ProSoft

TECHNOLOGY

PROGRAMMABLE
355 MODULES

Where Automation Connects.

MVIS6E-LDM

ControlLogix® Platform
"C" Programmable

Linux Application Development
Module

October 13, 2025

DEVELOPER'S GUIDE

ControlLogix® Platform ¢ "C" Programmable Contents
Linux Application Development Module Developer's Guide

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions,
comments, compliments or complaints about our products, documentation, or support, please write or call
us.

ProSoft Technology, Inc.
+1 (661) 716-5100

+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
ps.support@belden.com

© 2025 ProSoft Technology, Inc. All rights reserved.

MVI56E-LDM Developer's Guide
For Public Use.

October 13, 2025

ProSoft Technology @, is a registered Copyright of ProSoft Technology, Inc. All other brand or product
names are or may be trademarks of, and are used to identify products and services of, their respective
owners.

or supplier for further information.

Prop 65 Warning — Cancer and Reproductive Harm — www.P65Warnings.ca.gov

For professional users in the European Union
If you wish to discard electrical and electronic equipment (EEE), please contact your dealer

Agency Approvals & Certifications

Please visit our website: www.prosoft-technology.com

ProSoft Technology, Inc. Page 3 of 189

https://www.prosoft-technology.com/
mailto:ps.support@belden.com
http://www.p65warnings.ca.gov/
https://www.prosoft-technology.com/

ControlLogix® Platform ¢ "C" Programmable Contents

Linux Application Development Module Developer's Guide

Contents

YOUr FEEADACK PIEASEeeiiiiiii e 3

1 LDM Introduction 7

2 Preparing the MVIS6E-LDM Module 8

21 System RequIiremMents ... 8

2.2 Package Contents - LDM.........cooiiiiiiiiiiie e 8

23 Recommended Compact Flash (CF) Cardsccccceeviiiiiiiiiiii e 9

24 Jumper Locations and Settingscooiiiiiiiiiii 10

241 SEIUP JUMIPET ...t e e e e e e e e e et aaeeaa s 10

24.2 Port 1 and Port 2 JUMPEISuuuiiiiiiiiiiiiiieieieieieiiieieieevsvevaveeeasesaeanananennnnnnnnnnes 10

2.5 Setting Up a Connection with the Module ..., 11

2.5.1 Installing the Module in the RacCK...............euuiiiiiiiiiiiiiiiiiiieeeienaeneaanns 11

25.2 Making Configuration Port Connectionsccccceeeiiiiiiiiiiiieccc e, 12

2.6 Enabling and Disabling the Console Port............cccccoeeiiiiiiiiiiieeceeeee, 17

2.7 Establishing Module Communicationccoiiieiiiiiiee e 21

271 RS-232 CONSOIE......coiiiiiiiiei e 21

2.7.2 Ethernet (Telnet) ... e 22

2.7.3 Temporary IP Address Changecooiiiiiiiiiiiie e 23

274 Permanent IP Address Changeccceeiiiiiiiiiiiiei e 23

2.8 MOAUIE RESCUEeeiiiiiii e 24

3 Development Environment 26

3.1 S U D e ————————————— 26

3.2 Changing PasSWOrd........cooiiiiiiiiiie et 29

3.3 USING ECHIPSE -t 31

3.3.1 BUIlING @ PrOJECT.....ooiiieie e 32

4 Understanding the MVI56-LDM API 38

4.1 APTLIDIAIY ettt 38

411 Header File ... 38

41.2 S T= 1101 o] (3 07 0o [T USSR 38

41.3 Specifying the Communications Pathcccoociiiiiii e, 39

41.4 ControlLogix Tag Naming Conventionscccceiiiiiiiiiiee e 40

4.2 MVISE6E-LDM Development TOOISeeiiiiiiiiiiiiiiiieiee e 41

4.3 CIP AP FUNCHONS ...eeiiiiiiiie ettt ettt e ettt e e e e s sneeee e 41

4.4 Backplane DEViCe DIVETuuuuuiiiiiiiiiiiieiiiiieiiiiieieieiaiereravsserssssessasesennannnnannes 42

4.5 SAMPIE COER ... 43

4.6 Establishing a Console Connection ... 43

4.7 Physically Connect to the Module.............oooiiiii e 43

4.8 Configuring Serial Communicationccccoiiiiiiii e 44

4.9 Setting Up the ControlLogiX 5000............eeiiiiiiiiiiee e 46

410 Ethernet Sample ... e 48

4101 Server Enet Sample. ... 48

4.10.2 Client ENet SamPIEovviiiiiiiie e 50

4.1 Serial SAMPIE......ooiiiii s 51

ProSoft Technology, Inc. Page 4 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Contents
Developer's Guide

412 Led _Sample ...
413 Backplane_Sample..........cccvviiiiiiiiiiiee e
4.14 Tag SAMPIE..cciiii i
4.15 Ethernet Communications Sampleccccccoovvciiieeeeeennins

4.15.1 Initiating External Client Communication..............ccccceeen.
4.16 Serial Application Sample........c.ccccceeveeiiiiiiii e

5 CIP API Functions

5.1 CIP API Initialization FUNCHONS.........coviiiiiiiieeeeeee
1109 Co11o O o 11 o 1R
10109 (o1 1o T O] o 1T a1 AN = 2R
1O 109 (o1« 07 [1= - R

5.2 Object Registrationcccoiieiiiiie e
OCXcip_RegisterAssemblyODbjcoceeiiiiiiiiiii e
OCXcip_UnregisterAssemblyODbjcccccoeeiiiiiiiiiiieiee e,

53 Special Callback Registrationccccccovveeiiiiiiiiiiiineeneen.
OCXcip_RegisterFatalFaultRtnccccooeeiiiiiie e,
OCXcip_RegisterResetReqRINcceeeiiiiiiiiieee e,

5.4 CIP Callback FUNCLONScccviveiiiiiieiiiiiee e
[oTo] o] o T=Tot A] (o o R
SEIVICE_PIOC ...eteieeeiteiee et ee e e ettt e e e sttt e e e sttt e e e sttt e e e sabee e e e sbbeeeesbbeeeesbaeeeean
fatalfault_ProcC..........ooeeiiii e

5.5 Connected Data Transfercccoveiiiiinie e
OCXcip_WriteConnectedoocieiiiiiiiieiiee e
OCXcip_ReadConnected..........coociiiiiiiiiieiiiiee et
OCXcip_ImmediateOutputccueiiiiiiiii e
OCXcip_WaitFOorRXDatauvuiuiiiiiiiiiiiiiiiiiiieiiieieeeaeeeveevevvenvnananens
OCXcip_WriteConnectedComplete...........uuvuieiiieiiiiiiiiiiiiiiiiiiiiiiiiieinvnvainnns

5.6 Tag Access FUNCLIONS ..o
OCXcip_AccessTagData.........coouiiiiiiiiiiiee e
OCXcip_AccessTagDataAbortable ..o
OCXcip_CreateTagDbHandlecoociiiiiiiiiiie e
OCXcip_DeleteTagDbHandleocoeeeiiiiiiiiiiiie e
OCXcip_SetTagDDbOPLIONScccoiiiiieiiiee e
OCXcip_BuildTagDDbcoooiiiiieiiiee e
OCXCip_TestTagDbVer........c.ooiiiiee e
OCXcip_GetSymbolINfoeeiiiiiiieee e
OCXcip_GetStructinfo........eieiiiiiiiiiiiiiiiii
OCXcip_GetStructMBrINfO..........uveieiiiiiiiiiiieiii e,
OCXcip_GetTagDbTagInfoccooi i
OCXcip_AccessTagDataDDbcooiiiiiiiiiiiiee e

5.7 Messaging OCXcip_GetDeviceldObject..........cccvveeeeeeennees
OCXcip_GetDevicelCPObjJECt ...
OCXcip_GetDeviceldStatuscueveiiiiiie i
OCXcip_GetEXDeviCeODJECT........uuiieiiiiiee e
OCXCIP_GEtWECTIME ...t
OCXCIP_SetWECTIME.....eeiii it
OCXcip_GetWCTIMEUTCoeiiiiiiiee et
OCXcip_SetWCTIMEUTCueiiiiiiiiiiiiiiiiieie e vaanannnees

5.8 Miscellaneous Functions OCXcip GetldObject

OCXcip_SetldODJECE ...
OCXcip_GetActiveNodeTable...........uuuuiiiiiiiiiiiiiiiiiiieiiieeieieeveee e,

ProSoft Technology, Inc.

Page 5 of 189

ControlLogix® Platform ¢ "C" Programmable Contents

Linux Application Development Module Developer's Guide

(0109 (ol To T 1Y (ST | 2 =] oo 1 =1 1SS 136

(0109 (ol 1o I € T=1 44T £57T0] o1 [o] {o T PP PPRRPR 138
OCXCIP_GEIUSEILED.........cuiiiiiiiee ettt e e e e e e e e e e e e et areeeeaaaeeeaans 139
OCXCIP_SEIUSEILED ...t e e e e e e e e et e e e e e aaeeeaans 140
OCXCip_GetMOAUIESTALUSveiiie e e e e e e e e e e eaas 141
OCXCip_SetMOAUIESTALUS......eeiiii it e e e e e e e e e e e e e aans 142
OCXCIP_GEILEDS ...ttt ettt e e s et e e s e st e e e e nbee e e ennbeeaeeensaeeeeennes 143
OCXCIP_SEELEDS ...ttt ettt e s e e s et e e et e e e e s b e e e e anbee e e e ennreaeeennes 144

(109 (o1 1o T =1 ¢ {o] £ (3 T Vo SRR 145

L0109 (o1 1o ST 1151 o] = YRR 146

(0109 (o1 1o N © =1 1 D17 o1 - SRR 147
OCXcip_GetSWItChPOSITION.ooii e e e 148

(0109 (ol T I € 1= 6511 4T 1[070] o T PP PPRRPR 149

(0109 (ol 1o] (=TT o PP PRPPR 151
OCXcip_CalcUIateCRCuieiiiie e e e e e e e e et rre e e e e e e e eans 152
OCXcip_SetModuleStatuSWordceeiiiiiiiiiiiieeee e e e 153
OCXcip_GetModuleStatuSWOord.............cooiiiiiiiiiiieiee e e e 154

6 Cable Connections 155
6.1 RS-232 Configuration/Debug Port..........ccooooiiiiiiiiiie e, 155
6.2 RS-232 Application POrt(S)ccoiveieiiiiiiee e 155
6.2.1 RS-232: Modem Connection (Hardware Handshaking Required) 156

6.2.2 RS-232: Null Modem Connection (Hardware Handshaking)...........ccccccc..... 156

6.2.3 RS-232: Null Modem Connection (No Hardware Handshaking) 157

6.3 RS-422 ..o a e e e e araaa e 158
6.4 RS-485 Application POrt(S)ccoiivuiiiiiiiieeiiiiiee e 158
6.4.1 RS-485 and RS-422 TP ..eeeiiiiieeiiiiee e iiiiee sttt et e e stee e e eteee e e s nnaeeaeans 158

6.5 DB9 to RJ45 Adaptor (Cable 14)cocueiiiiiiiie e 159

7 Open Source Licensing 160
71 GNU PUDIIC LICENSE.....oiiiiiiiieee et 161
7.2 EcClipse PUDIIC LICENSEcvviiiiiiiiiiiiiiiiieieieeiieee e anananenennanes 173
7.3 Python PUbliC LICENSEeeeieiiiiieee e 179
7.4 GCC PUDIIC LICENSE....ceiiie ettt eee e e e e e e 184

8 Glossary of Terms 186
9 Support, Service & Warranty 189
9.1 Contacting Technical SUPPOM.......coooi e 189
9.2 Warranty Informationc.coooiiiii i 189

ProSoft Technology, Inc. Page 6 of 189

ControlLogix® Platform ¢ "C" Programmable LDM Introduction
Linux Application Development Module Developer's Guide

1 LDM Introduction

The MVI56E-LDM module is a ControlLogix backplane compatible module that allows
Rockwell Automation ControlLogix processors to interface with any Ethernet or Serial
device. With the supplied development tools and sample applications, you are the
developer who controls exactly what this module can and cannot do.

ProSoft Technology's Linux Development modules make it possible for users to easily
develop and deploy C/C++ applications that interface with Bar Code Scanners, Legacy
ASCII protocols, Terminal Port Emulation, Printer Drivers (Alarm/Status printer), or any
other device requiring custom/proprietary Ethernet and Serial communications.

This document provides information needed for development of application programs for
the MVI56E-LDM Applications Module for ControlLogix.

This document assumes the reader is familiar with software development in the Linux
environment using C/C++ programming languages. This document also assumes that
the reader is familiar with Rockwell Automation programmable controllers and the
ControlLogix platform.

The reader should be familiar with the following terms:

Term Description
API Application Programming Interface
Backplane Refers to the electrical interface or bus to which modules connect when

inserted into the rack. The MVI56E-LDM module communicates with
the control processor(s) through the ControlLogix backplane.

CIP Control and Information Protocol. This is the messaging protocol used
for communications over the ControlLogix backplane.

Connection A logical binding between two objects. A connection allows more
efficient use of bandwidth because the messaging path is not included
after the connection is established.

Consumer A destination for data.

Library Refers to the library file that contains the API functions. The library
must be linked with the developer's application code to create the final
executable program.

Originator A client that establishes a connection path to a target.
Producer A source of data.
Target The end-node to which a connection is established by an originator.

ProSoft Technology, Inc. Page 7 of 189

ControlLogix® Platform ¢ "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

2

21

2.2

Preparing the MVIS6E-LDM Module

System Requirements

The MVI56E-LDM module requires the following hardware and software components:

e Rockwell Automation ControlLogix processor (firmware version 10 or greater) with
compatible power supply and one free slot in the rack for the module. The module
requires 5 VDC power

e Rockwell Automation RSLogix 5000 programmer software
o Version 15 or lower must use Sample Ladder available from www.prosoft-

technology.com

o Rockwell Automation RSLinx communication software version 2.51 or greater
e Pentium Il 450 MHz minimum. Pentium Il 733 MHz or greater recommended
e Supported operating systems:
o Microsoft Windows 10
Microsoft Windows 7 Professional (32-or 64-bit)
Microsoft Windows XP Professional with Service Pack 1 or 2
Microsoft Windows Vista
Microsoft Windows 2000 Professional with Service Pack 1, 2, or 3
o Microsoft Windows Server 2003
e 128 MB RAM (minimum), 256 MB of RAM recommended
¢ 100 MB of free hard disk space (or more based on application requirements)

O
@)
@)
O

Note: The Hardware and Operating System requirements in this list are the minimum recommended to install
and run software provided by ProSoft Technology. Other third-party applications may have different
requirements. Refer to the documentation for any third-party applications.

Package Contents - LDM

Your MVI56E-LDM package includes:

MVI56E-LDM Module

(1) Null Modem Cable (Cable 15)

(2) Config/Debug Port to DB-9 adapter (Cable 14)
(2) 1454-9F Connectors for RS422/RS485

Note: The Virtual Machine, toolchain, and other development files are not shipped with the product. You may
purchase the ProSoft Technology LDMdevKit Part # LDMdevKit from your Rockwell Automation distributor.

If any of these components are missing, please contact ProSoft Technology Support.

ProSoft Technology, Inc. Page 8 of 189

ControlLogix® Platform ¢ "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

2.3

Recommended Compact Flash (CF) Cards

What Compact Flash card does ProSoft recommend using?

Some ProSoft products contain a "Personality Module", or Compact Flash card. ProSoft
recommends using an industrial grade Compact Flash card for best performance and
durability. The following cards have been tested with ProSoft's modules, and are the only
cards recommended for use. These cards can be ordered through ProSoft, or can be
purchased by the customer.

Approved ST-Micro cards:

e 32M = SMCO032AFC6E
e 64M = SMCO64AFF6E -
128M = SMC128AFFGE

Approved Silicon Systems cards:

256M = SSD-C25MI-3012

512M = SSD-C51MI-3012

2G = SSD-C02GI-3012

4G = SSD-C04GI-3012

ProSoft provides the 64M = SMC064AFF6E Compact Flash Card. The endurance spec
for this card is 2 million write/erase cycles.

Warning: Do not shut down or power cycle the module in any way during a NAND write to the CF card.

ProSoft Technology, Inc. Page 9 of 189

ControlLogix® Platform ¢ "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

24

Jumper Locations and Settings

Each module has three jumpers:

e Setup
e Port1
e Port2

D) ()

-

/ :
R5-232
R5-422
B5-485
R5-477 —»

1 BS-485—= ¢

!

2.4.1 Setup Jumper

The Setup Jumper acts a write protection for the module's firmware. In "write-protected”
mode, the setup pins are not connected which prevents the module's firmware from being
overwritten.

The module is shipped with the Setup Jumper OFF. If you need to update the firmware
or run a module rescue (recovery), apply the setup shunt over both pins.

2.4.2 Port 1 and Port 2 Jumpers

These jumpers, located at the bottom of the module, configure the port settings to RS-
232, RS-422, or RS-485. By default, the jumpers for both ports are set to RS-232.

ProSoft Technology, Inc. Page 10 of 189

ControlLogix® Platform ¢ "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

2.5

Setting Up a Connection with the Module

If you have not already done so, please install and configure your ControlLogix processor
and power supply. Refer to the Rockwell Automation product documentation for
installation instructions.

Warning: You must follow all safety instructions when installing this or any other electronic devices. Failure
to follow safety procedures could result in damage to hardware or data, or even serious injury or death to
personnel. Refer to the documentation for each device you plan to connect to verify that suitable safety
procedures are in place before installing or servicing this device.

After verifying proper jumper placement, insert the module into the ControlLogix chassis.
Use the same technique recommended by Rockwell Automation to remove and install
ControLogix modules.

2.5.1 Installing the Module in the Rack

You can install or remove ControlLogix system components while chassis power is
applied and the system is operating.

Warning: When you insert or remove the module while backplane power is on, an electrical arc can cause
personal injury or property damage by sending an erroneous signal to your system's actuators. This can
cause unintended machine motion or loss of process control. Electrical arcs may also cause an explosion
they occur in a hazardous environment. Verify that power is removed, or that the area is non-hazardous
before proceeding. Repeated electrical arching causes excessive wear to contacts on both the module and
its mating connector. Worn contacts may create electrical resistance that can affect module operation.

ProSoft Technology, Inc. Page 11 of 189

ControlLogix® Platform ¢ "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

2.5.2 Making Configuration Port Connections

You can communicate with the module via RS232 through the Console, or through one of
the Ethernet ports using Telnet.

RS-232 Console

Access the Console through Serial Port 1. As a default, the RS-232 Console port is
"enabled". You can "disable" or "enable" this port. Refer to Enabling and Disabling the

Console Port in the next section.

Configuration
Serial Port 1

’El

LInK/A” o
[T }
7
£ LinklAclt}i &
Ethemet Application Ports

ResetOQ

Serial Application Ports

"

1 Connect the RJ45 end of an RJ45 - DB9m cable (Cable 14) to the Serial Port 1 of the

module.
2 Connect one end of the Null Modem Cable (Cable 15) to the DBO9m end Cable 14.
3 Connect the other end of Cable 15 (null modem cable) to your a serial port on your

PC or laptop.

ProSoft Technology, Inc. Page 12 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Preparing the MVI56E-LDM Module
Developer's Guide

Ethernet Port

The module contains a Telnet client which is accessed through Ethernet Port 1 (E1) as

shown.

Ry
o2,
oo
ore’

In c I u::; L s 4 v: wlulc

+1.661.716.5100
MVIS6E - LDM
Wi
Ies JH
10/100[| ~ }

LmkIAcIU 1
Ethemet Application Ports

10/100

Use this port for F 3
Telnet A

E2

ResetQ

Connect an Ethernet RJ45 cable to the E1 port of the module and the other end to the

network switch.

ProSoft Technology, Inc.

Page 13 of 189

ControlLogix® Platform & "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

You can also "enable" or "disable" the Telnet port. Open a Putty session as shown
below. The following screenshot shows the Telnet Port "enabled".

& cows v]
5[-
L

eXp ERiO=

ProSoft Technology, Inc. Page 14 of 189

ControlLogix® Platform & "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

To disable the Telnet port...
cd\etc\init.d\S99-telnetd.

[& coms - putTy SEE™)

ProSoft Technology, Inc. Page 15 of 189

ControlLogix® Platform & "C" Programmable

Linux Application Development Module

Preparing the MVI56E-LDM Module
Developer's Guide

Comment out the telnetd file.

& com -

To enable the port, simply un-comment the same line.

ProSoft Technology, Inc.

Page 16 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Preparing the MVI56E-LDM Module
Developer's Guide

2.6

Enabling and Disabling the Console Port

Establish a connection to the module. In the following example, PUTTY is being used.

1 Open PUTTY.

ﬁ PuTTY Configuration l Pl X
Category:
=- Sgssion Basic options for your PuTTY session
Lo Legging Specify the destination you want to connect to
=) Teminal Seial Soeed
... Keyboard erial line pee
- Bel Com3 115200
- Features Connection type:
= Window () Raw () Telnet () Rlogin () SSH @ Serial
:;ppea!ance Load, save or delete a stored session
- Behaviour
... Translation Saved Sessions
- Selection
- Colours -
Default Settings
[=]- Connection Load
- Promy
- Rlogin
[-55H
- Serial Close window on exit:
() Aways () MNever @ Only on clean exit
[About] [Help] [Cpen J [Cancel
o Set the Speed to 115200.
e Set the appropriate COM port.
o Ensure that the Connection Type is set to Serial.

Click Open. The Putty session opens.

ProSoft Technology, Inc.

