 16 (with Float Flag: No) to transfer Float
data.

Float Flag: "N" tells the master to ignore the floating values and treat each register data
as a data point composed of 1 word, 2 bytes or 16 bits.

Float Start: Ignored.

DB Addr - same as when Float Flag: Y.

Reg Count - Tells the master how many data points to send to the slave.

Swap Code - same as when Float Flag: Y.

Func Code - same as when Float Flag: Y.

Addr in Dev - same as when Float Flag: Y as long as the slave's Float Flag = Y.

In the above example, the master's Modbus command to transmit inside the Modbus
packet is as follows:

 Slave
Address

Function
Code

Address in
Device

Reg
Count

Byte
Count

Data

DEC 01 16 7100 2 4 85.37

HEX 01 10 1B BC 00 02 04 BD 71 42 AA

In this example, the master's Modbus packet contains the data byte and data word
counts that have NOT been doubled from the amount specified by Reg Count due to the
Float Flag set to N. The slave looks for the byte count in the data packet to know the
length of the data to read from the wire. Because of insufficient byte count, some slaves
read only half the data from the master's transmission. Other slaves read all 8 bytes in
this example because they know where in the packet the data starts and ignore the byte
count parameter inside the Modbus packet.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 108 of 136

Example #3: Master issuing Modbus command with FC 3 to transfer Float data from slave.

Float Flag: Not applicable with Modbus Function Code 3.

Float Start: Not applicable with Modbus Function Code 3.

DB Addr - Tells the master where in its data memory to store the data obtained from the
slave.

Reg Count - Tells the master how many registers to request from the slave.

Swap Code - same as above.

Func Code - Tells the master to read the register values from the slave. FC3.

Addr in Dev - Tells the master where in the slave's database to obtain the data.

In the above example, the master's Modbus command to transmit inside the Modbus
packet is as follows:

 Slave Address Function Code Address in Device Reg Count

DEC 01 3 6100 2

HEX 01 03 17 D4 00 02

In the above example the (Enron/Daniel supporting) slave's Modbus command to
transmit inside the Modbus packet is as follows:

 Slave Address Function Code Byte Count Data

DEC 01 3 8 32.75 275.69

HEX 01 03 08 00 00 42 03 D8 52 43 89

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 109 of 136

In the above example the (a NON-Enron/Daniel supporting) slave's Modbus command
that is transmitted inside the Modbus packet is as follows:

 Slave Address Function Code Byte Count Data

DEC 01 3 4 32.75

HEX 01 03 04 00 00 42 03

7.4 Function Blocks

Data contained in this database is paged through the input and output images by
coordination of the CompactLogix ladder logic and the MVI69L-MBS's program. Each
block transferred from the module to the processor or from the processor to the module
contains a block identification code that describes the content of the block.

 Block ID Range Description

-1000 to -1166 Get input image data for initialization

-1 to -999 Dummy block

0 Read or write data for small data sets

1 to 167 Read or write data

1000 to 1255 Event Command Port 1

3000 to 3001 Port 1 slave polling control

3002 to 3006 Port 1 slave status

5001 to 5006 Port 1 Command Control

8000 Add Event with data for Port 1

8100 Get Event with data status

9000 or -9000 Specifications of configuration file data from the processor to the module

9001 or -9001 Get configuration file from the processor to the module (continued)

9250 Get general module status data

9500 Set port and command active bits

9501 Get port and command active bits

9956 Pass-through formatted block for functions 6 and 16 with word data

9957 Pass-through formatted block for functions 6 and 16 with float data

9958 Pass-through formatted block for function 5

9959 Pass-through formatted block for function 15

9961 Pass-through formatted block for function 23

9970 Pass-through block for function 99

9972 Set module time using received time

9973 Pass module time to processor

9997 Reset status block

9998 Warm-boot control block

9999 Cold-boot control block

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 110 of 136

7.4.1 Event Command Blocks (1000 to 1255)

Blocks 1000 to 1255: Event Port 1

Event Command blocks send Modbus commands directly from the ladder logic the
Master port. The Event Command is added to the high-priority queue and interrupts
normal polling so that this special command can be sent as soon as possible.

Note: Overusing Event Commands may substantially slow or totally disrupt normal polling. Use Event
Commands sparingly. Event Commands are meant to be used as one-shot commands triggered by special
circumstances or uncommon events.

Blocks 1000 to 1255: Request from Processor to Module

Offset Description

0 Write Block ID: 1000 to 1255 for a Port 1 command. The last 3 digits of the command
specify the slave address to use for the command.

1 Internal address in the module to be used with the command.

2 Count parameter that determines the number of digital points or registers to associate
with the command.

3 Swap type for the data.

4 Modbus Function Code to be associated with the command.

5 Modbus address in the slave device to be used in the command.

6 to 239 Spare

Blocks 1000 to 1255: Response from Module to Processor

Offset Description

0 Read Block ID: 1000 to 1255 requested by the processor.

1 Write Block ID: To be used by the processor in its next Write block

2 Result of the event request. 1 = the command was placed in the command queue; 0 =
no room was found in the command queue.

3 Number of commands in the command queue for the specified port.

4 to 239 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 111 of 136

7.4.2 Slave Polling Disable Block (3000)

Block 3000: Port 1 Slave Polling Disable

This block allows the processor to disable polling for specific slaves.

Block 3000: Request from Processor to Module

Offset Description

0 Write Block ID: 3000 for Port 1 slave polling disable request.

1 Number of slaves listed in the block (1 to 60).

2 to 61 Slave indexes to disable in the command list for the selected port. The number of
slaves to process is set in Word 1 of the block.

Block 3000: Response from Module to Processor

Offset Description

0 Read Block ID: 3000 requested by the processor.

1 Write Block ID: To be used by the processor in its next Write block.

2 Number of slaves processed in the last request. This number should match the value
passed in Word 1of the request block.

3 to 239 Spare

7.4.3 Slave Polling Enable Blocks (3001)

Block 3001: Port 1 Slave Polling Enable

This block allows the processor to enable polling for specific slaves.

Block 3001: Request from Processor to Module

Offset Description

0 Write Block ID: 3001 for Port 1 slave polling enable request.

1 Number of slaves listed in the block (1 to 60).

2 to 61 Slave indexes to enable in the command list for the selected port. The number of
slaves to process is set in Word 1 of the block.

Block 3001: Response from Module to Processor

Offset Description

0 Read Block ID: 3000 to 3101 requested by the processor.

1 Write Block ID: To be used by the processor in its next Write block.

2 Number of slaves processed in the last request. This number should match the value
passed in Word 1of the request block.

3 to 299 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 112 of 136

7.4.4 Slave Polling Status Block (3002 to 3006)

Blocks 3002 to 3006: Port 1 Slave Status

Two arrays are allocated in the module’s primary object to hold the polling status of each
slave on the Master port. You can use this status data to determine which slaves are
currently active on the port, in communication error, or have their polling suspended and
disabled.

Block 3002 to 3006: Request from Processor to Module

Offset Description

0 Write Block ID: 3002 to 3006 for Port 1 slave polling status request.

1 to 239 Spare

Block 3002 to 3006: Response from Module to Processor

Offset Description

0 Read Block ID: 3002 to 3006 requested by the processor.

1 Write Block ID: To be used by the processor in its next Write block.

2 Slave ID offset: Index of first slave in block

3 Number of slaves in this block

4 to 61 Slave polling status data

62 to 239 Spare

Slave Status values

Value Description

0 OK

1 Exceeded retry count and in error delay count mode

2 Block 3000 or 3100

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 113 of 136

7.4.5 Command Control Blocks (5001 to 5006)

Blocks 5001 to 5006: Port 1 Command Control

If the CompactLogix processor sends a command control block, the module places the
commands referenced in the block in the command queue. Commands placed in the
queue with this method need not have their enable bit set. Only valid commands are
placed in the queue.

Up to 6 commands can be enabled and placed in the command queue with one write
request from the CompactLogix processor.

Blocks 5001 to 5006: Request from Processor to Module

Offset Description

0 Write Block ID: 5001 to 5006 for Port 1. The last digit indicates how many commands
are to be placed in the command queue by this block.

1 Index in the command list for the first command to be entered into the command
queue (applies to blocks 5001 to 5006).

2 Index for the second command (applies to blocks 5002 to 5006).

3 Index for the third command (applies to blocks 5003 to 5006).

4 Index for the fourth command (applies to blocks 5004 to 5006).

5 Index for the fifth command (applies to blocks 5005 to 5006).

6 Index for the sixth command (applies to blocks 5006).

7 to 239 Spare

Blocks 5001 to 5006: Response from Module to Processor

Offset Description

0 Read Block ID: 5001 to 5006 requested by the processor.

1 Write Block ID: To be used by the processor in its next Write block.

2 Number of commands in the block placed in the command queue.

3 Number of commands in the command queue for the specified port.

4 to 239 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 114 of 136

7.4.6 Add Event with Data Block (8000)

Block 8000: Add Event with Data for Port 1

The 8000-series blocks are similar to the 1000-series blocks. The 8000-series blocks
source the command data from the processor, instead of from the module’s database.

Block 8000: Request from Processor to Module

Offset Description

0 Write Block ID: 8000 for Port 1 event command with data request

1 Slave address of Modbus device to reach with the command request

2 Modbus function code to use with command (5, 6, 15 or 16)

3 Modbus address in slave device

4 Count value for operation- bit count for function 15 (1 to 800 points) and word
count for function 16 (1 to 50 words or 1 to 25 float values). For functions 5 and 6,
the count is assumed to be 1.

5 to 54 Data to be used by command.

55 to 239 Spare

Block 8000: Response from Module to Processor

Offset Description

0 Read Block ID: 8000 for Port 1 event command with data request

1 Write Block ID: To be used by the processor in its next Write block.

2 Error Code for request:
 0 = No error
-1 = Port is not enabled
-2 = Port is not a master port
-3 = Port is not active (enabled)
-4 = Port busy with previous event command
-5 = Invalid Modbus command
-6 = Invalid point count for command

3 to 239 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 115 of 136

7.4.7 Get Event with Data Status Block (8100)

Block 8100: Get Event with Data Status

This block requests status data for Event with Data Commands.