Page 17 of 189

ControlLogix® Platform & "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

3 Enter your login and password.
RA56-daTM login: root
Password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

5 con o . -~

The following appears:
[coms - putTy o | B] |

ProSoft Technology, Inc. Page 18 of 189

ControlLogix® Platform & "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

4 Enter: cd /etc
(&8 coms - purTy ESEE)

5 Enter:ls

The following appears:

There are two files used to enable or disable the console port:

¢ inittab.con - configures the console
¢ inittab.nocon - configures no console

ProSoft Technology, Inc. Page 19 of 189

ControlLogix® Platform & "C" Programmable Preparing the MVI56E-LDM Module

Linux Application Development Module

Developer's Guide

To enable the console:

1 Open the inittab.con file.

&P COMS3 - PuTTY |). P

The file content is shown:
&P COM3 - PuTTY o | B [|

2 Copy the inittab.con file to the inittab file.
3 Save the file and reboot the module.

To disable the console...

1 Copy the inittab.nocon file to the inittab file.
2 Save the file and reboot the module.

ProSoft Technology, Inc.

Page 20 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Preparing the MVI56E-LDM Module
Developer's Guide

2.7

Establishing Module Communication

Ensure that the module is firmly seated in the rack and that the cables described in the

previous section are secure. Ensure that power is applied.

Note: If you require information on cables and port pinouts, please refer to the section entitled Cable

Connections (page 155).

2.7.1 RS-232 Console

If you are connected to Serial Port 1 (P1), establish communications with the module
using the following procedure.

Note: The following procedure uses PUTTY to establish communications. You can use whatever program

you desire.

1 Open Putty

@ PuTTY Configuration | ? ﬁ]
Categony:

=T Sgssion Basic options for your PuTTY session

-~ Logging Specify the destination you want to connect to

=1 Terminal Serial Speed
. Keyboard erial line pee
- Bell ComM3 115200
- Features Connection type:

=1 Window Raw Telnet Rlogin S5H @ Seral
Appea@nce Load, save or delete a stored session
- Behaviour
. Tranglation Saved Sessions
- Selection
CDID_L"S Default Settings o

—I- Connection
- Data Save
- Proxy
. Telnet Delete
- Rlogin
+- 55H
""" Seral Close window on exit:

Always MNever @ Only on clean exit
| About | | Help | [COpen] | Cancel

e Set the Speed to 115200
e Set the appropriate COM port

o Ensure that the Connection Type is set to Serial.

2 Click Open. The Putty session opens.
3 Enter your login and password:

RA56-daTM login: root
Password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

ProSoft Technology, Inc.

Page 21 of 189

ControlLogix® Platform & "C" Programmable

Linux Application Development Module

Preparing the MVI56E-LDM Module
Developer's Guide

2.7.2 Ethernet (Telnet)

You can communicate with the module through Ethernet Port 1 (E1) using Telnet.

The Ethernet Port (E1) is programmed with ethO set to IP 192.168.0.250 and a Subnet
Mask of 255.255.255.0. In order for your PC or laptop to talk to the module, your PC or

Laptop must be on the same subnet as the module. This means that you must

temporarily change the IP address and subnet mask on your PC or laptop to match that
of the module. You can then change the module's IP address to match your needs.

Wi

Change the IP Address of your PC or Laptop so it matches the subnet of the

module.

Ensure that an Ethernet cable is connected to Ethernet Port 1 (E1) of the module.

Use a program such as Putty to Telnet into the module.

@ PuTTY Configuration

‘> -

Category:

—|- Session

- Teminal

- Keyboard
- Bell

- Features

- ExtraPuTTY

= Window

- Appearance
- Behaviour
- Translation
- Selection
- Colours

—J- Connection

Basic options for your PuTTY session

Host Mame (or IP address)

Connection type:
k Raw @) Telnet () Rlogin () S5H) Serial

Load, save or delete a stored session

Saved Sessions

Default Settings Load

Close window on exit:
) Always) Never @ Only on clean exit

[Qpen J I Cancel

e Select Telnet as the Connection type.
e Enter the IP address (192.168.0.250)
e Port 23 should appear as the Port number.

4 Click the OPEN button to establish a connection.
5 Log in to the module.

There are two methods used to change the module's IP address. One is temporary for

use in cases where you want to change the address long enough to make a quick

change. The other is more permanent in that the module is already programmed and is

ready for full deployment.

ProSoft Technology, Inc.

Page 22 of 189

ControlLogix® Platform ¢ "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

2.7.3 Temporary IP Address Change

At the Linux prompt, enter:

ifconfig eth0 x.x.x.x

(This changes the IP address of the Ethernet E1 port)

ifconfig ethl x.x.x.x

(This changes the IP address of the Ethernet E2 port)

2.7.4 Permanent IP Address Change

At the Linux prompt, enter:

cd ../etc/network — (Changes the directory to network)
vi interfaces — (opens the interfaces file for ethernet assignment in a vi editor)

iface ethO inet static

#

address 192.168.0.250
network 192.168.0.0
netmask 255.255.255.0
broadcast 192.168.0.255
gateway 192.168.0.1

auto ethl
iface ethl inet static

address 192.168.1.250
network 192.168.1.0
netmask 255.255.255.0
broadcast 192.168.1.255
gateway 192.168.1.1

Using the vi editor, edit the file to change the address.
Save the file.

For help on using the vi editor to write and save the file, refer to
http://www.lagmonster.org/docs/vi.html.

Change the IP address of your PC back to the original subnet.
Telnet to the new IP Address of the module.

ProSoft Technology, Inc. Page 23 of 189

ControlLogix® Platform ¢ "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

2.8 Module Rescue

In the event that it becomes necessary to revert the MVI56E-LDM module back to its
initial out-of-the-box state, there are a number of methods you can use depending on the
condition of the module.

The Rescue process re-installs all of the Operation System commands and
configurations to their original defaults. The files deleted during the rescue process are
the startup scripts in the /etc/init.d path since extra scripts in this path are automatically
executed by the operating system on startup and may cause problems. All other files
may be overwritten to the initial state of the device. Extra files are not deleted.

If the web pages and services for the module have been altered, it may not be possible to
use the web-based rescue.

Prep and Establish Communications

Place the onboard setup jumper to the installed state.

Ethernet Communication

If the IP address is known, change the network mask and IP of a connected PC to
something compatible.

For example, if the MVIS6E-LDM is configured with the default IP address
(192.168.1.250) and network mask (255.255.255.0), the the PC should have the same
IP4 network mask and an IP address in the 192.168.1.xxx subnet.

Note that IP addresses must be unique on the network. If in doubt, create a physical
network consisting of only the MVIS6E-LDM and the PC.

Serial Communication

If the IP address if the MVI5S6E-LDM module is unknown, communication may be
established through the serial configuration port (i.e., Port 1 (upper port)). Use Telnet or
a similar terminal program to communicate with the module. Default baud is 115,200, 8
data bits,1 stop bit, No Parity, xon/xoff flow control.
Use the following username and password:

Username: root

Password: password
From the shell prompt, run ifconfig to determine the Ethernet IP address and network
mask of device "eth0". Then follow the previous steps to establish communication via
Ethernet.

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

ProSoft Technology, Inc. Page 24 of 189

ControlLogix® Platform ¢ "C" Programmable Preparing the MVI56E-LDM Module
Linux Application Development Module Developer's Guide

Web-based Rescue

The web page for the MVI5S6E-LDM module contains a command to recover the module
on the left-side of the page.

Open the web page for the module by entering the IP address of the module in the
address bar. (your PC/workstation should have an IP address and the same sub-
network).

On the left-side of the page, under Functions, click on Rescue Module. Follow the
instructions to set the module back to its default state.

Note: Most loaded components are left intact by this operation so it may be necessary to make enough room
on the module for the rescue to work. In addition, the Setup Jumper must be in place for the rescue to
function properly.

Manual Rescue

If the default web pages are unavailable, a manual rescue may be required. Perform the
following steps to manually return the module to its default state:

1 Establish a terminal session to the module using either the Serial or Ethernet port.
2 Ensure that the following file exists:
Ibackup/systemrestore.tgz
3 Run the following command to remove any startup scripts that may be interfering
with the bootup process:
rm -f /etc/init.d/*
4 Restore the configuration and executables using the following command:
tar -xzf /backup/systemrestore.tgz -C /
5 |If successful, reboot the system.

ProSoft Technology, Inc. Page 25 of 189

ControlLogix® Platform ¢ "C" Programmable Development Environment
Linux Application Development Module Developer's Guide

3 Development Environment

The MVI56E-LDM development tools run under Linux. In order to run these tools on a
Windows-based machine, you must run a Virtual Machine that hosts the Linux Operating
System.

VMware provides a virtual machine player used to host the Linux Operating System. You
can download it at: https://my.vmware.com/web/vmware/downloads.

3.1 Setup

The file pebiansvM. zip is located on the MVIS6E-LDM product webpage at: www.prosoft-
technology.com.

1 Copy this file to the VM Player image ico directory (VMware > VMware Player >
ico).

2 Uncompress Debian6VM.zip into this directory.

3 Start the VM Player by double-clicking on its icon.

4 Select OPEN A VIRTUAL MACHINE.

. Lo VMware Player (Non. 154

Player = | | -
A rome Welcome to VMware Player

I__?_'_I Create a New Virtual Machine
s

L q_":l Create a new virtual machine, which wil then be
=" added to the top of your library.

[ﬁ Open a Virtual Machine
Jl

Open an existing virtual machine, which will then be
added to the top of your library.

Upgrade to VMware Workstation

Get advanced features such as snapshots,
developer toolintegration, and more,

Help
N y/ View YMware Player's help contents.

o

This product is not licensed and is authorized for
non-commercial use only, For commerdial use,
purchase a license. Buy now.

ProSoft Technology, Inc. Page 26 of 189

https://my.vmware.com/web/vmware/downloads
https://www.prosoft-technology.com/
https://www.prosoft-technology.com/

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Development Environment
Developer's Guide

5 Navigate to the Debian6VM file and click on Debian6VM.vmx. The image icon

appears in the left window.

’413 VMware Player (Non-commercial use only)

|= B 2= |

Player ~ | [

DebianavM

Welcome to VMware Player

'_T_‘ Create a New Virtual Machine
179

(4) Createanew virtual machine, which will then be

L
T added to the top of your library.

= Open a Virtual Machine
| F‘ti

Open an existing virtual machine, which will then be

added to the top of your library.

I@ Upgrade to VMware Workstation

Get advanced features such as snapshots,

developer toal integration, and more,

Help
\ / View YMware Player's help contents,

This product is not licensed and is authorized for

'0' non-commercial use only, For commerdial use,

= purchase a license, Buy now.

6 Double-click on the image icon. The following screen appears:

[E] VMware Player (Non-commercial use only)

| =

=

x|

Player ~

p -

‘ @ Home

|

Debian6VM

State: Powered Off
0S: Debian 6
Version: Workstation 8.0 virtual machine
RAM: 512 MB

P Play virtual machine

@7 Edit virtual machine settings

ProSoft Technology, Inc.

Page 27 of 189

ControlLogix® Platform ¢ "C" Programmable Development Environment
Linux Application Development Module Developer's Guide

7 Click PLAY VIRTUAL MACHINE. A dialog appears asking if the virtual machine has
been moved or copied. Select "l COPIED IT".

This virtual machine might have been moved ar
copied.

In order to configure certain management and
networking features, YMware Player needs to know
if this wirtual machine was moved or copied.

If you don't know, answer "I copied it",

[I moved it][I copied it][Cancel

)

8 After the image loads, the VMware Player prompts you for a username and
password:
Username: user
Password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

The home screen appears.

w @ P @ § mousepa.s @ Terminal.s| . Thunar(.s @ [CICH+-.. g! I 0917 | e

ProSoft Technology, Inc. Page 28 of 189

ControlLogix® Platform ¢ "C" Programmable Development Environment
Linux Application Development Module Developer's Guide

3.2 Changing Password

After the initial login to the VM, you will be prompted to change the password. Be sure to
record the new password in a safe place for future reference.

|2

:u '“ _x; O—@—Gf—ﬂ] ===

You are required to
change your password
immediately (root
enforced)

L:
Language Thu Mar 12, 1:51PM

1 Enter the current (default) password: password.
| B pebia
File Edit View VM Tabs Help

|| DO | 0= =G |3

Welcome

Language Session

Thu Mar 12, 1:52 PM

ProSoft Technology, Inc. Page 29 of 189

ControlLogix® Platform ¢ "C" Programmable Development Environment
Linux Application Development Module Developer's Guide

2 Enter the new password.
IJ £
File Edit View VM Tabs Help

i~ | & VDo | I0==EHF| D

Welcome

Language Session Actions

. ThuMar12, 1:55PM

3 Confirm the new password.
- I
File Edit View VM Tabs Help

()

i~ & VDO D= |3

Welcome

Language Session

. ThuMar12, 1:55PM

ProSoft Technology, Inc. Page 30 of 189

ControlLogix® Platform ¢ "C" Programmable Development Environment
Linux Application Development Module Developer's Guide

3.3 Using Eclipse

Eclipse is an Integrated Development Environment (IDE) used in the Linux environment
primarily to edit source code. Full documentation and downloads are available at:
www.eclipse.org.

To start Eclipse...

1 Double-click on the Eclipse icon.
2 When the Workspace Launcher appears, choose the default
/home/user/workspace.

’?_ﬂ DebiantVM - VMware Player (Mon-commercial use only) == !

Blayer ~ | [J] ~ (f) B &«

Workspace Launcher
Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: |/home/user/workspace Browse...

Use this as the default and do not ask again

_

we | P O | = Eclipse = @ JRYSERN

The installed version of VMware Tools is not up to date. Login to
the guest operating system and dick "Update Tools.™

[Update Tools] [Remind Me Later] [Naver Remind Me]

3 Click OK.

The default workspace is pre-populated with sample programs, makefiles, and scripts.
Building one of the samples is the recommended way to become familiar with the
environment and build process.

ProSoft Technology, Inc. Page 31 of 189

http://www.eclipse.org/

ControlLogix® Platform ¢ "C" Programmable Development Environment
Linux Application Development Module Developer's Guide

3.3.1 Building a Project

Building and using a sample application consists of:
e Compiling and Linking

¢ Creating a downloadable image

e Downloading an image to the target device

Compiling and Linking

1 Start the Linux (Debian) virtual machine in the VM Player.

2 Open a Bash Shell window by clicking on the Bash Shell icon on the main page.

3 Once in the shell, change the directory to one of the samples. In this case,
change the directory to get to the LED_sample program.

cd /workspace/mvi56e-1ldm/src/LDM/led sample$ @S shown below:

- Terminal - unr@deniansvm: —-,J'worl:spacefmvlsSn-lllmfsrc.l'l.DHﬂnd_samplu
Fle Edit View Terminal Go Help
user@debianbvm:~/workspace/mviS6e-ldm/src/LDM/led samples |

4 To recompile and link, simply type "make". In this case, the executable is up to
date and nothing needs to be done.

ProSoft Technology, Inc. Page 32 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Development Environment
Developer's Guide

5

If the source is changed, "make" detects the newer time on the source file and
rebuilds the application. In the following example, the Touch Utility is used to

cause the date of the file 1ed _sample.c to be updated as if the file had been

changed and "make" is re-invoked. Make detects this change, recompiles and re-

links the application.

user@debianbvm:~/workspace/mviS6e-ldm/src/LDM/led sample$ make

Preprocessing file: src/led sample.c

mkdir -p Release
/opt/timesys/datm3/toolchain/bin/armv51-timesys-linux-gnueabi-gcc 4 S A Ay A B
b/ocx/inc -I./inc -00 -Wall -Wstrict-prototypes -fmessage-length=0 -MMD -MF"Rel
ease/led sample.d" -MP -MT"Release/led sample.d" -o"Release/led sample.o" -c "s
rc/led sample.c"

Finished preprocessing: src/led sample.c

Linking target: Release/Led Sample

Linking application::Invoking: Cygwin C++ Linker
/opt/timesys/datm3/toolchain/bin/armv51-timesys-linux-gnueabi-g++ -0 Led Sample
Release/led sample.o -lrt -locxcnapi -locxbpeng -locxbpapi -L./../../ib/
ocx/Release

Copy target to target directory

cp -f Led Sample Release

Finished building target: Release/Led Sample

user@debian6vm:~/workspace/mvi56e-ldm/src/LDM/led sample$ §

ProSoft Technology, Inc.

Page 33 of 189

ControlLogix® Platform ¢ "C" Programmable Development Environment
Linux Application Development Module Developer's Guide

Downloading the Application
There are two ways to place the application on the target:

e FTP
e Firmware Update Feature

FTP Transfer

For FTP Transfer, use any ftp transfer program such as FileZilla (https://filezilla-
project.org/ https://filezilla-project.org/) from the Windows environment.

Use FileZilla to connect to the target by specifying the MVIS6E-LDM's IP address.

Download the application image to the desired directory on the LDM using the ftp transfer
program.

Since Windows does not have the same detailed permissions as Linux, you will have to
change the file permissions on the application once on the target. Use the command
chmod a+x filename which adds the execute attribute to the application.

Creating a Download Image

An image contains all of the application-specific components required for the user
application. This includes the executable(s), application-specific shared libraries, scripts,
web pages, and data files. It does not contain the operating system or common
components that are already on the target device.

The image is a compressed tar file of the application components. Once created, use the
device's web page to download the firmware upgrade. The tar file name is specified in
"Image Contents". In the sample image, the firmware files is 'firmware/mvi56e-
Idm.firmware revision date'. This firmware file is downloaded to the directory /psfttmp on
the target device. Upon system restart, the system startup scripts unpack the tar file into
the psfttmp directory. The script /psfttmp/install is executed to move the component
files into their final destination.

A sample install file is included with the sample applications.

The first step is to create all of the components that will be part of the system. This
mainly involves compiling and linking executables and shared libraries. Modify any web
pages and data files that will be needed. Lastly, update the install script.

ProSoft Technology, Inc. Page 34 of 189

https://filezilla-project.org/

ControlLogix® Platform ¢ "C" Programmable Development Environment
Linux Application Development Module Developer's Guide

Image Contents

Each component file to be included in the image is listed in the file 'imagecontents' found
in the build directory structure for the specific application. This file contains header
information about the image and a list of entries describing the files to be added to the
image. The format of the entry is as shown:

Add source destination file permissions where the source file is the path to the file to be
included. The destination file is the full path name of the file on the destination on the
target device. Permissions are the Linux style permissions of the file on the destination.
For example, a line to add the LED_Sample application looks like:

Add ../../src/ldm/led sample/Release/Led Sample /psft/sample/Led Sample
TWXTWXT—X

Since builds occur in /home/usr/workspace/mvi56e-1dm/build/LDM, Source paths are
relative to this directory to simplify moving to a new directory.

Follow the sample provided to create a complete imagecontents file.

Install Script

Before creating the image, an 'install' script must be created and added to the firmware
package. As noted above, the firmware package will be downloaded into the /psfttmp
directory on the device. The 'install' script will copy the files in psfttmp to their final
destination on the target device. The 'install' script can be used to make backups of the
current directory contents before they are overwritten. The LDM sample install script in
build/LDM/scripts illustrates how to do this.

Creating the Image

In a Linux shell, change the directory to the ...build/LDM directory.
Run python with the following command:

python createimage.py

The python script createimage.py reads and acts on the imagecontents file and creates a
new firmware image in the directory .../build/LDM/firmware.

Note: The script 'build.sh' will compile/link all libs and executables and then invoke python to create the
firmware image.

ProSoft Technology, Inc. Page 35 of 189

ControlLogix® Platform ¢ "C" Programmable Development Environment
Linux Application Development Module Developer's Guide

Downloading the Image via Web Page

1 Ensure that the Setup Jumper is on.
2 Navigate to the module homepage using a Web browser.

[I T T T Pzliér % @ avseciom x|
fle Eot Yow Fportes Jook ledp
U () Sharepont Prosoft. (1] Engineering - Home > ProSoft &) TesmTeack &) Share Point &) VPN IOV &) Get mre Add-oms ~

B 7
ProSoft’
Tk O £
s 1 dul .
ik Linux D p t M for ControlLogix
» Flemware MVISGE'LOM
Uparade
> Set Dote & Time RESOURCES
b\ Wakaak Mo Module Name MVISEE-LOM Prosaft
5| Fouecs Modute Ethernet MAC Address €1 00:00:80:01:79:38 Technology
Ethernet MAC Address E2 00:0D:80:01:79:39
SNSRI 1P Address £1 10.1.3.184
Rt 1P Address E2 0.0.0.0
» Momepage Product Revision 100021 2.6.33.7 #6
Frmware Version Date 06/28/2013
Serlal Number 00006582
Status NA
Uptiene 21 days 02:34:46

=l
RN v
) MVISE-LDM - Windows Internat Exploser =10l %]
[« IS - T T r—r—— Pzl X @ vsseom x
fle fot Yow Fportes Jooks bidp
s [Sharepoint ProSoft 1] Engineering - Mome < ProSoft] TeamTrack &) Share Point &) VPN I OU &) Get more Add-oms ~
i .
ESRELINONE: Firmware Update
> Fimware w. s
Uppradn arning
b Set Date & Time Al fieldbus devices thould be placed m a fal-sate condition under
» Heboot Module direct superasan before contrang. Please refer to the user manus!
S i fadude for aditional safety information.
Selecting the "Continue Update Button wil stop sll module
» Technical communcation functions with network dewices duning the frmware
Support upgerde procedure. After the firmware upgrade procedure is complete
the modde wil stomaticaly re-mhakze,
» Momepage
Continue with.
—_Concel Updata Process |
10N v

ProSoft Technology, Inc. Page 36 of 189

ControlLogix® Platform ¢ "C" Programmable Development Environment
Linux Application Development Module Developer's Guide

4 Click on the CONTINUE WITH UPDATE button, and then select the firmware file to be
downloaded.

L MVISE-LDM - Windows Internat Diplocer
[« IRdET 1013184 Pxiift X @ MseeLom x
fle Edt Yow Fpeetes Jooks Mep

Sharepowt ProSoft

-1ojx]

Engineering - Home < ProSoft] TeamTrack &) SharePoint &) VPN [l U 2 Get more Add-oms ~

o, —
e

L, Firmware Update

Warning

fumware Fie

DATMS ML DM rrmware prrvisbe-Im frmmwore i3z _ Beowse

5 Click on the UPDATE FIRMWARE button and wait for the module to reboot. During

reboot, the compressed file is un-"tar" ed and the install script is run to move the
component files to their final destination.