Block 8100: Request from Processor to Module

Offset Description

0 Write Block ID: 8100 status data request for Event with Data Commands.

1 to 239 Spare

Block 8100: Response from Module to Processor

Offset Description

0 Read Block ID: 8100 status data for Event with Data Commands.

1 Write Block ID: To be used by the processor in its next Write block.

2 Event command status for Port 1:
0=No message active
1=Waiting to execute command
2=Command complete

3 Error code for last command executed for Port 1

6 to 239 Spare

7.4.8 Get Configuration File Information Block (9000 or -9000)

Block 9000 or -9000: Get Configuration File Information

This block requests information from the processor about the configuration file, in
preparation for transferring the configuration file from the processor to the module. It
specifies the location in the configuration file to start copying and sending the
information.

Block 9000 or -9000: Request from Module to Processor

Offset Description

0 Read Block ID: 9000 or -9000 request for configuration file information from processor

1 Write Block ID: 9000 or -9000 to be used by the processor in its next Write block.

Block 9000 or -9000: Response from Processor to Module

Offset Description

0 Write Block ID: 9000 or -9000 configuration file information

1 Module's slot number.

2 Size of the module's Input image to the processor.

3 Size of the module's Output image from the processor.

4 Status of configuration file.

5-6 These two registers contain the size of the configuration file in bytes.

7-8 These two registers contain the CRC for the configuration file.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 116 of 136

7.4.9 Get Configuration File Block (9001 or -9001)

Block 9001 or -9001: Get Configuration File Information

This block requests the configuration file from the processor. The module returns the
requested contents of the configuration file.

Block 9001 or -9001: Request from Module to Processor

Offset Description

0 Read Block ID: 9001 or -9001 request for configuration file from processor

1 Write Block ID: 9001 or -9001 to be used by the processor in its next Write block.

2 to 3 File offset: Offset of the first register in the configuration file to begin transferring data
from. If the size of the configuration file exceeds the block transfer size, the file is
transferred in multiple blocks, and the file offset tells the processor which part of the
configuration file is being requested by the individual block.

4 to 5 Number of bytes of the configuration file to include in next block

6 to 7 Copy of the data contained in registers 2 to 3.

Block 9001 or -9001: Response from Processor to Module

Offset Description

0 Write Block ID: 9001 or -9001 configuration file data

1 to 2 File offset: Same as registers 2-3 of the previous request block

3 to 4 Data length: Same as registers 4-5 of the previous request block

5 to 239 Contents of configuration file. If the size of the configuration file exceeds the block
transfer size, this information is transferred in multiple blocks.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 117 of 136

7.4.10 Get General Module Status Data Block (9250)

Block 9250: Get General Module Status Data

This block requests the general module status.

Block 9250: Request from Processor to Module

Offset Description

0 Write Block ID: 9250 request for general module status

1 to 239 Spare

Block 9250: Response from Module to Processor

Offset Description

0 Read Block ID: 9250 requested by processor.

1 Write Block ID: To be used by the processor in its next Write block.

2 Program Scan Count: This value is incremented each time a complete program cycle
occurs in the module.

3 to 4 Product Code: These two registers contain the product code of "MB6E" for the
MVI69L-MBS.

5 to 6 Product Version: These two registers contain the product version for the current
running software.

7 to 8 Operating System: These two registers contain the month and year values for the
program operating system.

9 to 10 Run Number: These two registers contain the run number value for the currently
running software.

11 Port 1 Command List Requests: Number of requests made from this port to slave
devices on the network.

12 Port 1 Command List Response: Number of slave response messages received on
the port.

13 Port 1 Command List Errors: Number of command errors processed on the port.
These errors could be due to a bad response or command.

14 Port 1 Requests: Total number of messages sent out of the port.

15 Port 1 Responses: Total number of messages received on the port.

16 Port 1 Errors Sent: Total number of message errors sent out of the port.

17 Port 1 Errors Received: Total number of message errors received on the port.

18 to 24 Spare

25 Read Block Count: Total number of read blocks transferred from the module to the
processor.

26 Write Block Count: Total number of write blocks transferred from the processor to the
module.

27 Parse Block Count: Total number of blocks successfully parsed that were received
from the processor.

28 Event Command Block Count: Total number of Event Command blocks received
from the processor.

29 Command Control Block Count: Total number of Command Control blocks received
from the processor.

30 Error Block Count: Total number of block errors recognized by the module.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 118 of 136

Offset Description

31 Port 1 Current Error: For a slave port, this field contains the value of the current error
code returned. For a master port, this field contains the index of the currently
executing command.

32 Port 1 Last Error: For a slave port, this field contains the value of the last error code
returned. For a master port, this field contains the index of the command with an
error.

33 to 239 Spare

7.4.11 Set Port and Command Active Bits Block (9500)

Block 9500: Set Port and command active bits

This block enables and disables Port 1, as well as individual Master commands for a
port.