Note: The IP address will revert to the default after reboot. This is a known issue.

ProSoft Technology, Inc.

Page 37 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

4 Understanding the MVI56-LDM API

The MVI5S6E LDM CPI API Suite allows software developers to access the ControlLogix
backplane without requiring detailed knowledge of the module’s hardware design. The
MVI56E-LDM API Suite consists of three distinct components; the backplane device
driver, the backplane interface engine, and the API library.

Applications for the MVI56E-LDM module may be developed using industry-standard
Linux programming tools and the CPI API library.

This section provides general information pertaining to application development for the
MVI56E-LDM module.

41 APl Library

The API provides a library of function calls. The library supports any programming
language that is compatible with the 'C' calling convention. The API library is a dynamic
library that must be linked with the application to create the executable program.

Note: The following compiler versions are tested and known to be compatible with the MVIS6E-LDM API:
CNU C/C++ V4.4.4 for ARM9

4.1.1 Header File

A header file is provided along with the API library. This header file contains API function
declarations, data structure definitions, and constant definitions. The header file is in
standard 'C' format. Header files for the CIP API are ocxbpapi.h and ocxtagdb. h.

4.1.2 Sample Code

Sample applications are provided to illustrate the usage of the API functions. Full source
for the sample application is included, along with make files to build the sample
programs.

ProSoft Technology, Inc. Page 38 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

4.1.3 Specifying the Communications Path

To construct a communications path, enter one or more path segments that lead to the
target device. Each path segment takes you from one module to another module over
the ControlBus backplane or over a ControlNet or Ethernet network.

Each path contains:
p:x, {s, c, t} :y
where
p:x specifies the device's port number to communicate through.
where X is:
1 - backplane from any 1756 module
2 - ControlNet port from a 1756-CNB module
3 - Ethernet port from a 1756-ENET module
, - separates the starting point and ending point of the path segment.

{s, ¢, t} :y specifies the address of the module you are going to.
where

s:y - ControlBus backplane slot number

c:y - ControlNet network node number (1 to 99 decimal)

t:y - Ethernet network IP address (for example, 10.0.104.140)

If there are multiple path segments, separate each segment with a comma (,).

Examples

To communicate from a module in slot 4 of the ControlBus backplane to a module in slot
0 of the same backplane:

p:l, s:0

To communicate from a module in slot 4 of the ControlBus backplane, through a 1756-
CNB in slot 2 at node 15, over ControNet to a 1756-CNB in slot 4 at node 21 to a module
in slot 0 of a remote backplane"

p:l, s:2, P:2, c:21, p:1, s:0

To communicate from a module in slot 4 of the ControlBus backplane, through a 1755-
ENET in slot 2 over Ethernet, to a 1756-ENET (IP address of 10.0.104.42) in slot 4, to a
module in slot 0 of a remote backplane:

p:l, s:2, p:2, t:10.0.104.42, p:1, s:0

ProSoft Technology, Inc. Page 39 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

4.1.4 ControlLogix Tag Naming Conventions

ControlLogix tags fall into two categories; controller tags and program tags.

1) Controller Tags have global scope. To access a controller scope tag, you only
need to specify the tag controller name. For example:

_TagName Description

Array[11] Single dimensioned array element
Array[1,3] Two dimensional array element
Array[1, 2, 3] Three dimensional array element
Structure.Element Structure element
StructureArray[1].Element Single element of an array of structures

2) Program Tags are tags declared in a program and scoped only within the
program in which they are declared. To correctly address a Program Tag, you
must specify the identifier "PROGRAM:" followed by the program name. A dot (.)
is used to separate the program name and the tag name.

Tag Description
PROGRAM:MainProgram.TagName Tag "TagName in program called "MainProgram"
PROGRAM:MainProgram.Array[11] An array element in program "MainProgram"

PROGRAM:MainProgram.Structure.Element A Structure Element in program "MainProgram"”

Rules

A tag name can contain up to 40 characters

e A tag name must start with a letter or underscore ("_"). All other characters can be
letters, numbers or underscores.

o Names cannot contain two contiguous underscore characters and cannot end in with
an underscore
Letter case is not considered significant

¢ The naming conventions are based on the IEC-1131 Rules for Identifiers.

For additional information on ControlLogix CPU tag addressing, please refer to the
ControlLogix User Manual.

ProSoft Technology, Inc. Page 40 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

4.2 MVI56E-LDM Development Tools

An application that is developed for the MVI5S6E-LDM module must be executed from the
module’s Flash ROM disk. Tools are provided with the API to build the disk image and
download it to the module’s Config/Debug port.

4.3 CIP API Functions

The CIP APl communicates with the ControlLogix modules through the backplane device
driver. The following illustration shows the relationship between the module application,
CIP API, and the backplane driver:

ControlLogix BackPlane ‘

8 5
v ‘) v .
CiantralLogix Midrange ASIC ‘
Procassor L J
=

Backplane Drraer J
I

[Connection Engine

i3
L

MVISEE-LDM module

ProSoft Technology, Inc. Page 41 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

4.4 Backplane Device Driver

The backplane device driver contains the functionality to perform CIP messaging over the
ControLogix backplane using the Midrange ASIC. The user application interfaces with
the backplane device driver through the CIP API library.

The backplane device driver for the MVI56E-LDM module is libocxbpeng.so.
The driver implements the following components and objects:

Cpniral Bus Backplans

Bockplane Device Driver

o7 P A e i

All data exchange between the application and the backplane occurs through the
Assembly Object, using functions provided by the CIP API. The API includes functions to
register or unregister the object, accept or deny Class 1 schedule connections requests,
access scheduled connection data, and service unscheduled messages.

ProSoft Technology, Inc. Page 42 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

4.5

4.6

4.7

Sample Code

To help understand the use of the MVIS6E-LDM module, a number of example programs
are provided with the module. These programs exist both as source code in the
development environment as well as executable programs in the MVIS6E-LDM module in
the /psft/sample directory.

The sample programs can be built and downloaded to the MVIS6E-LDM module.

Establishing a Console Connection

In order to run the Ethernet and Serial samples and tutorials, you must set up a
connection in order to efficiently communicate with the MVI56E-LDM.

Physically Connect to the Module

In order to establish a console session between a PC and the MVI56E-LDM module, you
must physically connect your PC to the console serial port on the module.
1 Plug in an RJ45 to DB9 cable on Port 1.
2 Connect the null modem cable to the DB9 end of the RJ45 to DB9 cable.
3 Connect the other end of the null modem cable to the appropriate serial port (USB
to Serial Converter) on the computer.

ProSoft Technology, Inc. Page 43 of 189

ControlLogix® Platform & "C" Programmable

Linux Application Development Module

Understanding the MV156-LDM API
Developer's Guide

4.8 Configuring Serial Communication

Establish a connection to the module. In the following example, PUTTY is being used.

Note: You can download PUTTY for free at

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

1 Open PUTTY.

@ PUTTY Configuration l ? &]
Category:
=3 Sgssion Basic options for your PuTTY session
+ Logaing Specify the destination you want to connect to
= Terminal Serall Spesd
.. Keyboard erial line pee
- Eell COoM3 115200
- Features Connection type:
=1~ Window) Raw () Telnet (7) Rlogin () SSH @ Serial
ﬁppea@nce Load, save or delete a stored session
- Behaviour
.. Translation Saved Sessions
- Selection
~ Colours Defauit Settin
gs
[=- Connection Load
- Prasy
.- Rlogin
- S5H
- Serial Close window on exit:
() Mways () Never @) Only on clean exit
About] [Help Open] [Cancel]

e Set the Speed to 115200
e Set the appropriate COM port.

o Ensure that the Connection Type is set to Serial.

2 Click OPEN to open a Putty session.

ProSoft Technology, Inc.

Page 44 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Understanding the MV156-LDM API
Developer's Guide

3 Enter your login and password.
RA56-daTM login: root
Password: password.

Note: After the first successful login, you will be prompted to change the password. Be sure to record the

new password in a safe place for future reference.

2P COM3 - Pu

TTY

4 Keep PUTTY open while you set up the ControlLogix as described in the next

section.

ProSoft Technology, Inc.

Page 45 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Understanding the MV156-LDM API
Developer's Guide

4.9 Setting Up the ControlLogix 5000

1 Open the MVI56E-LDM.ACD program and change the appropriate chassis type to

match yo

Controller

General

Yendar:
Type:

Revision:
M ame:

Description;

Chaszsziz Type:

Slat:

ur hardware and firmware.

Properties - ProSoft_|.DM_Example

Date/Time Advanced] SFC Execution] File] Hedundancy] Monvolatile Memory] Memory]

Serial Port I System Protocol] User Protocol] b ajor Faults] Minor Faults]

Allen-Bradley
1756-LE3 ControlLogix5563 Controller Change Contraller. .
16.20

|ProS oft_LDM_Example

Example Logic for MYI5EE-LD MM

| 175647 7Slot ControlLogis Chassis -

0K | Cancel | | Help |

Change Controller

From

Type: 1
Revizion: 1
To

Type:

Changing the controller type will change, delete, and/or invalidate the
' controller properties and other project data that is not valid for the new
controller type.

Revision: |16

X

756-LE3 ControlLogisB563 Controller
5.20

7aE:

ControlLogix

Ok, | Cancel Help

ProSoft Technology, Inc.

Page 46 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Understanding the MV156-LDM API
Developer's Guide

2 Download MVI56_LDM.ACD file to the ControlLogix processor by choosing
Communications > Who Active > Download.

i Who Active

W Autobrowse l:l

=B workstation, AKAMALT4S

+ E'E,g Lin Gakeways, Ethernet
+-@g AB_DF1-1, DH-485
+-&5 AB_ETH-1, Ethernet
+-&5 AB_ETH-Z, Ethernet
+-E5 AB_ETHIP-1, Ethernet
-l-@5 AB_ETHIP-2, Ethernet

- f] R

<

% 01, Unrecognized Device,
04, MYI&E? Unit, MYISE ProSoft Technology, Inc,
cz 05, Unrecognized Device, MYISGE-LDM

105.102.0.110, SLC-5/05, 1747-L551/C Cf10- DC 3.46
] 105.102.0.195, 1756-EN2T, 1756-EM2T/A
-3 Backplane, 1756-A7/4

roSoft_LDM_Example
MYISEE-GSCRT

Path: AB_ETHIP-24105.102.0.19548 ackplane\0
Fath in Project: AB_ETH-14192.168.0.1534%B ackplane\0

~ Go Online |
Upload...
Download
Update Firmware. ..
Close
Help

Set Project Path
Clear Project Fath

ProSoft Technology, Inc.

Page 47 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

410 Ethernet Sample

The Ethernet sample comes as two programs; a client, and a server. The server waits for
a client to request a connection, replies with the local time, and closes the connection.
The client is run with the IP4 address of the server. The client opens a connection to the
server, receives the response message, and prints the message (the time on the server)
to the console.

It is recommended that the server be run on one MVI56E-LDM module and the client on
another. Alternately, either of the programs could be ported to another Linux
environment. Attempting to run both programs on the same MVIS6E-LDM is not advised
due to the complexity of IP routing.

4.10.1 Server Enet Sample

1 Open a command window using telnet or a similar terminal software on the PC
through a serial (P1) or Ethernet port.

2 Login using:
user: root
password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

3 The Ethernet port E1 is used to communicate with the client device. The server
and client devices must both be connected on the same IPv4 subnet.

4 Set the IPv4 address and mask of the first Ethernet port using the ifconfig
command.

5 From the default home directory /pstt, type the command . /server samples. The

program runs as a background task. The server will wait while processing
requests from clients.

While looking at the sample source, you'll see that the following occurs:

register sigquit_handler for four signals

check command line and print usage message if required

open the backplane using open_backplane()

initialize the LEDs on the front panel

call the function socket () to create a unnamed socket inside the kernel. socket ()

returns an integer know as socket descriptor.

o The function takes domain/family as its first argument. For Internet family of IPv4
addresses, use AF_INET.

o The second argument sock_stream specifies the type of connection to use. In this
case, a sequential, reliable two-way connection is desired

ProSoft Technology, Inc. Page 48 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

o The third argument selects the protocol to use. Generally, this is zero as the
system normally only has one protocol for each type of connection, although it is
possible to have multiple protocols for a connection type. Zero tells the system to
use the default protocol for the specified connection. In this case, the default is
TCP.

e The send puff and serv_addr variables are zeroed.

o In preparation for the call to bind (), serv_addr is then set to the well known port
address sErRVER PORT NUMBER, and any IP address. This allows a connection to be
accepted from any IP address as long as the well known port is specified.

e The call to the function vind () assigns the address specified in the structure
serv_addr to the socket created by the call to socket ().

e The call to the function 1isten () with second arguments as '"10' specifies the
maximum number of client connections that the server will queue for this listening
socket.

e Thecallto1isten() makes this socket a functional listening socket.

o Code enters an infinite while loop in which:

o the call to accept () puts the server to sleep waiting for an incoming client request.
When a request is received, and the three-way TCP handshake is complete,
accept () wakes up and returns the socket description representing the client
socket.

time () is called to read the current system time

snprintf iS used to pu the time into the send buffer in a human-readable format
write () is then called to send formatted time to the client

close () is then used to close the connection to the client

sleep () is invoked to yield the processor for 1 second

O O O O O

ProSoft Technology, Inc. Page 49 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

4.10.2 Client ENet Sample

1 Open a command window using telnet or a similar terminal software on the PC
through a serial (P1) or Ethernet port.

2 Login as:
user: root
password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

3 The Ethernet port E1 is used to communicate with the server device. The server
and client devices must both be connected on the same IPv4 subnet.

4 Set the IPv4 address and mask of the first Ethernet port using the ifconfig
command.

5 From the default home directory /psft, type the command . /client Sample
ip.address.of.server {0 run the program. The IP address of the server node
must be provide so the server will know which node is executing the server
program. The client will send a connection request to the server, print the
response from the server to the console, and then exit.

While looking at the the sample source, you will see that the following occurs:

register sigquit handler for four signals

check command line and print usage message if required

open the backplane using open backplane ()

initialize the LEDs on the front panel

create a socket with a call to the socket () function

initialize the server address (serv_addr) structure:

indicate that an IPv4 address is going to be used with ar_1NET

set the destination port as the well-known port sERVER PORT NUMBER

Convert the string version of the server IP address to binary with inet pton()

After changing the front panel display to run, connect () is called to create the TCP
connection to the server

¢ When the sockets are connected, the server sends the date and time from the server
as a message back to the clients. The client then uses the read () function to receive
the buffer of data and prints the contents to the console.

ProSoft Technology, Inc. Page 50 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

411 Serial Sample

1 Open a command window using telnet or a similar terminal software on the PC
through a serial (P1) or Ethernet port.

2 Login as:
user: root
password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

The second serial port (P2) will be used for the communication sample.

3 From the default home directory /psft, type the command ./serial samples. The
program runs as a background task.

While looking at the sample source, you'll see that the following occurs:

e register sigquit handler for four signals
check command line and print usage message if required

e open the backplane using open backplane ()

¢ Read the serial configuration jumpers and make sure that the second serial port is

configured for RS232.

Open the serial port using the open serial port () function.

Opens the serial device by calling open ()

Reads current serial port attributes using tcgetaddr ()

Configures serial port attributes. cfsetispeed() and cfsetispeed() set the baud rate.

tesetattr () IS then used to set the remaining attributes.

Initialize LEDs on the front panel

¢ Changes the front panel display to "Run"

e Enters a for loop which transmits a test string one character at a time by calling
write () and then sleeping for 500 msec using ocxcip Sleep ()

o Closes the serial driver connection using close ().

ProSoft Technology, Inc. Page 51 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

412

Led_Sample

The LED Sample program is designed to show one or more groups of functionality
provided in the module. This sample covers the following functions:

e Open backplane driver

Interpreting errors returned by the backplane driver
Reading module configuration jumpers

Display message on the 4-character front panel
Changing the state of the front panel LEDs

This program illustrates how to interact with the MVI56E-LDM hardware.

1 To use this program, establish a command window using telnet or similar terminal
software on the PC using either the Ethernet or Serial P1 port.

2 Login as:
user: root
password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

3 From the default home directory (/psft), type the command . /1ed samples. This
will run the LED Sample program in the background.

While looking at the sample source, you'll see that the main program will....

e open a connection to the hardware via the OCX library APl ocxcip open. Although
the ocxcip openNB routine could be used, (since this sample does not communicate
across the backplane), the module status will not flash red/green if opened with the
NB variant.

e display "open success" on the 4-character display using the function Display.

¢ read the state of the Setup Jumper using the function readswitches and prints this
information to the console.

¢ read the state of the serial configuration jumpers using cet serial config and prints
this information to the console.
initialize timer functionality

o Change LEDs on the front panel to a default state using the setred function:

o Module status if the OK LED.
User LED is the APP LED.
o LEDS3isthe ERR LED.

The program goes into an infinite loop, looking for the expiration of two timers:

e a fast timer which cycles the LEDs through their states and scrolls the last string
across the 4-character front panel display.

e a slow timer which updates the string for the front panel display.

ProSoft Technology, Inc. Page 52 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

413 Backplane_Sample

The Backplane Sample program is designed to show block transfer communication with

the ControlLogix controller in slot 0 of the ControlLogix rack. The ControlLogix controller
must be loaded with the sample ladder logic and be configured to communicate with the

MVI5S6E-LDM module. The ladder is Lom.acp.

1 To use this program, establish a command window using telnet or similar terminal
software on the PC using either the Ethernet or Serial P1 port.

2 Login as:
user: root
password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

3 From the default home directory (/psft), type the command . /Backplane samples.
This will run the Sample program in the background.

While looking at the sample source, you'll see that the main program will....

e open a connection to the hardware via the OCX library API using the open backplane
routine. The open_backplane function will:
call ocxcip open to get access to the LDM hardware and backplane
change the module identity by reading the identity using ocxcip GetTdobject,
changing the values of the object Id structure, and then setting the identity with the
OCXcip SetIdObject routine.

The backplane connection service and service callback routines are then
registered with the backplane driver using the ocxcip RegisterAssemblyobj
routine.

e set each of the front panel LEDs, reads back the state of the LED, and prints the

result to the console:

o OKLED - Module status is set to Solid Green using ocxcip SetModuleStatus
routine and read back using the ocxcip GetModulestatus routine

o APP LED - the User LED is turned off using the ocxcip setuserrLED routine and
read back using the ocxcip GetUserLED routine.

o ERRLED - LEDS is set to off using the ocxcip setr1ED3 routine and read back
using the ocxcip GetLED3 routine.

¢ read the real-time clock of the ControlLogix process using ocxcip_ GetwcTime and the
time is printed to the console
e enter a main (infinite loop) and within this loop, the program will:
o wait for a connection to be established by the ControlLogix processor. The routine
Backplane ConnectProc IS started when this occurs. The routine sets the global
variable Backplane Connected Which the main program loop monitors.

e read a block of data (one the connection is established) from the controller using the
OCXcip ReadConnected API call.

ProSoft Technology, Inc. Page 53 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

e upon data availability and block number is the expected next block, the block number
is updated, the data is copied to the newly created write block, and a new write block
is sent back to the controller using the ocxcip WriteConnected routine.

o display "open success" on the 4-character display using the function Display.
read the state of the Setup Jumper using the function readswitches and prints this
information to the console.

¢ If the block number is not the expected number, the 16-bit integers in the write block
are incremented to form a new write block of data which is sent to the Controller using
the ocxcip writeconnected APl routine. The program then waits for another block of
data from the Controller using the ocxcip WaitForRxData routine.

e If any of the calls to an OCXcip library routine fail, the returned error code is
converted into a human readable string using the ocxcip Errorstring routine and
printed to the console.

ProSoft Technology, Inc. Page 54 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

414 Tag_Sample

The Tag sample program shows block transfer communication with the ControlLogix
controller in Slot 0 of the ControlLogix rack. The Controller must be loaded with the

sample ladder logic and configured to communicate with the MVIS6E-LDM module. The
ladder is .om. acD.

1 Open a command window using telnet or a similar terminal software on the PC
through a serial (P1) or Ethernet port.

2 Login as:
user: root
password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

3 From the default home directory /psft, type the command ./Tag samples. The
program runs as a background task.

While looking at the the sample source, you'll see that the main program will....

e open a connection to the hardware via the OCX library API using the open backplane
routine. The open_ backplane function will:

call ocxcip open to get access to the LDM hardware and backplane

change the module identity by reading the identity using ocxcip GetTdobject,
changing the values of the object Id structure, and then setting the identity with the
OCXcip SetIdObject routine.

The backplane connection service and service callback routines are then
registered with the backplane driver using the ocxcip RegisterAssemblyObj
routine.

o set each of the front panel LEDs:
o OK LED - Module status is set to Solid Green

o APP LED - the User LED is turned off
o ERRLED - LED3 is set to off

e read the series and revision of the API, backplane engine, and device driver using
0Cxcip GetVersionInfo and prints it to the console.

e callprint rack information to read the size and modules in the current rack using
OCxcip GetActiveNodeTable and prints to the console. Additionally, this routine reads
detailed information about the controller in Slot 0 using the ocxcip GetExDevobject
routine and prints the information to the console.

e display "Run" on the LDM front panel using a call to pisplay.