Block 9500: Request from Processor to Module

Offset Description

0 Write Block ID: 9500 to set port and command enable/disable state

1 Port 1 active state: 0=disabled, 1=enabled

2 to 21 Command enable bits for Port 1 commands (0=disabled, 1=enabled)

22 Spare

23 to 42 Command enable bits for Port 2 commands (0=disabled, 1=enabled)

43 to 239 Spare

Block 9500: Response from Module to Processor

Offset Description

0 Read Block ID: 9500 requested by processor.

1 Write Block ID: To be used by the processor in its next Write block.

2 to 239 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 119 of 136

7.4.12 Get Port and Command Active Bits Block (9501)

Block 9501: Get Port and command active bits

This block requests the enabled/disabled status of the application port and Master
commands.

Block 9501: Request from Processor to Module

Offset Description

0 Write Block ID: 9501 to get port and command enable/disable state

1 to 239 Spare

Block 9501: Response from Module to Processor

Offset Description

0 Read Block ID: 9501 requested by processor.

1 Write Block ID: To be used by the processor in its next Write block.

2 Port 1 active state: 0=disabled, 1=enabled

3 to 22 Command enable bits for Port 1 commands (0=disabled, 1=enabled)

23 Spare

24 to 43 Command enable bits for Port 2 commands (0=disabled, 1=enabled)

44 to 239 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 120 of 136

7.4.13 Pass-through Formatted Block for Functions 6 and 16 with Word
Data Block (9956)

Block 9956: Pass-Through Formatted Block for Functions 6 and 16 with Word Data
Block

If the slave port on the module is configured for formatted Pass-Through mode, the
module sends input image blocks with identification codes of 9956, 9957, 9958 or 9959
to the processor for each write command received. Any incoming Modbus Function 5, 6,
15 or 16 command is passed from the port to the processor using a block identification
number that identifies the Function Code received in the incoming command.

The MBS Add-On Instruction handles the receipt of all Modbus write functions and to
respond as expected to commands issued by the remote Modbus Master device.

Block 9956: Request from Module to Processor

Offset Description

0 Read Block ID: 9956

1 Write Block ID: 9956

2 Number of word registers in Modbus data set

3 Starting address for Modbus data set

4 to 239 Data

The ladder logic is responsible for parsing and copying the received message and
performing the proper control operation as expected by the Master device. The
processor must then respond to the Pass-Through control block with an output image
write block with the following format.

This informs the module that the command has been processed and can be cleared
from the Pass-Through queue.

Block 9956: Response from Processor to Module

Offset Description

0 Write Block ID: 9956

1 to 239 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 121 of 136

7.4.14 Pass-through Formatted Block for Functions 6 and 16 with Float Data
Block (9957)

Block 9957: Pass-Through Formatted Block for Functions 6 and 16 with Float Data Block

Block 9957: Request from Module to Processor

Offset Description

0 Read Block ID: 9957

1 Write Block ID: 9957

2 Number of word registers in Modbus data set

3 Starting address for Modbus data set

4 to 239 Data

The ladder logic is responsible for parsing and copying the received message and
performing the proper control operation as expected by the Master device. The
processor must then respond to the Pass-Through block with a write block with the
following format.

Block 9957: Response from Processor to Module

Offset Description

0 Write Block ID: 9957

1 to 239 Spare

This informs the module that the command has been processed and can be cleared
from the Pass-Through queue.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 122 of 136

7.4.15 Pass-through Formatted Block for Function 5 (9958)

Block 9958: Pass-Through Formatted Block for Function 5

Block 9958: Request from Module to Processor

Offset Description

0 Read Block ID: 9958

1 Write Block ID: 9958

2 Number of word registers in Modbus data set

3 Starting address for Modbus data set

4 to 239 Data

The ladder logic is responsible for parsing and copying the received message and
performing the proper control operation as expected by the Master device. The
processor must then respond to the Pass-Through control block with an output image
write block with the following format.

Block 9958: Response from Processor to Module

Offset Description

0 Write Block ID: 9958

1 to 239 Spare

This informs the module that the command has been processed and can be cleared
from the Pass-Through queue.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 123 of 136

7.4.16 Pass-through Formatted Block for Function 15 (9959)

Block 9959: Pass-Through Formatted Block for Function 15

When the module receives a function code 15 in Pass-Through mode, the module writes
the data using block ID 9959 for multiple-bit data. First the bit mask clears the bits to be
updated. This is accomplished in RSLogix 5000 by ANDing the inverted mask with the
existing data.

Next, the new data ANDed with the mask is ORed with the existing data. This protects
the other bits in the INT registers from being affected.

Block 9959: Request from Module to Processor

Offset Description

0 Read Block ID: 9959

1 Write Block ID: 9959

2 Length in words

3 Data address

4 to 28 Modbus Data

29 to 53 Bit mask to use with the data set. Each bit to be considered with the data set has
a value of 1 in the mask. Bits to ignore in the data set has a value of 0 in the
mask.

54 to 239 Spare

The ladder logic is responsible for parsing and copying the received message and
performing the proper control operation as expected by the Master device. The
processor must then respond to the Pass-Through control block with a write block with
the following format.

Block 9959: Response from Processor to Module

Offset Description

0 Write Block ID: 9959

1 to 239 Spare

This informs the module that the command has been processed and can be cleared
from the Pass-Through queue.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 124 of 136

7.4.17 Pass-through Formatted Block for Function 23 (9961)

Block 9961: Pass-Through Formatted Block for Function 23

Block 9961: Request from Module to Processor

Offset Description

0 Read Block ID: 9961

1 Write Block ID: 9961

2 Number of word registers in Modbus data set

3 Starting address for Modbus data set

4 to 239 Data

The ladder logic is responsible for parsing and copying the received message and
performing the proper control operation as expected by the Master device. The
processor must then respond to the pass-through control block with an output image
write block with the following format.