The program enters a main infinite loop and waits for the ControlLogix controller to open
a connection to the MVIS6E-LDM. Once the connection is established:

ProSoft Technology, Inc. Page 55 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

o the LDM module's status is changed to connected and owned using two calls to
OCXcip SetModuleStatusWord.
the rack information is printed to the console again

o the entire tag database is read and printed to the console using open tag dbase.

This routine executes the following:

o Creates a handle allowing access to the tag database of the controller by invoking
OCXcip CreateTagDbHandl. Options for accessing the database are set using
OCXcip SetTagDbOptions.

o Atestis then made to ensure that the local copy of the database matches the
controller's copy of the tag database. This is done using the ocxcip TestTagbbver
routine which will return a database empty error on the first invocation, causing the
local database to be rebuilt with the ocxcip BuildTagpb routine.

o The database contents are then printed to the console via print database symbols.
print data symbols calls OCXcip GetSymbolInfo for each symbol (i.e., Tag) in the
controller. It prints the name, dimensions if its an array, the element size, and the
type of each tag. If the type is simple, print cip data type is called. If the typeis a
structure, print_structure info is called to print information about each element of
the structure. print structure info US€S 0Cxcip GetStructInfo to getinformation
about a structure and then prints the name, data type, number of members, and
overall size to the console. It then request info about each member using
0CXcip GetStructMorInfo and prints that information (name, array dimension, offset in
structure, element size, and data type) to the console. Again, a data type may be
simple (print cip data type) Or a structure which causes a recursive invocation of
the print_structure_info routine.

e In the main program, print tag info is called on "index". This routine uses
OCXcip GatTagDbTagInfo tO get information about this tag and prints that info to the
console.

e The main loop then calls print_controller status to check for changes in controller
status. This routine uses ocxcip GetbeviceIdstatus to check the fault state, run
mode, and key switch mode of the controller. If any of these states change, the new
state is printed to the console.

e The main loop then uses ocxcip AccessTagbata to read the value of the tag
"tom Test". The value of this tag is then incremented and written back to the
controller using the ocxcip AccessTagbata routine.

ProSoft Technology, Inc. Page 56 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

415 Ethernet Communications Sample

The Ethernet Communications program illustrates how to interact with the MVI5S6E-LDM
using both of its Ethernet ports as both a server and a client communicating through the
backplane to send and receive data. The sample also uses multi-threading in order to
run as both a server and client asynchronously.

Two computers are recommended with TCP Stress Tester within two separate subnets.

First Computer

Set up TCP Stress Tester as a server:

Port: 5000
Connection: TCP
Send Speed: Single
Type: Server

Subnet Example: 10.1.3.x (or default 192.168.0.250)

Select Open and allow the TCP Stress Tester to listen once the sample program
launches.

E1a s £er Sered
g

T ASeqy Mo

S Fubs
i

Coisrs s L TR

Mt orkSetinge
Haak
e g T
Fort
+ TP e Chant | B Sarear
R0
Dg=mn

ProSoft Technology, Inc. Page 57 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

Second Computer

Set up TCP Stress Tester as a client:

Port: 6000
Connection: TCP
Send Speed: Single
Type: Client

Subnet Example: 10.1.2.x (or default 192.168.1.250).

Ensure that you type the HOST address as one of the two Ethernet ports available on the
MVIS6E-LDM (information to access / set IP addresses in the LDM is discussed later)

Sang FaE

3 d
s Flallin g pamdi

Fistmorkhetbnge

||-m.rl |

._If.l r“:ﬁ#u [_IL-F;-_}

—
g

1 Launch the sample ladder for the MVI56E-LDM in RSlogix5000. Please observe that
the module is not proceeding with I1/O communications. This is normal. The sample
program will initiate backplane communication.

2 To communicate on the MVI56E-LDM, open a serial connection (baud 115200) to the
COM port of choice on either of the two computers.

3 To change Ethernet port IP addresses to use the subnets chosen temporarily, type in
the terminal console:

ifconfig eth0 x.x.x.x where 'X'is your IP address of choice for Ethernet Port 0.
ifconfig ethl x.x.x.x Where X" is your IP address of choice for Ethernet Port 1.
Navigate to the directory /psft/sample.

Type the command . /enet application x.x.x.x where 'X'is the destination IP
address of the server running TCP Stress Tester.

a b

ProSoft Technology, Inc. Page 58 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

4.15.1 Initiating External Client Communication

On the second computer, select 'open' once the Ethernet Communications sample is
running (you may have to click twice depending on your computer).

Once the program is running and both TCP Tester server and client information is
established, data is received through the backplane and to/from the TCP Stress Testing
applications and RSlogix5000. The program modifies the tags within RSlogix5000 using
the sample ladder provided with any string input:

Input Tags: 0-9 are maodifiable by the MVI5S6E-LDM client for the MVI56E-LDM.
Output Tags: 0-9 are modifiable by the TCP Tester server for the MVI56E-LDM.
Input Tags: 11-20 are modifiable by the MVIS6E-LDM server of the MVIS6E-LDM.
Output Tags: 10-19 are modifiable by the TCP Tester client of the MVI56E-LDM

Please note that it is recommended to set the 'Style' in RSlogix5000 to 'ASCII' instead of
INT or Hex due to the way that RSlogix5000 interprets bytes and byte order.

RSlogix5000 creates a high byte and low byte for each tag in its database. For example,
if the word 'Hello!" was typed from the TCP Stress Tester, RSlogix5000 would separate
the values to:
o 'eH

l”l
° l!ol

Since the values are read in byte order (from right most to left most), there is a high byte
and low byte used and RSlogix5000 combines those byte values in you choose to view it
as in INT or Hex value.

ProSoft Technology, Inc. Page 59 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

For example, the letters 'te' in a single tag are separated and combined as follows:

Binary Value: 01110100 0110010

|| = Locals0 PR PR AB:1756_MODULE_IN.
J — Local5:0.Data T 1. [ASCH INT[248]

|| #Local50Dat(] 2#0111_0100_0110_0101 [Binary | [INT

ASCII: t e
| = Locat50 (oo (o) AB1756_MODULE_IN...
| =flocal50.Data [{3 | ASCH INT[248]

+/ Local:50.Datal0] Tte! ASCI INT

Combined Binary Value: 0111010001100101 = 29797 int

| = Locatsn (e} (ent AE1756 MODULE_IM...
— Local5:0.Data PR {...}|ASCH INT[2482]
Decimal INT

+ Local5:0.Datal0]

ASCII (INT Value): 101 116

The sample application can have its sample ladder input tags modified via TCP Stress
Tester either through the external server or client by creating any string value up to 10 tag
entries long (20 characters total, including spaces):

[Connesction Closed

Dpts bo Send
SEnmg
& aocqp |2 125215

HEX

S Fl

Fila |

Select START to transmit the data from the computer into the module and backplane. It is
then updated in RSlogix5000 with the appropriate number associations.

ProSoft Technology, Inc. Page 60 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

As mentioned earlier, all character data is sent to RSLogix in sets of two per tag since
each tag is 16 bits in length and each ASCII character resides in 8 bits (one byte). All
ASCII information for each tag reads from right to left (low byte to high byte) as shown in
the following example:

[P e 3000 - PSR

WP B Vs teseh lepe Comeoters Tooh Wedee ey
AU & m e - SPARB N Vo p— - »
N D8 B o ? Ll = -
(r— ., :t“(- s n [- L
By Pk -
Reten . "o : .
¢) Lt ¥o 20w 4 W €W A v 6
) Sais Gigein L] | [T A —T- .
’ [Ty p—
'.u Comtutr Vogs N 0 -lll-.-.. >l | EPTP N W .
Crmmatio ot Haster RO : ; , - ﬂ"’-' ool s s
S e Uy Hemdtee U Ot o) e AN 3 !
 Toa S Pane e N
B Moaton e J Tl [N IV (bt U
B Verbpan - 3 () B — Tew
B hogonTop v iow Tt Lizsd) by | T
[CEER [[Osemd (L :""~
I ot st oy et 1 freer) Leat] vy e
B Ponnt Al 5 [1 Toas) Loasd) T . »
W bl o 55 ~E;.~‘.. 1 Al SO "i‘ﬁ% :"“
Unashatitnt Purpasie (Pamen h'.'.'." R O L “ —
3 Vit gt + Lo 14 D] 43 WSO8 ~ voon
8 Ungranped Men Lot 150y T ok IC3 | -
00 On Innactens " 1 Ooa = oon w et
3 Ovta Typms e e WSO ™~ Lo ymor
T TS — ao - =
@ Akt Do Cubmat Lane14 Dot 2 | o :
- o 3 Sy
& it Mot Otrnt Lol o ot
23 fenh Lo 14| ()| Cees L
3 30 Lontprstn 3 2]] ‘f!.—.
D 73 Bachghen, 179 M * Loow VD] ' Dwwws L
S T — . J! Do (o
§ 1ATSE-AMCOULE NV LM . ' D jl
9 Oy Le O DT B e o LA | ®
Fre— K
tine Beacleralle S8 of peogues Raialrogves
cetine ‘TrateDetalil A’ of peogres NeinProqres
Aie FoweeOp' of Faogies Barify
hm
orreriel. L sarning(e)
|2 im——— -
[o G Vo e
Paes B

ProSoft Technology, Inc. Page 61 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

All information regarding the sending and receiving of both client and server, as well as to
and from RSlogix is displayed on the serial output window.

g Coed] - EITTY

ProSoft Technology, Inc. Page 62 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

The following diagram shows the multi-threading hierarchy. All threads (excluding the
main thread) can be removed/disabled and the sample

will continue to function as directed, excluding the functionality of the removed thread and
any child threads associated with it.

ProSoft Technology, Inc. Page 63 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

4.16 Serial Application Sample

Serial_Application shows an example of how the LDM module can be used to
communicate to an end device to transmit/receive ASCII strings from the ControlLogix
processor through the backplane to the LDM module on the bottom serial port (default
application port). This same sample program will stream ASCII data into the module from
the end device on the same serial port and send the data to the backplane to the
controller tags of the ControlLogix.

Send out number of bytes entered in Write_Byte_Cnt Controller tag continuously after the

Serial_App_Sample_WriteTrigger tag has been triggered from the default application
port.

Streams in ASCII data from the end device into the Controller tag Local:1:l.Data.
Note: Use HyperTerminal or a similar program to perform the following steps.

1 Open HyperTerminal.
2 Enter a name and choose an icon for the connection.

—

: Mew Cannection

Enter a name and choose an icon for the connection:

M ame:
LDM_RS5232_Sample

leon:

Ok Cancel

3 Choose the appropriate COM port.

& LDM_R5232 Sample

Enter details for the phone number that wou want to dial:
LCountry/region:
Area code:

Phone number:

Comrect using: v

[k. H Cancel]

ProSoft Technology, Inc. Page 64 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

4 Use the following settings for the Serial_Application program.

Bits per second: 115200
Data bits: 8

Parity: None

Stop bits: 1

Flow Control: None

COM1 Properties @E

Part Settings

Bits per second | 115200 "
Databits: |8 W
Paiity | Hone »

Stop bits: 1 w

Fow corict. TR

BRestore Defaults

[o |I Cancel][Apply]

5 Under the ASCII Setup, check the Echo typed character locally box. This will
allow you to see the stream data being sent to the MVIS6E-LDM on the
HyperTerminal screen.

6 Click OK. Keep HyperTerminal open since it will be used again after you complete
the following sections.

ASCII Setup)X

ASCH Sending
Send line ends with line feeds
Echo typed characters locally

Line delay: D millizeconds.
Character delay: EI milizeconds.

ASCI Receiving

] &ppend line feeds ta incoming line ends
[] Force incoming data ko 7-bit ASCI
Wwrap lines that exceed terminal width

[oK l Cancel

ProSoft Technology, Inc. Page 65 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

7 Use PUTTY or Telnet to log into the module.
RA56-dATM login: root
Password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the
new password in a safe place for future reference.

"EP COM3 - PuTTY.

8 Change the directory to /psft/sample.

9 Type "/ and the name of the sample program that you want to run. In this
example, ./Serial_Application&.
&P COM3 - PuTTY (= | B s |

ProSoft Technology, Inc. Page 66 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

10 Keep PUTTY or Telnet open and set up the ControlLogix program as described in
the section entitled Setting Up the ControlLogix 5000.

11 Open the MVI56E-LDM.ACD program and change the appropriate chassis type to
match your hardware and firmware.

i Controller, Properties - ProSoft_LDM_Example

Date/Time Advanced] SFC Execution] File] Hedundancy] MHanvolatile Memory] Memory]
General Serial Port I System Protocol] Uszer Protocol] I ajor Faults] Minor Faults]
‘Wendor: Allen-Bradley
Tvpe: 1756-LE3 ControlLogix5563 Contraller Change Controller...
Revizion: 16.20
Name: |F‘r050fl_LDM_ExampIe
Deseription; Example Logic for My|56E-LDM
Chassis Type: |175647 7-Slot ControlLogis Chassis -
Slat: 0 le

QK. | Cancel | | Help |

Change Controller

X

Changing the controller type will change, delete. and/or invalidate the
' controller properties and other project data that is not valid for the new
controller type.
From
Type: 17RE-LE3 ControlLogix5563 Controller

Revizion: 16.20

To
Tupe: 1

Revision: |16 l_

ControlLog

Ok, | Cancel Help

ProSoft Technology, Inc. Page 67 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Understanding the MV156-LDM API
Developer's Guide

12 Download the MVIS6E-LDM.ACD file in the ControlLogix processor by choosing

Communications > Who Active > Download.

i Who Active

W Autobrowse l:l

- B

1

S

Path:

== workstation, AKAMALT4S
+-&5 Linx Gateways, Ethernet
+-E5 AB_DF1-1, DH-485
+-&5 AB_ETH-1, Ethernet
+-@5 AB_ETH-2, Ethernet
+-@5 AB_ETHIP-1, Ethernet
—l-@5 AB_ETHIP-2, Ethernet

105.102.0,110, SLC-5005, 1747-L551)C Cf10 - DC 3.46
105.102,0,195, 1756-ENZT, 1756-EMZT/A
3 Backplane, 1756-471A
+] ﬂ 0, 17¢ , Progoft_LDM_Example
? 01, Unrecognized Device, MYISEE-GSCET
04, MYI&ES Unit, MYISE ProSoft Technology, Inc,
cz 05, Unrecognized Device, MYISGE-LDM

AB_ETHIP-24105.102.0.13548 ackplanei0

Fath in Project: AB_ETH-14192.168.0.1534%B ackplane\0

|l

Go Online |
Upload...
Download
Update Firmware...
Close
Help

Set Project Path
Clear Project Path

tag and choosing TOGGLE BIT.

e e R L e]

13 Trigger Serial ENET _App_Sample_On_Trigger by right-clicking on the Controller

i*

ProSoft Technology, Inc.

Page 68 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

14 This allows the MVI56E-LDM module to send out the text 'wor1d!' to the console.

& p - HyperTerminal EE"Zl
Bis Edt Mew Cal Trarsfer Help
D &3 05 &

world!
world!
world!
world!
world?
world!
world!
world!
world!
world!
world!
world!
wor ld!
world!
world!
world!
world?
world!
world!
world!
world!
world!
world!
world!_

(Connected D0:11:2¢ Suko detect L1S200 B-4-1 HM

15 You can view how the stream of data is accepted by the LDM module by
untoggling the Serial App_Sample_Write Trigger and typing a string of characters
on the console.

. = WA oY ae

a4 iy e

ProSoft Technology, Inc. Page 69 of 189

ControlLogix® Platform ¢ "C" Programmable Understanding the MVI56-LDM API
Linux Application Development Module Developer's Guide

16 The letter 'h' appears in the location Local:1:1.Data. Make sure that the Style
column in the ControlLogix is set to ASCII.

e T e N N T

e LT — | BEE @ e
e] R o .

- o ——]

T T —
—— |

17 You can also observe this on the console port as well.

[& coma - purTy lue

ProSoft Technology, Inc. Page 70 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions

Linux Application Development Module

Developer's Guide

5 CIP API Functions

The following table lists the CIP API Library functions. Details of each function follow in

subsequent sections:

Function Category

Function

Initialization

OCXcip Open - Starts the backplane engine and initializes access to the
CIP API.

OCXcip OpenNB - Allows access without opening backplane access.
OCXcip Close - Terminates access to the CIP APL.

Object Registration

OCXcip RegisterAssemblyObj - Registers all instances of the
Assembly Object, enabling other devices in the CIP system to establish
connections with the object. Callbacks are used to handle connection and
service requests.

OCXcip UnregisterAsssemblyObj - Unregisters all instances of the
Assembly Object that had previously been registered. Subsequent
connection requests to the object are refused.

Callback Registration

OCXcip RegisterFatalFaultRtn - Registers a fatal fault handler
routine.

OCXcip RegisterResetRegRtn - Registers a reset request handler
routine.

Connected Data Transfer

OCXcip WriteConnected - Writes data to a connection.

OCXcip ReadConnected - Reads data from a connection.

OCXcip WaitForRxData - Blocks until new data is received on
connection.

OCXcip ImmediateOutput - Transmit output data immediately.

OCXcip WriteConnectedImmediate - Update and transmit output data
immediately.

Tag Access

OCXcip AccessTagData - Read and write Logix controller tag data.
OCXcip AccessTagDataAbortable - Abortable version of
OCXcip_AccessTagData.

OCXcip CreateTagDbHandle - Creates a tag database handle.
OCXcip DeleteTagDbHandle - Deletes a tag database handle and
releases all associated resources.

OCXcip SetTagDbOptions - Sets various tag database options.
OCXcip BuildTagDb - Builds or rebuilds a tag database.

OCXcip TestTagDbVer - Compare the current device program version
with the device program version red when the tag database was created.
OCXcip GetSymbolInfo - Get symbol information.

OCXcip GetStructInfo - Get structure information.

OCXcip GetStructMbrInfo - Get structure member information.
OCXcip_ GetTagDbTagInfo - Get information for a fully qualified tag
name.

OCXcip AccessTagDataDb - Read and/or write multiple tags.

Messaging

OCXcip GetDeviceIdObject - Reads a device's identity object.
OCXcip GetDeviceICPObject - Reads a device's ICP object.
OCXcip GetDeviceIdStatus - Read a device's status word.
OCXcip GetExDevObject - Read a device's extended device object.
OCXcip GetWCTime - Read the Wall Clock Time from a controller.
OCXcip_ SetWCTime - Set a controller's Wall Clock Time.

OCXcip GetWCTimeUTC - Read a controller's Wall Clock Time in UTC.
OCXcip SetWCTimeUTC - Set a controller's Wall Clock Time in UTC.

ProSoft Technology, Inc.

Page 71 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Callback Functions connect_ proc - Application function called by the CIP APl when a
connection request is received for the registered object.
service proc - Application function called by the CIP APl when a
message is received for the registered object.
fatalfault proc - Application function called if the backplane device
driver detects a fatal fault condition.

Miscellaneous OCXcip GetIdObject - Returns data from the module's Identity Object.
OCXcip SetIdObject - Sets the module's Identity Object.
OCXcip GetActiveNodeTable - Returns the number of slots in the local
rack and identifies which slots are occupied by active modules.
OCXcip MsgResponse - Send the response to an unscheduled message.
This function must be called after returning OCX_CIP_DEFER_RESPONSE
from the service_proc callback routine.
OCXcip GetVersionInfo - Get the CIP API version information.
OCXcip GetUserLED - Get the state of the user LED.
OCXcip SetUserLED - Set the state of the user LED.
OCXcip GetModuleStatus - Get the state of the status LED.
OCXcip SetModuleStatus - Set the state of the status LED.
OCXcip GetLED3 - Get the state of the err LED.
OCXcip SetLED3 - Set the state of the err LED.
OCXcip ErrorString - Get a text description of an error code.
OCXcip SetDisplay - Display characters on the alphanumeric display.
OCXcip GetDisplay - Read alphanumeric display.
OCXcip GetSwitchPosition - Get the state of the board jumpers.
OCXcip GetSerialConfig - Read the serial board configuration jumpers.
OCXcip_ Sleep - Delay for specified time.
OCXcip Calculate CRC - Generates a 16-bit CRC over a range of data.
OCXcip SetModuleStatusWord - Set the module status attribute in the
ID object.
OCXcip GetModuleStatusWord - Read the module status attribute in
the ID object

ProSoft Technology, Inc. Page 72 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

5.1 CIP API Initialization Functions

OCXcip_Open

Syntax

int OCXcip Open (OXCHANDLE *apihandle);

Parameters

apiHandle pointer to variable of type OCXHANDLE

Description

ocxcip Open acquires access to the CIP API and sets apiHandle to a unique ID that the
application uses in subsequent functions. This function must be called before any of the
other CIP API functions can be used.

Important: Once the API has been opened, ocxcip close should always be called before exiting the
application.

Return Value

OCX_SUCCESS API was opened successfully
OCX ERR REOPEN APl is already open
OCX_ERR_NODEVICE backplane driver could not be accessed

Note: ocx rrr NopevIct Will be returned if the backplane device driver is not loaded.

Example

OCXHANDLE apiHandle;

if (OCXcip Open (&apiHandle) != OCX SUCCESS)
{

printf ("Open failed!\n");

printf ("Open succeeded\n");

}

See Also
OCXcip_Close

ProSoft Technology, Inc. Page 73 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_OpenNB

Syntax

int OCXcip OpenNB (OXCHANDLE *apihandle);

Parameters

apiHandle pointer to variable of type OCXHANDLE

Description

OCXcip OpenNB acquires access to the CIP API and sets apiHandle to a unique ID that the
application uses in subsequent functions. This function must be called before any of the other CIP
API functions can be used.

Most applications will use 0OCXcpi Open instead of this function. This version of the open function
allows access to a limited subset of API functions that are not related to the ControlLogix
backplane. This can be useful if an application separate from the host application needs access to
a device such as the alphanumeric display.

An application should only use either 0OCXcip Open or OCXcip OpenNB, never both.

The API functions that can be accessed after calling OCXcip OpenNB are:
OCXcip Close

OCXcip GetDisplay

OCXcip GetUserLED
OCXcip_ GetLED3

OCXcip GetIdObject
OCXcip GetModuleStatus
OCXcip_ GetSwitchPosition
OCXcip GetVersionInfo
OCXcip ReadSRAM

OCXcip_ SetDisplay

OCXcip SetUserLED
OCXcip_ SetLED3

OCXcip_ SetModuleStatus
OCXcip Sleep

Important: Once the APl is opened, ocxcip close should always be called before exiting the application.

Return Value

OCX_ SUCCESS API| was opened successfully
OCX_ERR_REOPEN APl is already open

Note: ocx Err_nopEvICE Will be returned if the backplane device driver is not loaded.

See Also
OCXcip_Close

ProSoft Technology, Inc. Page 74 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_Close

Syntax

int OCXcip Close (OCXHANDLE apihandle);

Parameters

apihandle handle returned by previous call to OCXcip_Open

Description

This function is used by an application to release control of the CIP API.
apihandle must be a valid handle returned from ocxcip open.

Important: Once the CIP API has been opened, this function should always be called before exiting the
application.

Return Value

OCX SUCCESS API was closed successfully
OCX ERR NOACCESS apihandle does not have access
Example

OCXHANDLE apihandle;
OCXcip Close (apihandle);

See Also

OCXcip_Open

After the CIP API has been opened, this function should always be called before exiting
the application.

ProSoft Technology, Inc. Page 75 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

5.2 Object Registration

OCXcip_RegisterAssemblyObj

Syntax
int OCXcip RegisterAssemblyObj (OCXHANDLE apihandle,
OCXHANDLE * objHandle,
DWORD reg param,
OCXCALLBACK (*connect proc) (),
OCXCALLBACK (*service proc) ());
Parameters
apihandle handle returned by previous call to OCXcip_Open
objHandle pointer to variable of type OCXHANDLE. On successful return,
this variable will contain a value which identifies this object.
reg_param value that will be passed back to the application as a parameter
in the connect proc and service proc callback functions.
connect proc pointer to callback function to handle connection requests
service proc pointer to callback function to handle service requests
Description

This function is used by an application to register all instances of the Assembly Object
with the CIP API. The object must be registered before a connection can be established
with it.

apihandle must be a valid handle returned from mvicip open.

reg param iS a value that will be passed back to the application as a parameter in the
connect proc a@nd service proc callback functions. The application may use this to store
an index or pointer. It is not used by the CIP API.

connect_proc iS a pointer to a callback function to handle connection requests to the
registered object. This function will be called by the backplane device driver when a Class
1 scheduled connection request for the object is received. It will also be called when an
established connection is closed. Refer to Callback Functions for information.

service proc iS a pointer to a callback function which handles service requests to the
registered object. This function will be called by the backplane device driver when an

unscheduled message is received for the object. Refer to Callback Functions for
information.

Return Value

OCX_SUCCESS object was registered successfully
OCX ERR NOACCESS handle does not have access
OCX_ERR_BADPARAM connect_proc or service_proc is NULL
OCXiERR:ALREADYiREGISTERED object has already been registered

ProSoft Technology, Inc. Page 76 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

CIP API Functions
Developer's Guide

Example

OCXHANDLE
OCXHANDLE
MY STRUCT
int

apihandle;
objHandle;
mystruct;
rc;

OCXCALLBACK MyConnectProc
OCXCALLBACK MyServiceProc

// Register all instances of the assembly object
rc = MVIcip RegisterAssemblyObj (apihandle,
(DWORD) &mystruct,

if (rc != OCX SUCCESS)

See Also

OCXcip_UnregisterAssemblyObj

connect_proc
service_proc

(OCXHANDLE,
(OCXHANDLE,

OCXCIPCONNSTRUC *) ;
OCXCIPSERVSTRUC *);

&objHandle,

MyConnectProc, MyServiceProc,

printf ("Unable to register assembly object\n");

ProSoft Technology, Inc.

Page 77 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_UnregisterAssemblyObj

Syntax

int OCXcip UnregisterAssemblyObj (OCXHANDLE apihandle,
OCXHANDLE objHandle);

Parameters

apihandle handle returned by previous call to OCXcip_Open
objHandle handle for object to be unregistered

Description

This function is used by an application to unregister all instances of the Assembly Object
with the CIP API. Any current connections for the object specified by objHandie will be
terminated.

apihandle must be a valid handle returned from ocxcip open.
objHandle must be a handle returned from ocxcip RegisterAssemblyObj.

Return Value

OCX_SUCCESS object was unregistered successfully
OCX ERR NOACCESS apihandle does not have access
OCX ERR INVALID OBJHANDLE oObjHandle is invalid

Example

OCXHANDLE apihandle;
OCXHANDLE objHandle;

// Unregister all instances of the object
OCXcip UnregisterAssemblyObj (apihandle, objHandle);

See Also
OCXcip_RegisterAssemblyQObj

ProSoft Technology, Inc. Page 78 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

5.3 Special Callback Registration

OCXcip_RegisterFatalFaultRtn

Syntax

int OCXcip RegisterFatalFaultRtn (OCXHANDLE apihandle,
OCXCALLBACK (*fatalfault proc) ())7

Parameters

apihandle handle returned by previous call to 0OCXcip Open
fatalfault proc pointer to fatal fault callback routine
Description

This function is used by an application to register a fatal fault callback routine. Once
registered, the backplane device driver will call fataifault proc if a fatal fault condition is
detected.

apihandle must be a valid handle returned from ocxcip open.
fatalfault proc must be a pointer to a fatal fault callback function.

A fatal fault condition will result in the module being taken offline; that is, all backplane
communications will halt. The application may register a fatal fault callback in order to
perform recovery, safe-state, or diagnostic actions.

Return Value

OCX SUCCESS routine was registered successfully
OCX_ERR NOACCESS handle does not have access
Example

OCXHANDLE apihandle;
// Register a fatal fault handler

OCXcip RegisterFatalFaultRtn(apihandle, fatalfault proc);

See Also

fatalfault_proc

ProSoft Technology, Inc. Page 79 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_RegisterResetReqRtn

Syntax

int OCXcip RegisterResetRegRtn(OCXHANDLE apihandle,
OCXCALLBACK (*resetrequest proc) ());

Parameters

apihandle apihandle returned by previous call to OCXcip Open
resetrequest proc pointer to reset request callback routine

Description

This function is used by an application to register a reset request callback routine. Once
registered, the backplane device driver will call resetrequest proc if @ module reset
request is received.

apihandle must be a valid handle returned from ocxcip open.
resetrequest proc Must be a pointer to a reset request callback function.

If the application does not register a reset request handler, receipt of a module reset
request will result in a software reset (that is, reboot) of the module. The application may
register a reset request callback in order to perform an orderly shutdown, reset special
hardware, or to deny the reset request.

Return Value

OCX SUCCESS routine was registered successfully
OCX ERR_NOACCESS apihandle does not have access
Example

OCXCIPHANDLE apihandle;
// Register a reset request handler

OCXcip RegisterResetRegRtn (apihandle, resetrequest proc);

See Also

resetrequest_proc

ProSoft Technology, Inc. Page 80 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

5.4 CIP Callback Functions

Note: The functions in this section are not part of the CIP API but must be implemented by the application.
The CIP API calls the connect_proc or service_proc functions when connection or service requests are
received for the registered object. The optional fatalfault_proc function is called when the backplane device
driver detects a fatal fault condition.

Special care must be taken when coding the callback functions, because these functions
are called directly from the backplane device driver. Callback functions may be called at
any time. Therefore, they should never call any functions that are non-reentrant. Many
'C'-runtime library functions may be non-reentrant.

In general, the callback routines should be as short as possible. Stack size is limited, so
keep stack variables to a minimum. Do as little work as possible in the callback.

connect_proc

Syntax
OCXCALLBACK connect proc(OCXHANDLE objHandle, OCXCIPCONNSTRUC *sConn) ;
Parameters
objHandle Handle of registered object instance
sConn Pointer to structure of type OCXCIPCONNSTRUCT
Description

connect_proc is a callback function which is passed to the CIP API in the

OCXcip RegisterAssemblyObj call. The CIP API calls the connect proc function when a
Class 1 scheduled connection request is made for the registered object instance
specified by objHandle.

sConn is a pointer to a structure of type ocxcrpconnsTRUCT.

ProSoft Technology, Inc. Page 81 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

This structure is shown below:

typedef struct tagOCXCIPCONNSTRUC

{

OCXHANDLE connHandle; // unique value which identifies this connection
DWORD reg param; // value passed via OCXcip RegisterAssemblyObj
WORD reason; // specifies reason for callback

WORD instance; // instance specified in open

WORD producerCP; // producer connection point specified in open
WORD consumerCP; // consumer connection point specified in open
DWORD *10TApi; // pointer to originator to target packet interval
DWORD *1TOApi; // pointer to target to originator packet interval
DWORD 1ODeviceSn; // Serial number of the originator

WORD iOVendorId; // Vendor Id of the originator

WORD rxDataSize; // size in bytes of receive data

WORD txDataSize; // size in bytes of transmit data

BYTE *configData; // pointer to configuration data sent in open
WORD configSize; // size of configuration data sent in open

WORD *extendederr; // an extended error code if an error occurs

} OCXCIPCONNSTRUC;

connHandle identifies this connection. This value must be passed to the
OCXcip_SendConnected,and OCXcip_ReadConnectedfunCﬁonS.

reg param iS the value that was passed to ocxcip RegisterAssemblyobj. The application
may use this to store an index or pointer. It is not used by the API.

reason specifies whether the connection is being opened or closed. A value of
ocx_cIp_coNN opeN indicates the connection is being opened,
oCxX_CIP CONN OPEN coMpLETE indicates the connection has been successfully opened,
ocx_c1p_nuLL_OoPEN indicates there is new configuration data for a currently open
connection, and ocx c1p conn crost indicates the connection is being closed. If reason
is ocx _c1P_conn cLosk, the following parameters are unused: producercp, consumercp,
api, rxDataSize, and txDataSize.

instance is the instance number that is passed in the forward open.

Note: This corresponds to the Configuration Instance on the RSLogix 5000 generic profile.

producercp is the producer connection point from the open request.

Note: This corresponds to the Input Instance on the RSLogix 5000 generic profile.

consumerCP i the consumer connection point from the open request.

Note: This corresponds to the Output Instance on the RSLogix 5000 generic profile.

ProSoft Technology, Inc. Page 82 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

10TApi is a pointer to the originator-to-target actual packet interval for this connection,
expressed in microseconds. This is the rate at which connection data packets will be
received from the originator. This value is initialized according to the requested packet
interval from the open request. The application may choose to reject the connection if the
value is not within a predetermined range. If the connection is rejected, return

ocx_c1p FATLURE and set extendederr t0 ocx c1p Ex BaD RPI. Note: The minimum RPI
value supported by the 56 SAM module is 200us.

1ToApi IS a pointer to the target-to-originator actual packet interval for this connection,
expressed in microseconds. This is the rate at which connection data packets will be
transmitted by the module. This value is initialized according to the requested packet
interval from the open request. The application may choose to increase this value if
necessary.

1opevicesn is the serial number of the originating device, and iovendorid is the vendor
ID. The combination of vendor ID and serial number is guaranteed to be unique, and may
be used to identify the source of the connection request. This is important when
connection requests may be originated by multiple devices.

rxDataSize iS the size in bytes of the data to be received on this connection. txpatasize
is the size in bytes of the data to be sent on this connection.

configData iS a pointer to a buffer containing any configuration data that was sent with
the open request. configsize is the size in bytes of the configuration data.

extendederr IS @ pointer to a word which may be set by the callback function to an
extended error code if the connection open request is refused.
Return Value

The connect proc routine must return one of the following values if reason is
OCX_CIP_CONN_OPEN:

Note: If reason is ocx CIP CONN OPEN COMPLETE Of OCX CIP CONN CLOSE, the return value must be
OCX_SUCCESS.

OCX SUCCESS connection is accepted

OCX_CIP BAD INSTANCE instance is invalid

ocx:CIP:No_EESOURCE unable to support connection due to resource limitations
OCX_CIP_FAILURE connection is rejected: extendederr may be set

Extended Error Codes
If the open request is rejected, extendederr can be set to one of the following values:

OCX CIP EX CONNECTION USED The requested connection is already in use.
OCX CIP _EX BAD RPI The requested packet interval cannot be supported.
OCX_CIP_EX BAD SIZE The requested connection sizes do not match the

allowed sizes.

ProSoft Technology, Inc. Page 83 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Example

OCXHANDLE Handle;

OCXCALLBACK connect proc(OCXHANDLE objHandle, OCXCIPCONNSTRUCT
*sConn)

{

// Check reason for callback

switch(sConn->reason)

{

case OCX CIP CONN OPEN:

// A new connection request is being made. Validate the
//parameters and determine whether to allow the connection.
//Return OCX_ SUCCESS if the connection is to be established,
//or one of the extended error codes if not. See the sample
//code for more details.

return (OCX SUCCESS) ;

case OCX CIP CONN OPEN COMPLETE:

// The connection has been successfully opened. If

// necessary,

// call OCXcip WriteConnected to initialize transmit data.
return (OCX SUCCESS) ;

case OCX CIP CONN NULLOPEN:

// New configuration data is being passed to the open connection.
//Process the data as necessary and return success.
return (OCX SUCCESS) ;

case OCX CIP CONN CLOSE:

// This connection has been closed - inform the application
return (OCX SUCCESS) ;

}

}

See Also

OCXcip_RegisterAssemblyObj
OCXcip_ReadConnected

ProSoft Technology, Inc. Page 84 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

service_proc

Syntax

OCXCALLBACK service_proc(OCXHANDLE objHandle, OCXCIPSERVSTRUC *sServ);

Parameters

objHandle handle of registered object

sServ pointer to structure of type OCXCIPSERVSTRUC
Description

service proc iS a callback function which is passed to the CIP API in the
OCXcip RegisterAssemblyObj call. The CIP API calls the service proc function when an
unscheduled message is received for the registered object specified by objHand1e.

sServ IS a pointer to a structure of type ocxcipservsTruc. This structure is shown below:

typedef struct tagOCXCIPSERVSTRUC
{
DWORD reg param; // value passed via OCXcip RegisterAssemblyObj
WORD instance; // instance number of object being accessed
BYTE serviceCode; // service being requested
WORD attribute; // attribute being accessed
BYTE **msgBuf; // pointer to pointer to message data
WORD offset; // member offset
WORD *msgSize; // pointer to size in bytes of message data
WORD *extendederr; // an extended error code if an error occurs
BYTE fromSlot; //Slot number in local rack that sent the message
DWORD msgHandle; //Handle used by OCXcip MsgResponse
} OCXCIPSERVSTRUC;
reg_param iS the value that was passed to ocxcip RegisterAssemblyobi. The application

may use this to store an index or pointer. It is not used by the CIP API.
instance specifies the instance of the object being accessed.

serviceCode Specifies the service being requested. attribute specifies the attribute being
accessed.

msgBuf IS @ pointer to a pointer to a buffer containing the data from the message. This
pointer should be updated by the callback routine to point to the buffer containing the
message response upon return.

offset is the offset of the member being accessed.

msgSize points to the size in bytes of the data pointed to by nsgeuf. The application
should update this with the size of the response data before returning.

extendederr iS @ pointer to a word which can be set by the callback function to an
extended error code if the service request is refused.

fromslot is the slot number in the local rack from which the message was received. If the
module in this slot is a communications bridge, then it is impossible to determine the
actual originator of the message.

msgHandle is needed if the callback returns ocx c1p pereEr REsponsk. If this code is
returned, the message response is not sent until ocxcip Msgresponse is called.

ProSoft Technology, Inc. Page 85 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Note: If the service proc callback returns ocx c1p DEFER RESPONSE, it must save any needed data
passed to itin the ocxcipservsTRUC structure. This data is only valid in the context of the callback. If the
received message contains data, the buffer pointed to by msgBuf can be accessed after the callback returns.
However, the pointer itself will not be valid.

Return Value

The service proc routine must return one of the following values:

OCX SUCCESS message processed successfully

OCX_CIP BAD INSTANCE invalid class instance

OCX_CIP_BAD_SERVICE invalid service code

OCX_CIP_BAD_ATTR invalid attribute

OCX_CIP_ATTE NOT SETTABLE attribute is not settable

OCX CIP PARTIAL DATA data size invalid

OCX7CIP7BAD ATTE DATA attribute data is invalid

OCX7CIP7FAI£URE N generic failure code

OCX:CIP:DEFER_RESPONSE defer response until OCXcip_MsgResponse is called
Example

OCXHANDLE Handle;

OCXCALLBACK service proc (OCXHANDLE objHandle, OCXCIPSERVSTRUC
*sServ)

{

// Select which instance is being accessed.

// The application defines how each instance is defined.
switch (sServ->instance)

{

case 1: // Instance 1

// Check serviceCode and attribute; perform

// requested service if appropriate

break;

case 2: // Instance 2

// Check serviceCode and attribute; perform

// requested service if appropriate

break;

default:

return (OCX _CIP_BAD INSTANCE); // Invalid instance

}

}

See Also

OCXcip_RegisterAssemblyObj
OCXcip_MsgResponse

ProSoft Technology, Inc. Page 86 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

fatalfault_proc

Syntax

OCXCALLBACK fatalfault proc();

Parameters
None

Description

fatalfault proc is an optional callback function which may be passed to the CIP API in
the OCXcip RegisterFatalFaultRtn call. If the fatalfault proc callback has been
registered, it will be called if the backplane device driver detects a fatal fault condition.
This allows the application an opportunity to take appropriate actions.

Return Value

The fatalfault proc routine must return ocx success.

Example

OCXHANDLE Handle;

OCXCALLBACK fatalfault proc(void)

{

// Take whatever action is appropriate for the application:
// - Set local I/O to safe state

// - Log error

// - Attempt recovery (for example, restart module)
return (OCX SUCCESS) ;

}

See Also
OCXcip_RegisterFatalFaultRtn

ProSoft Technology, Inc. Page 87 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

5.5 Connected Data Transfer

OCXcip_WriteConnected

Syntax

int OCXcip WriteConnected (OCXHANDLE apihandle,
OCXHANDLE connHandle,
BYTE *dataBuf,
WORD offset,
WORD dataSize);

Parameters

apihandle handle returned by previous call to OCXcip Open
connHandle handle of open connection

dataBuf pointer to data to be written

offset offset of byte to begin writing

dataSize number of bytes of data to write

Description

This function is used by an application to update data being sent on the open connection
specified by connHand1e.

apiHandle must be a valid handle returned from ocxcip oOpen. connHandle must be a
handle passed by the connect proc callback function.

offset is the offset into the connected data buffer to begin writing. datasur is a pointer to
a buffer containing the data to be written. datasize is the number of bytes of data to be
written.

Return Value

OCX SUCCESS data was updated successfully
OCX_ERR_NOACCESS apihandle does not have access

OCX ERR BADPARAM connHandle or offset/dataSize is invalid
Example

OCXHANDLE apihandle;
OCXHANDLE connHandle;
BYTE buffer[128];

// Write 128 bytes to the connected data buffer
OCXcip WriteConnected(apihandle, connHandle, buffer, 0, 128);

See Also
OCXcip_ReadConnected

ProSoft Technology, Inc. Page 88 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_ReadConnected

Syntax

int OCXcip ReadConnected (OCXHANDLE apihandle,
OCXHANDLE connHandle,
BYTE *dataBuf,
WORD offset,
WORD dataSize);

Parameters

apihandle handle returned by previous call to OCXcip Open
connHandle handle of open connection

dataBuf pointer to buffer to receive data

offset offset of byte to begin reading

dataSize number of bytes to read

Description

This function is used by an application to read data being received on the open
connection specified by conntandle.

apiHandle must be a valid handle returned from ocxcip Open. connHandle must be a
handle passed by the connect proc callback function. offset is the offset into the
connected data buffer to begin reading. dataBut is a pointer to a buffer to receive the
data. datasize is the number of bytes of data to be read.

Note: When a connection has been established with a ControlLogix controller, the first 4 bytes of received
data are processor status and are automatically set by the controller. The first byte of data appears at offset 4
in the receive data buffer.

Return Value

OCX_ SUCCESS data was read successfully

OCX ERR NOACCESS apihandle does not have access
OCX_ERR_BADPARAM connHandle or offset/dataSize is invalid
Example

OCXHANDLE apihandle;
OCXHANDLE connHandle;
BYTE buffer[128];

// Read 128 bytes from the connected data buffer
OCXcip ReadConnected(handle, connHandle, buffer, 0, 128);

See Also
OCXcip_WriteConnected

ProSoft Technology, Inc. Page 89 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_ImmediateOutput

Syntax

int OCXcip ImmediateOutput (OCXHANDLE apihandle,
OCXHANDLE connHandle);

Parameters

apiHandle handle returned by previous call to OCXcip Open
connHandle handle of open connection

Description

This function causes the output data of an open connection to be queued for transmission
immediately, rather than waiting for the next scheduled transmission (based on RPI). Itis
equivalent to the ControlLogix IOT instruction.
apiHandle must be a valid handle return from ocxcip Open. connHandle must be a handle
passed by the connect proc callback function.