Block 9961: Response from Processor to Module

Offset Description

0 Write Block ID: 9961

1 to 239 Spare

This informs the module that the command has been processed and can be cleared
from the Pass-Through queue.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 125 of 136

7.4.18 Pass-through Block for Function 99 (9970)

Block 9970: Pass-Through Block for Function 99

Block 9970: Request from Module to Processor

Offset Description

0 Read Block ID: 9970

1 Write Block ID: 9970

2 1

3 0

4 to 239 Spare

The ladder logic is responsible for parsing and copying the received message and
performing the proper control operation as expected by the Master device. The
processor must then respond to the Pass-Through control block with an output image
write block with the following format.

Block 9970: Response from Processor to Module

Offset Description

0 Write Block ID: 9970

1 to 239 Spare

This informs the module that the command has been processed and can be cleared
from the Pass-Through queue.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 126 of 136

7.4.19 Set Module Time Using Received Time Block (9972)

Block 9972: Set Module Time Using Received Time Block

This block uses the time information from the processor to set the module time.

Block 9972: Request from Processor to Module

Offset Description

0 Write Block ID: 9972

1 Year (0-9999)

2 Month (1-12)

3 Day (1-31)

4 Hour (0-23)

5 Minutes (0-59)

6 Seconds (0-59)

7 Milliseconds (0-999)

8 to 239 Spare

Block 9972: Response from Module to Processor

Offset Description

0 Read Block ID: 9972

1 Write Block ID: To be used by the processor in its next Write block.

2 Return code 0=OK, -1=error

3 to 239 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 127 of 136

7.4.20 Pass Module Time to Processor Block (9973)

Block 9973: Pass Module Time to Processor Block

This block uses the time information from the module to set the processor time.

Block 9973: Request from Processor to Module

Offset Description

0 Write Block ID: 9973

1 to 239 Spare

Block 9973: Response from Module to Processor

Offset Description

0 Read Block ID: 9973

1 Write Block ID: To be used by the processor in its next Write block.

2 Year (0-9999)

3 Month (1-12)

4 Day (1-31)

5 Hour (0-23)

6 Minutes (0-59)

7 Seconds (0-59)

8 Milliseconds

9 to 239 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 128 of 136

7.4.21 Reset Status Block (9997)

Block 9997: Reset Status Block

This block resets the module and port 1 status.

Block 9997: Request from Processor to Module

Offset Description

0 Write Block ID: 9997

1 Reset Module status (0=no, else yes)

2 Reset Port 1 status (0=no, else yes)

4 to 239 Spare

Block 9997: Response from Module to Processor

Offset Description

0 Read Block ID: 9997

1 Write Block ID: To be used by the processor in its next Write block.

2 to 239 Spare

7.4.22 Warm-boot Control Block (9998)

Block 9998: Warm-boot Control Block

If the CompactLogix sends a block number 9998, the module performs a warm-boot
operation. The module reconfigures the application port and reset the error and status
counters.

Block 9998: Request from Processor to Module

Offset Description

0 Write Block ID: 9998

1 to 239 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 129 of 136

7.4.23 Cold-boot Control Block (9999)

Block 9999: Cold-boot Control Block

If the CompactLogix processor sends a block number 9999, the firmware performs a
cold-boot operation. The firmware reloads the configuration file from the processor to the
module and resets all MBS memory, error and status data.

Block 9999: Request from Processor to Module

Offset Description

0 Write Block ID: 9999

1 to 239 Spare

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 130 of 136

7.5 Ethernet Port Connection

7.5.1 Ethernet Cable Specifications

The recommended cable is Category 5 or better. A Category 5 cable has four twisted
pairs of wires, which are color-coded and cannot be swapped. The module uses only
two of the four pairs.

The Ethernet port or ports on the module are Auto-Sensing. You can use either a
standard Ethernet straight-through cable or a crossover cable when connecting the
module to an Ethernet hub, a 10/100 Base-T Ethernet switch, or directly to a PC. The
module detects the cable type and uses the appropriate pins to send and receive
Ethernet signals.

Some hubs have one input that can accept either a straight-through or crossover cable,
depending on a switch position. In this case, you must ensure that the switch position
and cable type agree.

Refer to Ethernet Cable Configuration (page 130) for a diagram of how to configure
Ethernet cable.

Ethernet Cable Configuration

Note: The standard connector view shown is color-coded for a straight-through cable.

Crossover cable Straight- through cable

RJ-45 PIN RJ-45 PIN

1 Rx+ 3 Tx+

2 Rx- 6 Tx-

3 Tx+ 1 Rx+

6 Tx- 2 Rx-

RJ-45 PIN RJ-45 PIN

1 Rx+ 1 Tx+

2 Rx- 2 Tx-

3 Tx+ 3 Rx+

6 Tx- 6 Rx-

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 131 of 136

Ethernet Performance

Ethernet performance in the MVI69L-MBS can be affected in the following way:

• Accessing the web interface (refreshing the page, downloading files, and so on) may
affect performance

• Also, high Ethernet traffic may impact performance, so consider one of these
options:

o Use managed switches to reduce traffic coming to module port
o Use CIPconnect for these applications and disconnect the module Ethernet port

from the network

7.6 Modbus Application Port Connection

The module supports RS-232, RS-422, and RS-485 wiring to remote devices.