Return Value

OCX SUCCESS data was read successfully

OCX_ ERR_NOACCESS apihandle does not have access

OCX ERR BADPARAM connHandle or offset/dataSize is invalid
Example

OCXHANDLE apihandle;
OCXHANDLE connHandle;
BYTE buffer[128];

// Update the output data and transmit now

OCXcip WriterConnected (apiHandle, connHandle, buffer, 0, 128);
OCXcip ImmediateOutput (apiHandle, connHandle);

See Also
OCXcip_WriteConnected

ProSoft Technology, Inc. Page 90 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_WaitForRxData

Syntax

int OCXcip WaitForRxData (OCXHANDLE apihandle,
OCXHANDLE connHandle,
Int timeout);

Parameters

apiHandle handle returned by previous call to OCXcip Open
connHandle handle of open connection

timeout Number of milliseconds to wait for the read to complete
Description

This function will block the calling thread until data is received on the open connection
specified by connnandie. If the timeout expires before data is received, the function
returns ocx ERR TIMEOUT.

apiHandle must be a valid handle return from ocxcip oOpen. connHandle must be a handle
passed by the connect proc callback function.

timeout is used to specify the amount of time in milliseconds the application should wait
for a response from the Logix processor.

Return Value

OCX SUCCESS data was read successfully

OCX ERR_NOACCESS apihandle does not have access

OCX ERR BADPARAM connHandle or offset/dataSize is invalid
OCX ERR TIMEOUT The timeout expired before data was received
Example

OCXHANDLE apihandle;
OCXHANDLE connHandle;

// Synchronize with the controller scan

OCXcip WaitForRxData (apiHandle, connHandle, 1000);

See Also
OCXcip_WriteConnected

ProSoft Technology, Inc. Page 91 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_WriteConnectedComplete

Syntax

int OCXcip WriteConnectedImmediate (OCXHANDLE apihandle,
OCXHANDLE connHandle,
BYTE *DataBuf,
WORD offset,
WORD dataSize);

Parameters

apiHandle handle returned by previous call to 0OCXcip Open
connHandle handle of open connection

dataBuf Pointer to data to be written

offset Offset of byte to begin writing

dataSize Number of bytes of data to write

Description

This function is used by an application to update data being sent on the open connection
specified by conniandie. This function differs from the ocxcip writeConnected function in
that it bypasses the normal image integrity mechanism and transmits the updated data
immediately. This is faster and more efficient that ocxcip writeconnected, but does not
guarantee image integrity.

apiHandle must be a valid handle return from ocxcip Open. connHandle must be a handle
passed by the connect proc callback function.

offset is the offset into the connected data buffer to begin writing. datasuf is a pointer to
a buffer containing the data to be written. datasize is the number of bytes of data to be
written.

This function should not be used in conjunction with ocxcip writeConnected. Itis

recommended that this function only be used to update the entire output image (i.e., no
partial updates).

Note: The ocxcip writeConnected function is the preferred method of updating output data. However,
for applications that need a potentially faster method and do not need image integrity, this function may be a
viable option.

Return Value

OCX SUCCESS data was read successfully
OCX_ERR_NOACCESS apihandle does not have access
OCX_ ERR BADPARAM connHandle or offset/dataSize is invalid

ProSoft Technology, Inc. Page 92 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Example

OCXHANDLE apihandle;

OCXHANDLE connHandle;

BYTE buffer[128];

// Update the output data and transmit now

OCXcip WriteConnectedImmediate (apiHandle, connHandle, buffer, 0, 128);

See Also
OCXcip_WriteConnected

ProSoft Technology, Inc. Page 93 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

5.6 Tag Access Functions

The API functions in this section can be used to access tag data withing ControlLogix
controllers. The prototypes for most of these functions and their associated data
structure definitions can be found in the header file OCXTagDb.h.

The tag access functions that include "Db" in the name are for use with a valid tag
database (see OCXcip_BuildTagDb).

OCXcip_AccessTagData

Syntax

int OCXcip AccessTagData (OCXHANDLE apihandle,
char * pPathStr,
WORD rspTimeout,
OCXCIPTAGACCESS * pTagAccArr,
WORD numTagAcc) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open
pPathStr Pointer to NULL terminated device path string
rspTimeout CIP response timeout in milliseconds

pTagAccArr Pointer to the array of pointers to tag access definitions
numTagAcc Number of tag access definitions to process
Description

This function efficiently reads and/or writes a number of tags. As may operations as will
fit will be combined into a single CIP packet. Multiple packets may be required to process
all of the access requests

pTagAccArr IS @ pointer to an array of pointers to ocxcipracaccress structures.
numTagacc iS the number of pointers in the array.

ProSoft Technology, Inc. Page 94 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

CIP API Functions
Developer's Guide

The ocTcrpTacaccess structure is show in the following example:

typedef struct tagOCXCIPTAGACCESS
{

char * tagName; //tag name (symName[x,y,z].mbr.mbr [x].etc)

WORD daType; //Data type code

WORD eleSize; //Size of one data element

WORD opType; //Read/Write operation type

WORD numEle; //Number of elements to read or write
void * data; //Read/Write data pointer

void * wrMask; //Pointer to write bit mask data, NULL if none

int result; // Read/Write operation result
} OCXCIPTAGACCESS

tagName Pointer to tag name string (symName [x, vy, z] .mbr [x] .etc). All array
indices must be specified except the last set of brackets. If the last set is
omitted, the indices are assumed to be zero.

daType Data type code (0CX_CIP DINT, efc).

eleSize Size of a single data element (DINT=4, BOOL=1, etc).

opType OCX_CIP TAG_READ OPOrOCX CIP TAG WRITE OP.

numEle Number of elements to read or write - must be 1 if not array

data Pointer to read/write data buffer. Strings are expected to be in
OCX_CIP STRING82 TYPE format. The size of the data is assumed to be
numEle * eleSize

wrMask Write data mask. Set to NULL to execute a non-masked write. If a
masked write is specified, numEle must be 1 and the total amount of write
data must be 8 bytes or less. Only signed and unsigned integer types may
be written with a masked write. Only data bits with corresponding set
wrMask bits will be written. If a wrMask is supplied, it is assumed to be
the same size as the write data (eleSize * numEle).

result

Read/write operation result (output). Set to OCX SUCCESS if operation
successful, else if failure. This value is not set if the function return value is
other than OCX_SUCCESS or opType is OCX CIP TAG NO OP.

Return Value

OCX SUCCESS

Operation was successful

else

An access error occurred. Individual access result parameters not
set.

ProSoft Technology, Inc.

Page 95 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

CIP API Functions
Developer's Guide

Example

OCXHANDLE Handle;
OCXCIPTAGACCESS tal;
OCXCIPTAGACCESS ta2;
OCXCIPTAGACCESS * pTal2];
INT32 wrVal;

INT16 rdval;

int rc;

tal.tagName = "dintArr[2];
tal.daType = OCX CIP DINT;
tal.eleSize = 4;

tal.opType = OCX CIP TAG WRITE OP;

tal.numEle = 1;
tal.data = (void*) &wrVal;
tal.wrMask = NULL;

tal.result = OCX SUCCESS;

wrVal = 123456;

ta2.tagName = "intval";
taZ2.daType = OCX CIP INT;
ta2.eleSize = 2;

taZ2.opType = OCX CIP TAG READ OP;

ta2.numkEle = 1;
ta2.data = (void *) &rdval;
ta2.wrMask = Null;

ta2.result OCX SUCCESS;

pTa[0]
pTa[l]

&tal;
&ta2;

rc= OCXcip AccessTagData (Handle, "p:1.s:0",2500, pTa,2)

if (OCX_SUCCESS!= rc)
{
printf ("OCXcip Access Tag Data()

= %d\n", rc);

tal.tagName, ta.result);

ta2.tagName, ta.result);

else
{
if (tal.result!=0CX SUCCESS)
printf ("$s write error =
else
printf ("%$s write successfull\n",tal.tagName) ;
if (taZ.result!=0CX SUCCESS)
printf ("%$s read error =
else
printf ("$s = %d\n, ta2.tagName.rdval);
}
See Also

OCXcip_ReadConnected

ProSoft Technology, Inc.

Page 96 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_AccessTagDataAbortable

Syntax

int OCXcip AccessTagDataAbortable (OCXHANDLE apihandle,
char * pPathStr,
WORD rspTimeout,
OCXCIPTAGACCESS * pTagAccArr,
WORD numTagAcc,
WORD * pAbortCode) ;

Parameters

apihandle handle returned by previous call to OCXcip Open

pPathStr Pointer to NULL terminated device path string

rspTimeout CIP response timeout in milliseconds

pTagAccArr Pointer to array of pointers to tag access definitions

numTagAcc Number of tag access definitions to process

pAbortCode Pointer to the abort code. This allows the application to pass a large
number of tags and gracefully abort between accesses. May be NULL.
*pAbortCode may be OCX ABORT TAG ACCESS MINOR to abort
between tag accesses or OCX ABORT TAG ACCESS MAJOR to abort
between CIP packets.

Description

This functions is similar to ocxcip accessTagpata (), but provides an abort flag. See
oCxcip AccessTagData () for additional operational descriptions.

See Also
OCXcip_AccessTagData

ProSoft Technology, Inc. Page 97 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_CreateTagDbHandle

Syntax

int OCXcip CreateTagDbHandle (OCXHANDLE apihandle,
BYTE *pPathStr,
WORD devRspTimeout,
OCXTAGDBHANDLE * pTagDbHandle) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open

pPathStr Pointer to device path string

devRspTimeout Device unconnected message response timeout in milliseconds

pTagAccArrDbHandle Pointer to OCXTAGDBHANDLE instance

Description

0CXcip CreatTagDbHandle creates a tag database and returns a handle to the new
database.

Important: Once the handle is created, ocxcip DeleteTagbbHandle should be called when the tag
database is no longer necessary. ocxcip Close () Will delete any tag database resources that the
application may have left open.

Return Value

OCX SUCCESS operation was successful
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR MEMALLOC Not enough memory is available
Example

OCXHANDLE hAPI;
OCXTAGDBHANDLE hTagDb;
BYTE * devPathStr = (BYTE *)"p:1,s:0";
int rc
rc=0CXcip CreateTagDbHandle (hApi, devPathStr, 1000, &hTagDb);
if (rc!=0CX SUCCESS)
printf ("Tag database handle creation failed!\n");

else

printf ("Tag database handle successfully created.\n);

See Also
OCXcip_DeleteTagDbHandle

ProSoft Technology, Inc. Page 98 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_DeleteTagDbHandle

Syntax

int OCXcip DeleteTagDbHandle (OCXHANDLE apihandle,
, OCXTAGDBHANDLE TagDbHandle) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open
TagDbHandle Pointer to OCXTAGDBHANDLE instance
Description

This function is used by an application to delete a tag database handle. tdohandle must
be a valid handle previously created with ocxcip CreateTagbbHandle.

Important: Once the tag database handle is created, this function should be called when the database is no
longer needed.

Return Value

OCX_SUCCESS ID object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
Example

OCXHANDLE hAPI;
OCXTAGDBHANDLE hTagDb;

OCXcip DeleteTagDbHandle (hApi, hTagDb) ;

See Also
OCXcip_CreateTagDbHandle

ProSoft Technology, Inc. Page 99 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_SetTagDbOptions

Syntax

int OCXcip SetTagDbOptions (OCXHANDLE apihandle,

OCXTAGDBHANDLE tdbHandle,
DWORD optFlags,
WORD structAlign);

Parameter

Description

apihandle

Handle returned by previous call to 0OCXcip Open

TagDbHandle

Handle created by previous call to 0OCXcip CreateTagDbHandle

optFlags

Bit masked option flags field. Multiple options may be combined (with)
OCX_CIP_ TAGDOPT NORM STRINGS:

Normalized strings are stored as <DATA><NULL> (instead of
<LEN><DATA>. 0CXcip GetSymbolInfo () and

OCXcip GetStructMbrInfo () will report strings as having a datype of
OCX_CIP TAGDB DATYPE NORM STRING. The report eleSize will be
the size of the string data buffer including space for the NULL term

(oCcx _CIP_STRING82s will have an eleSize of 83). The reported
hstruct will be zero(no a struct). When accessing normalized strings
(with oCXcip AccessTagDataDb ()), pass a daType of

PCX CIP TAGDB DATYPE NORM STRING.

OCX_CIP TAGDBOPT NORM BOOLS:

With this option, OCX CIP BOOL variables will be treated as bytes.
OCX_CIP BYTE, OCX CIP WORD, OCX_ CIPDWORD, and
OCX_CIP_LWORD types will be converted to arrays of OCX CIP BOOLS.
A normalized oCX_CIP_ DWORD will be normalized to an array of 32
OCX_CIP_BOOL (which will occupy 32 bytes) for example. When
accessing arrays of BOOKs (with 0OCXcip AccessTagbataDb ()), any
number of array elements may be specified - masked and unmasked
controller reads/writes will be executed as required to complete the tag
access. Some OCX_CIP_ BOOLs cannot be normalized. The
FUNCTION_GENERATOR structure has oCX_CIP BOOLs that are
aliased into an 0CxX CIP DINT. Since the DINT base member is not
expanded into a BOOL array, the BOOL alias structure members cannot
be normalized. A special (and rarely used) data type has been created to
identify alias structure member ocx_CIP BOOLS that could not be
normalized: OCX CIP TAGDB DATYPE NORM BITMASK.

OCX_CIP TAGDBOPT STRUCT MBR ORDER NATIVE: This option will
cause OCXcip GetStructMbrInfo () to retrieve structure members in
native order (lowest offset to highest) instead of alphabetical order. This
is not a normalization option.

structAlign

Ignored if no normalization options are used. If normalization is enabled,
this may be 1, 2, 4, or 8 (4=recommended). Structure members will be
aligned according to the minimum alignment requirement. That is, if
structALign is 4, 0CX_CIP_ DINTSs will be aligned on 4 byte boundaries,
but ocx_c1p_INTs will be aligned on 2 byte boundaries.

Description

This function may be used to change options of the fly but is intended to be called once
immediately after ocxcip createTagbbhandle (). All options are off by default.

ProSoft Technology, Inc.

Page 100 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Example

OCXHANDLE hAPI;

OCXTAGDBHANDLE hTagDb;

DWORD opts = OCX CIP TAGDBOPT NORM STRINGS|OCX XIP TAFDBOPT NORM BOOLS;
int rc;

rc=0CXcip CreateTagDbHandlSetTagDbOptions (hApi, hTagDb, opts, 4););

if (rc!=0CX SUCCESS)
{

printf ("OCXcip SetTagDbOpts() error %d\n, rc");

else

printf ("OCXcip SetTagDbOpts () success\n) ;

See Also

OCXcip_GetSymbolinfo , OCXcip_GetStructinfo , OCXcip_GetStructMbrinfo

ProSoft Technology, Inc. Page 101 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_BuildTagDb

Syntax

int OCXcip BuildTagDb (OCXHANDLE apihandle,
OCXTAGDBHANDLE tdbHandle,
WORD * numSymbols) ;

Parameters

apiHandle handle returned by previous call to OCXcip Open

tdbHandle pointer to device path string

numSymbols Pointer to WORD value - set to number of discovered symbols if
success

Description

This function is used to retrieve a tag database from the target device. If the database
associated with tbanandle was previously built, the existing database will be deleted
before the new one is built. This function communicates with the target device and may
take a few milliseconds to a few tens of seconds to complete. tbdhandle must be a valid
handle previously created with ocscip createTagbbHandle. If successful, *numsymbols is
set to the number of symbols in the tag database.

Return Value

OCX SUCCESS tag database was built successfully
OCX_ERR_NOACCESS apihandle or tdbHandle is invalid
OCX_ERR_VERMISMATCH The device program version changed during the build
Example

OCXHANDLE hApi;

OCXTAGDBHANDLE hTagDb;

WORD numSyms

If (OCXcip BuildTagDb (hApi, hTagDb, &numSyms) !=0CX SUCCESS)

printf ("Error building tag database\n");

else

printf ("Tag database build success, numSyms=%d\n", numSyms) ;

See Also

OCXcip_CreateTagDbHandle , OCXcip_DeleteTagDbHandle , OCXcip_TestTagDbVer ,
OCXcip_GetSymbolinfo

ProSoft Technology, Inc. Page 102 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_TestTagDbVer

Syntax

int OCXcip TestTagDbVer (OCXHANDLE apihandle,
OCXTAGDBHANDLE tdbHandle,

Parameters
apiHandle handle returned by previous call to OCXcip Open
tdbHandle handle created by previous call to
OCXcip CreateTagDbHandle
Description

This function reads the program version from target device and compares it to the device
program version read when the tag database was built.

Return Value

OCX_SUCCESS ID object was retrieved successfully

OCX ERR NOACCESS apihandle or tdbHandle is invalid

OCX ERR VERMISMATCH Database version mismatch, call 0CXcip BuildTagDb to
refresh

Example

OCXHANDLE hApi;
OCXTAGDBHANDLE hTagDb;
int rc;

rc = OCXcip TestTagDbVer (hApi, hTagDB);

if (rc !=0CX SUCCESS)

if (rc == OCX_ERR OBJEMPTY || rc == OCX ERR MISMATCH)
rc = OCXcip BuildTagDb (hApi, hTagDb) ;
}
if (rc != OCX SUCCESS)

printf ("Tag database not valid\n");

See Also
OCXcip_BuildTagDb

ProSoft Technology, Inc. Page 103 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions

Linux Application Development Module

Developer's Guide

OCXcip_GetSymbolinfo

Syntax

int OCXcip GetSymbolInfo (OCXHANDLE apihandle,

OCXTAGDBHANDLE tdbHandle,
WORD symId,
OCXCIPTAGDBSYM *pSymInfo

Parameters

apiHandle handle returned by previous call to 0OCXcip Open

tdbHandle handle created by previous call to
OCXcip CreateTagDbHandle

symId 0 thru numSymbols-1

pSymInfo Pointer to symbol info variable - all members set if success:
name = NULL terminated symbol name
daType = OCX CIP BOOL, OCX CIP INT,
OCX_CIP STRINGS82, etc.
hstruct = 0 if symbol is a base type, else if symbol is a
structure
eleSize = size of single data element; will be zero if the
symbold is a structure and the structure is not accessible as a
whole
xDim = 0 if no array dimension, else if symbol is an array
yDim = 0 if no array dimension, else for Y dimension
zDim = 0 if no array dimension, else for Z dimension
fAttr - Bit masked attributes where,
OCXCIPTAGDBSYM ATTR ALIAS - Symbolis an alias for
another tag.

Description

This function gets symbol information from the tag database. A tag database must have
been previously built with ocxcip Buildragbb. This function does not access the device

or verify the device program version.

Return Value

OCX SUCCESS

Symbol info was retrieved successfully

OCX_ERR_NOACCESS

apihandle or tdbHandle is invalid

OCX_ ERR_BADPARAM

symId invalid

ProSoft Technology, Inc.

Page 104 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

CIP API Functions
Developer's Guide

Example

OCXHANDLE hApi;
OCXTAGDBHANDLE hTagDb;
OCXCIPTAGDBSYM symInfo;
WORD numSyms;

WORD symId;

int rc;

if (OCXcip BuildTagDb (hApi, hTagDb, &numSyms) == OCX SUCCESS)

for (symmId = 0; symId < numSyms; symId++)

rc = (OCXcip GetSymbolInfo (hAPi, hTagDB, symID,
if (rc == OCX SUCCESS)
{

printf ("Symbol name = [%s]\n", symInfo.name);

(
printf ("type = %04X\n", symInfo.daType);
printf ("hStruct = %d\n", symInfo.hStruct);
printf ("ele.Size = %d\n",symInfo.eleSize);
printf ("xDim = %d\n", symInfo.xDim);
printf ("yDim = %d\n", symInfo.yDim) ;
printf ("zDim = %d\n", symInfo.zDim) ;

See Also

OCXcip_BuildTagDb , OCXcip_TestTagDbVer , OCXcip_GetStructinfo ,

OCXcip_GetStructMbrinfo

&symInfo);

ProSoft Technology, Inc.

Page 105 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions

Linux Application Development Module

Developer's Guide

OCXcip_GetStructinfo

Syntax

int OCXcip GetStructInfo (OCXHANDLE apihandle,

Parameters

OCXTAGDBHANDLE tdbHandle,
WORD hStruct,
OCXCIPTAGDBSTRUCT *pStructInfo);

apiHandle

handle returned by previous call to 0OCXcip Open

tdbHandle

handle created by previous call to
OCXcip CreateTagDbHandle

hStruct

Nonzero structure handle from previous
OCXcip GetSymbolInfo or OCXcip GetStructMbrInfo

call

pStructInfo

Pointer to symbol info variable - all members set if success:
name = NULL terminated symbol name

daType = structure data type

daSize = Size of the structure data in bytes. Zero indicates that
the structure is not accessible as a whole

ioType = OCX_CIP STRUCT IOTYPE NA: Structure is not
accessible as a whole.

OCX CIP STRUCT IOTYPE OUT: Structure is an output type
and is read only when accessed as a whole.
OCX_CIP STRUCT IOTYPE RMEM: Structure is memory type
and is read only when accessed as a whole.
OCX_CIP_STRUCT IOTYPE MEM: Structure is memory and is
read/write compatible.

OCX_CIP_STRUCT IOTYPE STRING: Structure is a memory
string and is read/write compatible.

numMbr = number of structure members

Description

This function gets structure information from the tag database. A tag database must
have been previously built with ocxcip Buildragpb. This functions does not access the

device or verify the device program version.