7.6.1 RS-232 Wiring

When the RS-232 interface is selected, the use of hardware handshaking (control and
monitoring of modem signal lines) is user definable. If no hardware handshaking is used,
here are the cable pin-outs to connect to the port.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 132 of 136

RS-232: Modem Connection (Hardware Handshaking Required)

This type of connection is required between the module and a modem or other
communication device.

The "Use CTS Line" parameter for the port configuration should be set to 'Y' for most
modem applications.

RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module requires
hardware handshaking (control and monitoring of modem signal lines).

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 133 of 136

RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field device
communication port.

Note: For most null modem connections where hardware handshaking is not required, the Use CTS Line
parameter should be set to N and no jumper is required between Pins 7 (RTS) and 8 (CTS) on the
connector. If the port is configured with the Use CTS Line set to Y, then a jumper is required between the
RTS and the CTS lines on the port connection.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 134 of 136

7.6.2 RS-422 Wiring

The RS-422 interface requires a single four or five wire cable. The Common connection
is optional, depending on the RS-422 network devices used. The cable required for this
interface is shown below:

7.6.3 RS-485 Wiring

The RS-485 interface requires a single two or three wire cable. The Common connection
is optional, depending on the RS-485 network devices used. The cable required for this
interface is shown below:

Note: This type of connection is commonly called a RS-485 half-duplex, 2-wire connection. If you have RS-
485 4-wire, full-duplex devices, they can be connected to the gateway's serial ports by wiring together the
TxD+ and RxD+ from the two pins of the full-duplex device to Pin 1 on the gateway and wiring together the
TxD- and RxD- from the two pins of the full-duplex device to Pin 8 on the gateway. As an alternative, you
could try setting the gateway to use the RS-422 interface and connect the full-duplex device according to
the RS-422 wiring diagram. For additional assistance, please contact ProSoft Technical Support.

Note: Depending upon devices on the network, if there are problems in RS-485 communication that can be
attributed to the signal echoes or reflections, then consider adding 120 OHM terminating resistors at both
ends of the RS-485 line.

MVI69L-MBS ♦ CompactLogix™ Platform Reference
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 135 of 136

RS-485 and RS-422 Tip

If communication in the RS-422 or RS-485 mode does not work at first, despite all
attempts, try switching termination polarities. Some manufacturers interpret + and -, or A
and B, polarities differently.

7.6.4 DB9 to RJ45 Adaptor (Cable 14)

MVI69L-MBS ♦ CompactLogix™ Platform Support, Service & Warranty
Modbus Serial Lite Communication Module User Manual

ProSoft Technology, Inc. Page 136 of 136

8 Support, Service & Warranty

8.1 Contacting Technical Support

ProSoft Technology, Inc. is committed to providing the most efficient and effective
support possible. Before calling, please gather the following information to assist in
expediting this process:

1 Product Version Number

2 System architecture

3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any

2 Module operation and any unusual behavior

3 Configuration/Debug status information

4 LED patterns

5 Details about the interfaced serial, Ethernet or Fieldbus devices

North America (Corporate Location) Europe / Middle East / Africa Regional Office

Phone: +1 661-716-5100

ps.prosofttechnology@belden.com

Languages spoken: English, Spanish

REGIONAL TECH SUPPORT

ps.support@belden.com

Phone: +33.(0)5.34.36.87.20

ps.europe@belden.com

Languages spoken: English, French, Hindi, Italian

REGIONAL TECH SUPPORT

ps.support.emea@belden.com

Latin America Regional Office Asia Pacific Regional Office

Phone: +52.222.264.1814

ps.latinam@belden.com

Languages spoken: English, Spanish,

Portuguese

REGIONAL TECH SUPPORT

ps.support.la@belden.com

Phone: +60.3.2247.1898

ps.asiapc@belden.com

Languages spoken: Bahasa, Chinese, English,

Hindi, Japanese, Korean, Malay

REGIONAL TECH SUPPORT

ps.support.ap@belden.com

For additional ProSoft Technology contacts in your area, please see:
www.prosoft-technology.com/About-Us/Contact-Us

8.2 Warranty Information

For details regarding ProSoft Technology’s legal terms and conditions, please see:

www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions

For Return Material Authorization information, please see:

www.prosoft-technology.com/Services-Support/Return-Material-Instructions

mailto:ps.prosofttechnology@belden.com
mailto:ps.support@belden.com
mailto:ps.europe@belden.com
mailto:ps.support.emea@belden.com
mailto:ps.latinam@belden.com
mailto:ps.support.la@belden.com
mailto:ps.asiapc@belden.com
mailto:ps.support.ap@belden.com
https://www.prosoft-technology.com/About-Us/Contact-Us
https://www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions
https://www.prosoft-technology.com/Services-Support/Return-Material-Instructions