Return Value

OCX SUCCESS

Struct info was retrieved successfully

OCX_ERR NOACCESS

apihandle or tdbHandle is invalid

OCX_ERR_BADPARAM

hStructinvalid

ProSoft Technology, Inc.

Page 106 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Example

OCXHANDLE hApi;
OCXTAGDBHANDLE hTagDb;
OCXCIPTAGDBSYM symInfo;
WORD symId;

int rc;

rc - OCXcip GetSymbolInfo (hApi, hTagbDb, symId, &symInfo);

if (rc == OCX SUCCESS && symInfo.hStruct !=0)

rc = OCXcip GetStructInfo (hApi, hTagDb, symInfo.hStruct, &structInfo);

if (rc == OCX SUCCESS)
{
printf ("Structure name = [$s]\n", structInfo.name);
printf ("type = %04X\n", structInfo.daType);
printf("size = %d\n", structInfo.daSize);
printf ("numMbr = %d\n",structInfo.structInfo.numMbr) ;
}
}
See Also

OCXcip_BuildTagDb , OCXcip_TestTagDbVer , OCXcip_GetSymbolinfo
OCXcip_GetStructMbrinfo

ProSoft Technology, Inc. Page 107 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetStructMbrinfo

Syntax

int OCXcip GetStructMbrInfo (OCXHANDLE apihandle,
OCXTAGDBHANDLE tdbHandle,
WORD hStruct,
Word mbrId
OCXCIPTAGDBSTRUCTMBR *pStructMbrInfo);

Parameters

apiHandle handle returned by previous call to 0OCXcip Open

tdbHandle handle created by previous call to
OCXcip CreateTagDbHandle

hStruct Nonzero structure handle from previous
OCXcip GetSymbolInfo or OCXcip GetStructMbrInfo
call

mbrId Member identifier (0 through numMbr-1)

pStructMbrInfo Pointer to structure member info variable - all members set if
success:
name = NULL terminated name string daType = Structure
member data type
hStruct = Zero if member is a base type, nonzero for structure
daOfs = Byte offset of member data in structure data block
bitId =BitID (0-7)if daType is OCX CIP BOOL and BOOL
normalization is off, or daType is
OCX CIP TAGDB FATYPE NORM BITMASK.
arrDim = Member array dimensions if array, O = not array
dispFmt = Recommended display format
fAttr = Bit masked attribute flags where:
OCXCIPTAGDBSTRUCTMBR ATTR ALIAS = Indicates member is
an alias for (or within) another member
baseMbrId = Alias base member ID (0 = numMbr if alias flag is
set)

Description

This function gets the structure member information from the tag database. A tag
database must have been previously built with ocxcip BuildTagpb. This function does
not access the device or verify the device program version.

Return Value

OCX_SUCCESS Struct info was retrieved successfully
OCX_ERR_NOACCESS apihandle or tdbHandle is invalid
OCX_ERR_BADPARAM hStruct or mbrId invalid

ProSoft Technology, Inc. Page 108 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Example

OCXHANDLE hApi;

OCXTAGDBHANDLE hTagDb;
OCXCIPTAGDBSTRUCT structInfo;
OCXCIPTAGDBSTRUCTMBR structMbrInfo;
WORD hStruct;

WORD mbrId;

int rc;

rc = OCXcip_ GetStructInfo (hApi, hTagbDb, hStruct, &structlInfo);

if (rc == OCX SUCCESS)

for (mbrId =0; mbrId < structInfo.numMbr; mbrId++)

rc = OCXcip GetStructMbrInfo (hApi, hTagDb, hStruct, mbrId, &structMbrInfo);
if (rc == OCX SUCCESS)

printf ("Successfully retrieved member infol\n");
else
printf ("Error %d getting member infol\n", rc);

See Also

OCXcip_BuildTagDb , OCXcip_TestTagDbVer , OCXcip_GetSymbolinfo
OCXcip_GetStructinfo

ProSoft Technology, Inc. Page 109 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions

Linux Application Development Module

Developer's Guide

OCXcip_GetTagDbTaglnfo

Syntax

int OCXcip GetTagDbTagInfo

Parameters

(OCXHANDLE apihandle,
OCXTAGDBHANDLE tdbHandle,
char * tagName,
OCXCIPTAGINFO * tagInfo);

apiHandle

handle returned by previous call to 0OCXcip Open

tdbHandle

handle created by previous call to
OCXcip CreateTagDbHandle

tagName

Pointer NULL terminated tag name string

taginfo

Pointer to OCXCIPTAGINFO structure- all members set if
success:

daType = Data type codee

hStruct = Zero if member is a base type, nonzero for structure
eleSize = Data element size in bytes

xDim = X dimension - zero if not an array

yDim =Y dimension - zero if no Y dimension

zDim = Z dimension - zero if no Z dimension

xIdx = X index - zero if not array

yIdx =Y index - zero if not array

zIdx - Z index - zero if not array

dispFmt = Recommended display format

Description

This function gets information regarding a fully-qualified tag name (i.e.,
symName[x,y,z].mbr[x].etc). If symName or mbr specifies an array, unspecified indices
are assumed to be zero. A tag database must have been previously built with

OCxcip BuildTagDb (). This function does not communicate with the target device or

verify the device program version.

Return Value

OCX SUCCESS

Success

OCX_ERR_*

Failure

ProSoft Technology, Inc.

Page 110 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Example

OCXHANDLE hApi;
OCXTAGDBHANDLE hTagDb;
OCXCIPTAGInfo tagInfo;

int rc;
rc = OCXcip GetTagDbTagInfo (hApi, hTagbDb, "sym[1l,2,].mbr[0]", &tagInfo);
if (rc != OCX SUCCESS)

printf ("OCXcip GetTagDbTagInfo()error %d\n", rc);

else

printf ("OCXcip_GetTangTagInfo()Success\n");

See Also
OCXcip_BuildTagDb

ProSoft Technology, Inc. Page 111 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions

Linux Application Development Module

Developer's Guide

OCXcip_AccessTagDataDb

Syntax

int OCXcip AccessTagDataDb

(OCXHANDLE apihandle,
OCXTAGDBHANDLE tdbHandle,
OCXCIPTAGDBACCESS ** pTagAccArr,
WORD numTagAcc,

WORD * pAbortCode) ;

Parameter

Description

apiHandle

handle returned by previous call to 0OCXcip Open

tdbHandle

handle created by previous call to
OCXcip CreateTagDbHandle

pTagAccArr

Pointer to array of pointers to tag access definitions:

tagName = Pointer to tag name string
(symName[x,y,z].mbr[x].etc. All array indices must be specified
except the last set of brackets - if the last set is omitted, the
indices are assumed to be zero.

daType = Data type code (OCX_CIP_ DINT, etc).

eleSize = Size of a single data element (DINT = 4, BOOL =1,
etc).

opType = OCX_CIP_TAG READ OP oOr

OCX CIP TAG WRITE OP.

numEle = Number of elements to read or write - must be 1 if not
array.

data = Pointer to read/write data buffer. The size of the data is
assumed to be numEle * eleSize.

wrMask = Write data mask. Set to NULL to execute a non-
masked write. If a masked write is specified, numEle must be 1
and the total amount of write data must be 8 bytes or less. Only
signed and unsigned integer types may be written with a masked
write. Only data bits with corresponding set wrMask bits will be
written. If a wrMask is supplied, it is assumed to be the same
size as the write data (eleSize * numEle).

result = Read/Write operation result (output). Set to
OCX_SUCCESS if operation successful, else if failure. This value
is not set if the function return value is other than 0CX_SUCCESS
or opType iS OCX_CIP_TAG NO_OP.

numTagAcc

Number of tag access definitions to process.

pAbortCode

Pointer to abort code. This allows the application to pass a large
number of tags and gracefully abort between accesses. May be
NULL. *pAbort may be OCX ABORT TAG ACCESS MINOR to
abort between tag accesses or

OCX_ABORT_ TAG_ACCESS_MAJOR to abort between CIP
packets.

Description

This function is similar to ocxcip AccessTagpata () but allows full structure reads and
writes. See ocxcip AccessTagbata () in this manual for additional operational and
parameter descriptions. See ocxcip GetsStructInfo() for more information on which
structures are accessible as a whole.

ProSoft Technology, Inc.

Page 112 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Return Value

OCX_ SUCCESS Success
OCX_ERR_* Failure
See Also

OCXcip_AccessTagData , OCXcip_GetSymbolinfo , OCXcip_GetStructinfo ,
OCXcip_GetStructMbrinfo

ProSoft Technology, Inc. Page 113 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

5.7 Messaging

OCXcip GetDeviceldObject

Syntax

int OCXcip GetDeviceIdObject (OCXHANDLE apihandle,
BYTE *pPathStr,
OCXCIPIDOBJ *idoObj,
WORD timeout) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open
pPathStr path to device being read

idobject pointer to structure receiving the Identify Object Data
timeout number of milliseconds to wait for the read to complete
Description

OCXcip GetDeviceIdObject retrieves the identity object from the device at the address
specified in prathstr.

apihandle must be a valid handle returned from ocxcip open.

idobject is a pointer to a structure of type ocxciriposs. The members of this structure
will be updated with the module identity data.

timeout IS used to specify the amount of time in milliseconds the application should wait
for a response from the device.

The following example defines the ocxctp1posJ structure:

typedef struct tagOCXCIPIDOBJ

{

WORD VendorID; //Vendor ID Number

WORD DeviceType; //General product type

WORD ProductCode: //Vendor-specific product identifier
BYTE MajorRevision; //Major revision level

BYTE MinorRevision; //Minor revision level

DWORD SerialNo; //Module serial number

BYTE Name [32]; //Text module name (null-terminated)

} OCXCIPIDOBJ;

Return Value

OCX SUCCESS ID object was retrieved successfully

OCX ERR NOACCESS apihandle does not have access

OCX ERR MEMALLOC returned if not enough memory is available
OCX_ERR_BADPARAM returned if path was incorrect

ProSoft Technology, Inc. Page 114 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Example

OCXCIPHANDLE apihandle;
OCXCIPIDOBJ idobject;
BYTE Path[]="p:1,s:0";

// Read ID data from ControlLogix in slot O

OCXcip GetDeviceIdObject (apihandle, &Path, &idobject, 5000);

printf ("\r\n\rDeviceName: "); printf ((char *) idobject.Name);

printf ("\n\rVendorID: %2X Device Type: %d", idobject.VendorID, idobject.DeviceType);
(
(

printf ("\n\rProdCode: %d SerialNum %$1d", idobject.ProductCode, idobject.SerialNo) ;
printf ("\n\tRevision: %d.%d", idobject.MajorRevision, idobject.MinorRevision);

ProSoft Technology, Inc. Page 115 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetDevicelCPObject

Syntax

int OCXcip GetDeviceICPObject (OCXHANDLE apihandle,
BYTE *pPathStr,
OCXCIPICPOBJ *icpoObj,
WORD timeout) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open
pPathStr path to device being read

icpobject pointer to structure receiving the ICP object data
timeout number of milliseconds to wait for the read to complete
Description

OCXcip GetDeviceICPObject retrieves the ICP object from the module at the address
specified in prathstr.

apihandle must be a valid handle returned from ocxcip open.

icpobject is a pointer to a structure of type ocxcipicross. The members of this
structure will be updated with the ICP object data from the addressed module. The ICP
object contains a variety of status and diagnostic information about the module's
communications over the backplane and the chassis in which it is located.

timeout is used to specify the amount of time in milliseconds the application should wait
for a response from the device.

The following example defines the ocxctpIcrorg structure:

typedef struct tagOCXCIPICPOBJ

{

BYTE RxBadMulticastCrcCounter; //Number of multicast Rx CRC
Errors
BYTE MulticastCRCErrorThreshold; //Threshold for entering fault

state due to multicast
CRC errors

BYTE RxBadCrcCounter; //Number of CRC errors that
occurred on Rx

BYTE RXBusTimeoutCounter; //Number of Rx bus timeouts

BYTE TxBadCrcCounter; //Number of CRC counters that
occurred on transmit

BYTE TxBusTimeoutCounter; //Number of Tx bus timeouts

BYTE TxRetryLimit; //Number of times a Tx is retried
if an error occurs

BYTE Status; //ControlBus status

WORD ModuleAddress; //Module's slot number

BYTE RackMajorRev; //Chassis major revision

BYTE RackMinorRev; //Chassis minor rev

DWORD RackSerialNumber; //Chassis serial number

WORD RackSize; //Chassis size (number of slots
} OCXCIPICPOBJ;

ProSoft Technology, Inc. Page 116 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Return Value

OCX SUCCESS ICP object was retrieved successfully
OCX_ERR_NOACCESS apihandle does not have access

OCX ERR MEMALLOC returned if not enough memory is available
OCX_ERR_BADPARAM returned if path was incorrect

Example

OCXHANDLE apihandle;
OCXCIPICPOBJ icpobject;
BYTE Path[]="p:1,s:0";

// Read ICP data from 5550 in slot O
OCXcip GetDeviceICPObject (apihandle, &Path, &icpobject, 5000);
printf ("\n\rRack Size: %d SerialNum: %1d"), icpobject.RackSize,

icpobject.RackSerialNumber) ;
printf ("\n\rRack Revision: %d.%d", icpobject.RackMajorRev, icpobject.RackMinorRev) ;

ProSoft Technology, Inc. Page 117 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetDeviceldStatus

Syntax

int OCXcip GetDeviceIdStatus (OCXHANDLE apihandle,
BYTE *pPathStr,

WORD *status,

WORD timeout) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open
pPathStr path to device being read

status pointer to location receiving the Identity Object status word
timeout number of milliseconds to wait for the read to complete
Description

OCXcip GetDeviceldsStatus retrieves the identity object status word from the device at the
address specified in prathstr.

apihandle must be a valid handle returned from ocxcip open.

status is a pointer to a WORD that will receive the identity status word data. The
following bit masks and bit definitions may be used to decode the status word:

OCX_ID STATUS DEVICE STATUS Mask

ocx 1D sTATUS FLASHUPDATE: Flash update in progress
ocx 1D sTATUS FLASHBAD: Flash is bad

ocx_ID sTATUS FAULTED: Faulted

oCcx_TD STATUS RUN: Run mode

0CxX_ID STATUS PROGRAM: Program mode

OCX_ID STATUS FAULT STATUS MASK
0CX_ID STATUS RCV_MINOR FAULT: Recoverable minor fault
0CX_ID STATUS URCV_MINOR FAULT: Unrecoverable minor fault
0CX_ID STATUS RCV_MAJOR FAULT: Recoverable major fault
OCX_ID STATUS URCV MAJOR FAULT: Unrecoverable major fault

Note: The key and controller mode bits are 555x specific.
OCX_ID STATUS KEY SWITCH MASK: Key switch position mask
oCx_ID STATUS KEY RUN: Key switch in run

OCX_ID STATUS KEY PROGRAM: Key switch in program
0CX_ID STATUS KEY REMOTE: Key switch in remote

oCX_ID STATUS CNTR MODE Mask: Controller mode bit mask

ProSoft Technology, Inc. Page 118 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

CIP API Functions
Developer's Guide

0CX_ID STATUS MODE CHANGING: Controller is changing modes
ocx_1Dp_sTATUS DEBUG MODE: Debug mode if controller is in Run Mode

Timeout: Used to specify the amount of time in milliseconds the application
should wait for a response from the device.

Return Value

OCX_SUCCESS ID object was retrieved successfully

OCX_ERR_NOACCESS

apihandle does not have access

OCX ERR MEMALLOC

returned if not enough memory is available

OCX_ERR BADPARAM

returned if path was incorrect

Example
OCXCIPHANDLE apihandle;
WORD status;
BYTE Path[]="p:1,s:0";

// Read ID status from ControlLogix in slot 0
OCXcip GetDeviceldStatus (apihandle, &Path, &status, 5000);

printf ("\n\zr");
switch (Status & OCX_ID STATUS DEVICE STATUS MASK)
{
case OCX ID STATUS FLASHUPDATE: // Flash update in progress
printf ("Status: Flash Update in Progress");
break;
case OCX ID STATUS FLASHBAD: //Flash is bad
printf ("Status: Flash is bad"):;
break;

case OCX ID STATUS FAULTED: //Faulted
printf ("Status: Faulted");

break;

case OCX ID STATUS RUN: //Run mode
printf ("Status: Run mode");

break;

case OCX ID STATUS: //Program mode
printf ("Status: Program mode");

break;
default:

printf ("ERROR: Bad Status Mode");

break;

printf ("\n\r");
switch (Status & OCX_ID STATUS KEY SWITCH MASK)
{

case OCX ID STATUS KEY RUN: //Key switch in run
printf ("Key switch position: Run");

break;

case OCX ID STATUS KEY PROGRAM: //Key switch in program
printf ("Key switch position: Program");

break;

case OCX ID STATUS KEY REMOTE:
printf ("Key switch position: Remote");

//Key switch in remote

ProSoft Technology, Inc.

Page 119 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions

Linux Application Development Module Developer's Guide
break;
default:
printf ("ERROR: Bad key position";
break;

ProSoft Technology, Inc. Page 120 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetExDeviceObject

Syntax

int OCXcip GetExDeviceObject (OCXHANDLE apihandle,
BYTE *pPathStr,
OCXCIPEXDEVOBJ *exdevobject,
WORD timeout) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open
pPathStr path to device being read

exdevobject pointer to structure receiving the extended device object data
timeout number of milliseconds to wait for the read to complete
Description

OCXcip GetExDeviceObject retrieves the extended device object from the module at the
address specified in ppathstr.

apihandle must be a valid handle returned from ocxcip open.

exdevobject IS a pointer to a structure of type ocxcirexpevoBs. The members of this
structure will be updated with the extended device object data from the addressed
module.

timeout is used to specify the amount of time in milliseconds the application should wait
for a response from the device.

The following example defines the ocxcipexpEVOBJ Structure:

typedef struct tagOCXCIPEXDEVOBJ
{

BYTE Name[64];

BYTE Description[64];

BYTE GeoLocation[64];

WORD NumPorts;

OCXCIPEXDEVPORTATTR PortList[8];
} OCXCIPEXDEVOBJ;

ProSoft Technology, Inc. Page 121 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions

Linux Application Development Module

Developer's Guide

The following example defines the OCXCIPEXDEVPORTATTR structure:

typedef struct tagOCXCIPEXDEVPORTATTR

{

WORD PortNum;
WORD PortUse;
} OCXCIPEXDEVPORTATTR;

Return Value

OCX_SUCCESS

ICP object was retrieved successfully

OCX_ERR_NOACCESS

apihandle does not have access

OCX_ERR_MEMALLOC

returned if not enough memory is available

OCX_ERR_BADPARAM

returned if path was incorrect

OCX CIP INVALID REQUEST The device does not support the requested object

Example

OCXHANDLE apihandle;

OCXCIPEXDEVOBJ exdevobject;

BYTE Path[]="p:1,s:0";

// Read Extended Device object from 5550 in slot 0

OCXcip_ GetExDevObject (apihandle, &Path, &exdevobject, 5000);

printf ("\nDevice Name: %s",

exdevobject.Name) ;

printf ("\nDescription: %s", exdevobject.Description);

ProSoft Technology, Inc.

Page 122 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetWCTime

Syntax

int OCXcip GetWCTime (OCXHANDLE apihandle,
BYTE *pPathStr,
OCXCIPWCT *pWCT,
WORD timeout) ;

Parameters

apihandle handle returned by previous call to OCXcip Open

pPathStr path to device being read

PWCT Pointer to ocxcIPwWCT structure to be filled with Wall Clock Time
data

timeout number of milliseconds to wait for the read to complete

Description

ocxcip GetwcCTime retrieves information from the Wall CLock object in the specified
device. The information is returned both in 'raw' format and conventional time/date
format.

apihandle must be a valid handle returned from ocxcip open.

pPathstr must be a pointer to a string containing the path to a device which supports the
Wall Clock Time object, such as a ControlLogix controller.

pwWCT is a pointer to a structure of type ocxcrpwct, which on success will be filled with the
data read from the device. As a special case, pwcT may also be NULL.

If pwer is NULL, the system time is set with the local time returned from the WCT object.
This is a convenient way to synchronize the system time with the controller time (Note:
The user account must have appropriate privileges to set the system time.)

timeout IS used to specify the amount of time in milliseconds the application should wait
for a response from the device.

The following example defines the ocxctpwct structure:

typedef struct tagOCXCIPWCT
{

ULARGE INTEGER CurrentValue;
WORD TimeZone;
ULARGE INTEGER CSTOffset;
WORD LocalTimeAd];
SYSTEMTIME SystemTime;

} OCXCIPWCT;

CurrentValue is the 64-bit Wall Clock Time counter value (adjusted for local time), which
is the number of microseconds since 1/1/1972, 00:00 hours. This is the 'raw' Wall Clock
Time as presented by the device.

ProSoft Technology, Inc. Page 123 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

TimeZone is obsolete and is no longer used. It is retained in the structure for backwards
compatibility only and should not be used.

CSTOffset is the positive offset in microseconds from the current system CST
(Coordinated System Time). In a system that uses a CST Time Master, this value allows
the Wall Clock Time to be precisely synchronized among multiple devices that support
CST and WCT.

LocalTimeAdj is obsolete and is no longer used. It is retained in the structure for
backwards compatibility only and should not be used.