	Your Feedback Please
	How to Contact Us
	Content Disclaimer
	Agency Approvals & Certifications

	Important Safety Information
	ATEX/IECEx Warnings and Conditions of Safe Usage:

	1 Start Here
	1.1 System Requirements
	1.2 Deployment Checklist
	1.3 Package Contents
	1.4 Setting Jumpers
	1.5 Installing the Module in the Rack

	2 Adding the Module to RSLogix
	2.1 Creating the Module in an RSLogix 5000 Project
	2.1.1 Creating a Module in the Project Using an Add-On Profile
	Installing an Add-On Profile
	Using an Add-On Profile

	2.1.2 Creating a Module in the Project Using a Generic 1769 Module Profile

	2.2 Installing ProSoft Configuration Builder
	2.3 Generating the AOI (.L5X File) in ProSoft Configuration Builder
	2.3.1 Setting Up the Project in PCB
	2.3.2 Creating and Exporting the .L5X File

	2.4 Creating a New RSLogix 5000 Project
	2.5 Importing the Add-On Instruction
	2.6 Adding Multiple Modules in the Rack (Optional)
	2.6.1 Adding an Additional Module in PCB
	2.6.2 Adding Additional MVI69L-MBS Modules in RSLogix 5000

	3 Configuring the MVI69L-MBS Using PCB
	3.1 Basic PCB Functions
	3.1.1 Creating a New PCB Project and Exporting an .L5X File
	3.1.2 Renaming PCB Objects
	3.1.3 Editing Configuraiton Parameters
	3.1.4 Printing a Configuration File

	3.2 Module Configuration Parameters
	3.2.1 Module Parameters
	3.2.2 MBS Port 1 Parameters
	Configuration Parameters Common to Master and Slave
	Additional Configuration Parameters as Master
	Additional Configuration Parameters as Slave

	3.2.3 Modbus Port 1 Commands
	3.2.4 Ethernet 1

	3.3 Downloading the Configuration File to the Processor
	3.4 Uploading the Configuration File from the Processor

	4 MVI69L-MBS Backplane Data Exchange
	4.1 General Concepts of the MVI69L-MBS Data Transfer
	4.2 Backplane Data Transfer
	4.3 Normal Data Transfer
	4.3.1 Write Block: Request from the Processor to the Module
	4.3.2 Read Block: Response from the Module to the Processor
	4.3.3 Read and Write Block Transfer Sequences

	4.4 Data Flow Between the Module and Processor
	4.4.1 Slave Mode
	4.4.2 Master Mode
	Master Command List
	Command Error Codes

	5 Using Controller Tags
	5.1 Controller Tags
	5.1.1 MVI69L-MBS Controller Tags

	5.2 User-Defined Data Types (UDTs)
	5.2.1 MVI69L-MBS User-Defined Data Types

	5.3 MBS Controller Tag Overview
	5.3.1 MBS.CONFIG
	5.3.2 MBS.DATA
	5.3.3 MBS.CONTROL
	MBS.CONTROL.PortControl
	MBS.CONTROL.CmdControl
	MBS.CONTROL.EventCmd_DBData
	MBS.CONTROL.EventCmd_ProcessorData
	MBS.CONTROL.SlavePoll
	MBS.CONTROL.Time
	MBS.CONTROL.GetStatus
	MBS.CONTROL.ResetStatus
	MBS.CONTROL.ColdBoot
	MBS.CONTROL.WarmBoot

	5.3.4 MBS.STATUS
	5.3.5 MBS.UTIL

	6 Diagnostics and Troubleshooting
	6.1 Ethernet LED Indicators
	6.2 LED Status Indicators
	6.2.1 Clearing a Fault Condition
	6.2.2 Troubleshooting
	Processor Errors
	Module Errors

	6.3 Connecting the PC to the Module's Ethernet Port
	6.3.1 Setting Up a Temporary IP Address

	6.4 Using the Diagnostics Menu in PCB
	6.4.1 Diagnostics Menu
	6.4.2 Monitoring General Information
	6.4.3 Monitoring Network Configuration Information
	6.4.4 Monitoring Backplane Information
	6.4.5 Port 1 Module Information
	6.4.6 Monitoring Data Values in the Module’s Database

	6.5 Communication Error Codes
	6.5.1 Standard MODBUS Protocol Exception Code Errors
	6.5.2 Module Communication Error Codes
	6.5.3 Command List Entry Errors

	6.6 Connecting to the MVI69L-MBS Webpage

	7 Reference
	7.1 Product Specifications
	7.1.1 MVI69L General Specs
	7.1.2 Hardware Specifications
	7.1.3 General Specifications - Modbus Master/Slave

	7.2 About the Modbus Protocol
	7.2.1 Modbus Master
	7.2.2 Modbus Slave
	7.2.3 Function Codes Supported by the Module
	7.2.4 Read Coil Status (Function Code 01)
	Query
	Response

	7.2.5 Read Input Status (Function Code 02)
	Query
	Response

	7.2.6 Read Holding Registers (Function Code 03)
	Query
	Response

	7.2.7 Read Input Registers (Function Code 04)
	Query
	Response

	7.2.8 Force Single Coil (Function Code 05)
	Query
	Response

	7.2.9 Preset Single Register (Function Code 06)
	Query
	Response

	7.2.10 Diagnostics (Function Code 08)
	Sub-function Codes Supported
	00 Return Query Data
	Example and State Diagram

	7.2.11 Force Multiple Coils (Function Code 15)
	Query
	Response

	7.2.12 Preset Multiple Registers (Function Code 16)
	Query
	Response

	7.3 Floating-Point Support
	7.3.1 ENRON Floating-Point Support
	7.3.2 Configuring the Floating-Point Data Transfer
	Example #1
	Example #2
	Example #1: Master issuing Modbus command with FC 16 (with Float Flag: Yes) to transfer Float data to slave.
	(Float specific module parameters)
	(Modbus Command parameters)
	Example #2: Master issuing Modbus command with FC 16 (with Float Flag: No) to transfer Float data.
	Example #3: Master issuing Modbus command with FC 3 to transfer Float data from slave.

	7.4 Function Blocks
	7.4.1 Event Command Blocks (1000 to 1255)
	Blocks 1000 to 1255: Request from Processor to Module
	Blocks 1000 to 1255: Response from Module to Processor

	7.4.2 Slave Polling Disable Block (3000)
	Block 3000: Request from Processor to Module
	Block 3000: Response from Module to Processor

	7.4.3 Slave Polling Enable Blocks (3001)
	Block 3001: Request from Processor to Module
	Block 3001: Response from Module to Processor

	7.4.4 Slave Polling Status Block (3002 to 3006)
	Block 3002 to 3006: Request from Processor to Module

	7.4.5 Command Control Blocks (5001 to 5006)
	Blocks 5001 to 5006: Request from Processor to Module
	Blocks 5001 to 5006: Response from Module to Processor

	7.4.6 Add Event with Data Block (8000)
	Block 8000: Request from Processor to Module
	Block 8000: Response from Module to Processor

	7.4.7 Get Event with Data Status Block (8100)
	Block 8100: Request from Processor to Module
	Block 8100: Response from Module to Processor

	7.4.8 Get Configuration File Information Block (9000 or -9000)
	Block 9000 or -9000: Request from Module to Processor
	Block 9000 or -9000: Response from Processor to Module

	7.4.9 Get Configuration File Block (9001 or -9001)
	Block 9001 or -9001: Request from Module to Processor
	Block 9001 or -9001: Response from Processor to Module

	7.4.10 Get General Module Status Data Block (9250)
	Block 9250: Request from Processor to Module
	Block 9250: Response from Module to Processor

	7.4.11 Set Port and Command Active Bits Block (9500)
	Block 9500: Request from Processor to Module
	Block 9500: Response from Module to Processor

	7.4.12 Get Port and Command Active Bits Block (9501)
	Block 9501: Request from Processor to Module
	Block 9501: Response from Module to Processor

	7.4.13 Pass-through Formatted Block for Functions 6 and 16 with Word Data Block (9956)
	Block 9956: Request from Module to Processor
	Block 9956: Response from Processor to Module

	7.4.14 Pass-through Formatted Block for Functions 6 and 16 with Float Data Block (9957)
	Block 9957: Request from Module to Processor
	Block 9957: Response from Processor to Module

	7.4.15 Pass-through Formatted Block for Function 5 (9958)
	Block 9958: Request from Module to Processor
	Block 9958: Response from Processor to Module

	7.4.16 Pass-through Formatted Block for Function 15 (9959)
	Block 9959: Request from Module to Processor
	Block 9959: Response from Processor to Module

	7.4.17 Pass-through Formatted Block for Function 23 (9961)
	Block 9961: Request from Module to Processor
	Block 9961: Response from Processor to Module

	7.4.18 Pass-through Block for Function 99 (9970)
	Block 9970: Request from Module to Processor
	Block 9970: Response from Processor to Module

	7.4.19 Set Module Time Using Received Time Block (9972)
	Block 9972: Request from Processor to Module
	Block 9972: Response from Module to Processor

	7.4.20 Pass Module Time to Processor Block (9973)
	Block 9973: Request from Processor to Module
	Block 9973: Response from Module to Processor

	7.4.21 Reset Status Block (9997)
	Block 9997: Request from Processor to Module
	Block 9997: Response from Module to Processor

	7.4.22 Warm-boot Control Block (9998)
	Block 9998: Request from Processor to Module

	7.4.23 Cold-boot Control Block (9999)
	Block 9999: Request from Processor to Module

	7.5 Ethernet Port Connection
	7.5.1 Ethernet Cable Specifications
	Ethernet Cable Configuration
	Ethernet Performance

	7.6 Modbus Application Port Connection
	7.6.1 RS-232 Wiring
	RS-232: Modem Connection (Hardware Handshaking Required)
	RS-232: Null Modem Connection (Hardware Handshaking)
	RS-232: Null Modem Connection (No Hardware Handshaking)

	7.6.2 RS-422 Wiring
	7.6.3 RS-485 Wiring
	RS-485 and RS-422 Tip

	7.6.4 DB9 to RJ45 Adaptor (Cable 14)

	8 Support, Service & Warranty
	8.1 Contacting Technical Support
	8.2 Warranty Information