SystemTime is a structure of type SYSTEMTIME. The time and date returned in this
structure is the local adjusted time on the device. The SYSTEMTIME structure is as
shown:

typedef struct SYSTEMTIME
{

WORD wYear;
WORD wMonth;
WORD wDayOfWeek;

WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;

Return Value

OCX_SUCCESS WCT object was retrieved successfully
OCX ERR NOACCESS apihandle does not have access

OCX ERR MEMALLOC returned if not enough memory is available
OCX_ERR BADPARAM returned if parameter was invalid

OCX ERR NODEVICE the device does not exist

OCX)CIP_INVALID REQUEST the device does not support the object

ProSoft Technology, Inc. Page 124 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Example

OCXHANDLE apihandle;

OCXCIPWCT Wct;

BYTE Path[]="p:1,s:0";
int rc;

rc=0CXcip GetWCTime (apiHandle, &Path, &wCT, 3000);

if (rc !=0CX SUCCESS)
{
printf ("\n\rOCXcip GetWCTime failed: %d\n\r",rc);

else

printf ("\nWall Clock Time: %02d/%02d/%d: %02d:%02d.%03d",
Wct.SystemTime.wMonth, Wct.SystemTime.wDay, Wct.SystemTime.wYear,
Wct.SystemTime.wHour, Wct.SystemTime.wMinute, Wct.SystemTime.wSecond,
Wct.SystemTime.wMilliseconds) ;

}

See Also
OCXcip_SetWCTime, OCXcip_GetWCTime

ProSoft Technology, Inc. Page 125 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_SetWCTime

Syntax

int OCXcip GetWCTime (OCXHANDLE apihandle,
BYTE *pPathStr,
OCXCIPWCT *pWCT,
WORD timeout) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open

pPathStr path to device being read

PWCT Pointer to ocxcIpPwCT structure to be filled with Wall Clock Time
data to be set

timeout number of milliseconds to wait for the read to complete

Description

ocxcip setwcTime Writes to the Wall Clock Time object in the specified device. This
function allows the time to be specified in two different ways; a specified data/time, or
automatically set to the local system time. See the description of the pwct parameter for
more information.

apihandle must be a valid handle returned from ocxcip open.

pPathstr must be a pointer to a string containing the path to a device which supports the
Wall Clock Time object, such as a ControlLogix controller. See Appendix A for
information on specifying paths.

pwWcT is a pointer to a structure of type ocxcrpwct, which on success will be filled with the
data read from the device. As a special case, pwcT may also be NULL.

If pwer is NULL, the system time is set with the local time returned from the WCT object.
This is a convenient way to synchronize the system time with the controller time (Note:
The user account must have appropriate privileges to set the system time.)

timeout is used to specify the amount of time in milliseconds the application should wait
for a response from the device.

The following example defines the ocxctpwcrt structure:

typedef struct tagOCXCIPWCT
{

ULARGE INTEGER CurrentValue;
WORD TimeZone;
ULARGE INTEGER CSTOffset;
WORD LocalTimeAd];
SYSTEMT IME SystemTime;

} OCXCIPWCT;

CurrentValue is ignored by this function.

ProSoft Technology, Inc. Page 126 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

TimeZone is obsolete and is no longer used. It is retained in the structure for backwards
compatibility only and should not be used.

CSTOffset is ignored by this function.

LocalTimeAdj is obsolete and is no longer used. It is retained in the structure for
backwards compatibility only and should not be used.

SystemTime is a structure of type SYSTEMTIME. The time and date returned in this
structure is the local adjusted time on the device. The SYSTEMTIME structure is as

shown:

typedef

{
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD

struct SYSTEMTIME

wYear;
wMonth;
wDayOfWeek;
wDay;
wHour;
wMinute;
wSecond;

wMilliseconds;

} SYSTEMTIME, *PSYSTEMTIME;

Note: The wDayOfWeek member is not used by the OCXcip_SetWCTime.

Return Value

OCX_SUCCESS WCT object was set successfully

OCX ERR NOACCESS apihandle does not have access
OCX_ERR_MEMALLOC returned if not enough memory is available
OCX ERR BADPARAM returned if parameter was invalid
OCX_ERR_NODEVICE the device does not exist

OCX)CIP_INVALID REQUEST the device does not support the object

See Also

OCXcip_GetWCTime, OCXcip_SetWCTime

ProSoft Technology, Inc. Page 127 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetWCTimeUTC

Syntax

int OCXcip GetWCTimeUTC (OCXHANDLE apihandle,
BYTE *pPathStr,
OCXCIPWCT *pWCT,
WORD timeout) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open

pPathStr path to device being read

PWCT Pointer to OCXCIPWCTUTC structure to be filled with Wall Clock
Time data

timeout number of milliseconds to wait for the read to complete

Compatibility

This function is compatible only with Logix controllers with v16 or greater firmware
installed. Firmware versions below v16 will result in error ocx c1p_1NVALID REQUEST. For
previous firmware versions, use ocxcip GetWCTime ().

Description

ocxcip GetwcTimeutc retrieves information from the Wall CLock object in the specified
device. The time returned is expressed as UTC time.

apihandle must be a valid handle returned from ocxcip open.

pPathstr must be a pointer to a string containing the path to a device which supports the
Wall Clock Time object, such as a ControlLogix controller.

pwWcT may point to a structure of type ocxcrpwcrurc, which on success will be filled with the
data read from the device. As a special case, pwcT may also be NULL.

If pwct is NULL, the system time is set with the UTC time returned from the WCT object.
This is a convenient way to synchronize the system time with the controller time (Note:
The user account must have appropriate privileges to set the system time.)

timeout is used to specify the amount of time in milliseconds the application should wait
for a response from the device.

The following example defines the ocxctpwcTuTc structure:
typedef struct tagOCXCIPWCT
{

ULARGE INTEGER CurrentUTCValue;
char TimeZone[84];
int DSTOffset;
int DSTEnable;
SYSTEMT IME SystemTime;

} OCXCIPWCTUTC;

CurrentValue is the 64-bit Wall Clock Time counter value (UTC time), which is the
number of microseconds since 1/1/1970, 00:00 hours. This is the 'raw' Wall Clock Time
as presented by the device.

ProSoft Technology, Inc. Page 128 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

TimeZone is a NULL-terminated string that describes the timezone configured on the
controller. It includes the adjustment in hours and minutes which is used to derive the
local time value from UTC time. The TimeZone string will be expressed in one of the
following formats:

GMT+hh:mm <location>
or
GMT-hh:mm <location>

DSTOffset is the number of minutes (positive or negative) to be adjusted for Daylight
Savings Time.

DSTEnable indicates whether or not Daylight Savings Time is in effect (1 if DST is in
effect, 0 if not).

LocalTimeAd;j is obsolete and is no longer used. It is retained in the structure for
backwards compatibility only and should not be used.

SystemTime is a structure of type SYSTEMTIME. The time and date returned in this
structure is UTC time. The SYSTEMTIME structure is as shown:

typedef struct SYSTEMTIME
{

WORD wYear;
WORD wMonth;
WORD wDayOfWeek;

WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;

Return Value

OCX_SUCCESS WCT object was retrieved successfully
OCX ERR NOACCESS apihandle does not have access
OCX_ERR_MEMALLOC returned if not enough memory is available
OCX ERR BADPARAM returned if parameter was invalid
OCX_ERR_NODEVICE the device does not exist

OCX)CIP_INVALID REQUEST the device does not support the object

ProSoft Technology, Inc. Page 129 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions

Linux Application Development Module Developer's Guide
Example
OCXHANDLE apihandle;
OCXCIPWCTUTC Wct;
BYTE Path[]="p:1,s:0"; //5550 in Slot 0
int rc;

rc=0CXcip GetWCTimeUTC (apiHandle, &Path, &wCT, 3000);

if (rc !=0CX SUCCESS)
{
printf ("\n\rOCXcip GetWCTimeUTC failed: %d\n\r",rc);

else

printf ("\nWall Clock Time: %02d/%02d/%d: %02d:%02d.%03d",
Wct.SystemTime.wMonth, Wct.SystemTime.wDay, Wct.SystemTime.wYear,
Wct.SystemTime.wHour, Wct.SystemTime.wMinute, Wct.SystemTime.wSecond,
Wct.SystemTime.wMilliseconds) ;

}

See Also
OCXcip_SetWCTimeUTC, OCXcip_GetWCTime

ProSoft Technology, Inc. Page 130 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_SetWCTimeUTC

Syntax

int OCXcip GetWCTimeUTC (OCXHANDLE apihandle,
BYTE *pPathStr,
OCXCIPWCTUTC *pWCT,
WORD timeout) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open

pPathStr path to device being read

PWCT Pointer to ocxcIpwcTUTC structure with Wall Clock Time data to
be set

timeout number of milliseconds to wait for the read to complete

Compatibility

This function is compatible only with Logix controllers with V16 or greater firmware
installed. Firmware versions below v16 will result in error ocx c1p_1NVALID REQUEST. For
previous firmware versions, please refer to ocscip setwcTime ().

Description

ocxcip setwcTimeuTc Writes to the Wall Clock Time object in the specified device. This
function allows the time to be specified in two different ways; a specified data/time
expressed in UTC time, or automatically set to the 56SAM system time (expressed in
UTC time). See the description of the pWCT parameter for more information.

apihandle must be a valid handle returned from ocxcip open.

pPathstr must be a pointer to a string containing the path to a device which supports the
Wall Clock Time object, such as a ControlLogix controller.

pwcT may point to a structure of type ocxcrewcturc, or may be NULL. If pwrc is NULL, the
56SAM system time (UTC) is used.

timeout IS used to specify the amount of time in milliseconds the application should wait
for a response from the device.

The following example defines the ocxctpwctuTc structure:

typedef struct tagOCXCIPWCTUTC
{

ULARGE INTEGER CurrentUTCValue;
char TimeZone[84];
int DSTOffset;
int DSTEnable;
SYSTEMT IME SystemTime;

} OCXCIPWCTUTC;

CurrentUTCValue, TimeZone, DSTOffset, and DSTEnable are ignored by this function.

ProSoft Technology, Inc. Page 131 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

SystemTime is a structure of type SYSTEMTIME. The SYSTEMTIME structure is as

shown:

typedef

{
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD

struct SYSTEMTIME

wYear;
wMonth;
wDayOfWeek;
wDay;
wHour;
wMinute;
wSecond;

wMilliseconds;

} SYSTEMTIME, *PSYSTEMTIME;

Note: The wDayOfWeek member is not used by the OCXcip_SetWCTimeUTC function.

Return Value

OCX_SUCCESS WCT object was set successfully
OCX_ERR_NOACCESS apihandle does not have access

OCX ERR MEMALLOC returned if not enough memory is available
OCX_ERR BADPARAM returned if parameter was invalid

OCX ERR NODEVICE the device does not exist

OCX)CIP_INVALID REQUEST the device does not support the object

See Also

OCXcip_GetWCTimeUTC

ProSoft Technology, Inc. Page 132 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

5.8

Miscellaneous Functions

OCXcip GetldObject

Syntax

int OCXcip GetIdObject (OCXHANDLE apihandle,
OCXCIPIDOBJ *idoObject) ;

Parameters

apihandle handle returned by previous call to OCXcip_Open
idobject Pointer to structure of type OCXCIPIDOBJ
Description

OCxcip GetIdobject retrieves the identity object for the module.
apihandle must be a valid handle returned from ocxcip open.

idobject is a pointer to a structure of type ocxciriposs. The members of this structure
will be updated with the module identity data.

The following example defines the ocxcipipors structure:

typedef struct tagOCXCIPIDOBJ
{

WORD VendorID; //Vendor ID Number

WORD DeviceType; //General product type

WORD ProductCode: //Vendor-specific product identifier
BYTE MajorRevision; //Major revision level

BYTE MinorRevision; //Minor revision level

DWORD SerialNo; //Module serial number

BYTE Name [32]; //Text module name (null-terminated)

} OCXCIPIDOBJ;

Return Value

OCX SUCCESS ID object was retrieved successfully
OCX ERR_NOACCESS apihandle does not have access
Example

OCXCIPHANDLE apihandle;
OCXCIPIDOBJ idobject;

// Read ID data from ControlLogix in slot 0
OCXcip GetIdObject (apihandle, &idobject) ;

printf ("ModuleName: %s Serial Number: %$lu\n",

idobject.Name, idobject.SerialNo);

ProSoft Technology, Inc. Page 133 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_SetldObject

Syntax

int OCXcip_SetIdObject (OCXHANDLE apihandle,
OCXCIPIDOBJ *idoObject) ;

Parameters

apihandle handle returned by previous call to 0OCXcip Open
idobject Pointer to structure of type OCXCIPIDOBJ
Description

ocxcip setIdobject allows an application to customize the identity of a module.
apihandle must be a valid handle returned from ocxcip open.

idobject is a pointer to a structure of type ocxciriposs. The members of this structure
will be updated with the module identity data.

The following example defines the ocxcipiporys structure:

typedef struct tagOCXCIPIDOBJ
{

WORD VendorID; //Vendor ID Number

WORD DeviceType; //General product type

WORD ProductCode: //Vendor-specific product identifier
BYTE MajorRevision; //Major revision level

BYTE MinorRevision; //Minor revision level

DWORD SerialNo; //Module serial number

BYTE Name [32]; //Text module name (null-terminated)

} OCXCIPIDOBJ;

Return Value

OCX SUCCESS ID object was retrieved successfully
OCX_ERR_NOACCESS apihandle does not have access
Example

OCXCIPHANDLE apihandle;
OCXCIPIDOBJ idobject;

OCXcip GetIdObject (apihandle, &idobject); //Get default info
// Change module name
strcpy ((char*) idobject.Name, "Custom Module Name") ;

OCXcip SetIdObject (apiHandle, &idobject);

ProSoft Technology, Inc. Page 134 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetActiveNodeTable

Syntax
int OCXcip GetActiveNodeTable (OCXHANDLE apihandle,
int * rackSize,
DWORD ant) ;
Parameters
apihandle handle returned by previous call to OCXcip Open
rackSize Pointer to integer into which is written the number of slots in the
local rack
ant Pointer to DWORD into which is written a bit array corresponding
to the slot occupancy of the local rack (bit O corresponds to Slot
0)
Description

0CXcip GetActiveNodeTable returns information about the size and occupancy of the local
rack.

apihandle must be a valid handle returned from ocxcip open.
rackSize IS @ pointer to an integer containing the number of slots of the local rack.

ant is a pointer to a DWORD containing a bit array. This bit array reflects the slot
occupancy of the local rack, where bit 0 corresponds to Slot 0. If a bit is set (1), there is
an active module installed in the corresponding slot. If the bit is set to 0, the slot is
(functionally) empty.

Return Value

OCX_SUCCESS Active node table was returned successfully
OCX_ ERR_NOACCESS apihandle does not have access
Example

OCXCIPHANDLE apihandle;
int racksize;

DWORD rackant;

int i;

OCXcip GetActiveNodeTable (apiHandle, &racksize, &rackant);

for (i=0; i<racksize; 1i++)
{
if (rackant & (1<<i))
printf ("\Slot %d is occupied", 1);
else
printf ("\Slot %d us empty", 1i):

ProSoft Technology, Inc. Page 135 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_MsgResponse

Syntax
int OCXcip MsgResponse (OCXHANDLE apihandle,

DWORD msgHandle,

BYTE serviceCode,

BYTE * msgBuf,

WORD msgSize,

BYTE returnCode,

WORD extendederr) ;
Parameters
apihandle apihandle returned by previous call to OCXcip Open
msgHandle Handle returned in OCXCIPSERVSTRUC
serviceCode Message service code returned in OCXCIPSERVSTRUC
msgBuf Pointer to buffer containing data to be sent with response (NULL

if none)

msgSize Number of bytes of data to send with response (0 if none)
returnCode Message return code (OCX_SUCCESS if no error)
extendederr Extended error code (0 if none)
Description

oCxcip MsgResponse IS used by an application that needs to delay the response to an
unscheduled message received via the service proc callback. The service proc
callback is called sequentially and overlapping calls are not supported. If the application
needs to support overlapping messages (for example, to maximize performance when
there are multiple message sources), then the response to the message can be deferred
by returning ocx c1p DEFER RESPONSE in the service proc callback. At a later time,
ocxcip MsgResponse can be called to complete the message. For example, the

service proc callback can queue the message for later processing by another thread (or
multiple threads).

Note: The service proc callback must save any needed data passed to it in the ocxc1pservsTRUC
structure. This data is only valid in the context of the callback.

ocxcip MsgResponse must be called after ocx _cip peErFER RESPONSE iS returned by the
callback. If ocxcip MsgResponse is not called, communications resources will not be freed
and a memory leak will result.

If ocxcip Msgresponse is not called within the message timeout, the message will fail.
The sender determines the message timeout.

msgHandle and serviceCode must match the corresponding values passed to the
service proc callback in the ocxcipservsTRUC Structure.

ProSoft Technology, Inc. Page 136 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

Return Value

OCX_ SUCCESS Response was sent successfully
OCX_ERR_NOACCESS apihandle does not have access
Example

OCXCIPHANDLE apihandle;
DWORD msgHangle;

BYTE serviceCode;

BYTE rspdata [100];

//At this point assume that a message has previously
//been received via the service proc callback. The
//service code and message handle were saved there.

OCXcip msgResponse (apiHandle,
msgHandle,
serviceCode,
rspdata,
100,

OCX SUCCESS,
0);

See Also

service_proc

ProSoft Technology, Inc. Page 137 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetVersioninfo

Syntax

int OCXcip_GetVersionInfo (OCXHANDLE apihandle,
OCXCIPVERSIONINFO *verinfo) ;

Parameters
apihandle handle returned by previous call to 0OCXcip Open
verinfo Pointer to structure of type OCXCIPVERSIONINFO
Description

OCxcip GetVersionInfo retrieves the current version of the API Library, BPIE, and the
backplane device driver. The information is returned in the structure verinfo. apihandle
must be a valid handle returned from ocxcip Open OF oCXcip ClientOpen.

The ocxcrpvErsIONINFO Structure is defined as follows:

typedef struct tagOCXCIPVERSIONINFO
{

WORD APISeries; //API series

WORD APIRevision; //API revision

WORD BPEngSeries; //Backplane engine series

WORD PEngineRevision; //Backplane engine revision

WORD BPDDSeries; //Backplane device driver series

WORD BPDDRevision; //Backplane device driver revision
} OCXCIPVERSIONINFO;

Return Value

OCX SUCCESS ID object was retrieved successfully
OCX ERR_NOACCESS apihandle does not have access
Example

OCXHANDLE apihandle;

OCXCIPVERSIONINEFO verinfo;
/* print version of API library */
OCXcip GetVersionInfo (Handle, &verinfo);

printf ("Library Series %d, Rev %d\n",
verinfo.APISeries, verinfo.APIRevision);

printf ("Driver Series %d, Rev &d\n",
verinfo.BPDDSeries, verinfo.BPDDRevsion);

ProSoft Technology, Inc. Page 138 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetUserLED

Syntax

int OCXcip GetUserLED (OCXHANDLE apihandle, int * ledstate);

Parameters

apihandle handle returned by previous call to 0OCXcip Open
ledstate Pointer to a variable to receive user LED state
Description

ocxcip GetUserLED allows an application to read the current state of the user LED.
apiHandle must be a valid handle returned from ocxcip Open OF ocxcip ClientOpen.

ledstate Must be a pointer to an integer variable. On successful return, the variable will
be set to:

OCX_LED STATE RED,

OCX_LED STATE GREEN, Of
OCX_LED_STATE OFF

Return Value

OCX SUCCESS The LED state was returned successfully
OCX_ERR_NOACCESS apihandle does not have access
Example

OCXHANDLE apihandle;

int ledstate;

/* Read user LED state */

OCXcip GetUserLED (Handle, &ledstate);

ProSoft Technology, Inc. Page 139 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_SetUserLED

Syntax

int OCXcip_ SetUserLED (OCXHANDLE apihandle, int * ledstate);

Parameters

apihandle handle returned by previous call to 0OCXcip Open
ledstate Specifies the state for the LED

Description

ocxcip SetUserLED allows an application to set the user LED indicator to red, green, or
off.

apihandle must be a valid handle returned from ocxcip Open OF ocxcip ClientOpen.
ledstate must be set to
OCX LED STATE RED,

OCX_LED STATE GREEN, Of
OCX_LED_STATE OFF

to set the indicator Red, Green, or Off, respectively.

Return Value

OCX SUCCESS The LED was set successfully
OCX ERR_NOACCESS apihandle does not have access
Example

OCXHANDLE apiHandle;

/* Set user LED RED */

OCXcip SetUserLED (apiHandle, OCX LED STATE RED);

See Also
OCXcip_GetUserLED

ProSoft Technology, Inc. Page 140 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetModuleStatus

Syntax

int OCXcip GetModuleStatus (OCXHANDLE apihandle, int * status);

Parameters

apihandle handle returned by previous call to 0OCXcip Open
status Pointer to variable to receive module status
Description

OCXcip GetModuleStatus allows and application to read the current status of the module
status indicator.

apihandle must be a valid handle returned from ocxcip open.

status must be a pointer to a integer variable. On successful return, this variable
contains the current status of the module status indicator LED.

Return Value

OCX SUCCESS The module status was read successfully
OCX ERR_NOACCESS apihandle does not have access
Example

OCXHANDLE apiHandle;

int status;

/* Read the Status Indicator LED */

OCXcip GetModuleStatus (apiHandle, &status);

ProSoft Technology, Inc. Page 141 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_SetModuleStatus

Syntax

int OCXcip_SetModuleStatus (OCXHANDLE apihandle, int * status);

Parameters

apihandle handle returned by previous call to 0OCXcip Open
status Module status, OK or Faulted

Description

OCXcip SetModuleStatus allows and application to set the status of the module to OK or
Faulted. .

apihandle must be a valid handle returned from ocxcip open.
state must be:
OCX_MODULE_STATUS OK,

OCX MODULE_STATUS FLASHING, OF
OCX MODULE_STATUS FAULTED

If the state is OK, the module status LED indicator is set to Green.
If the state is Faulted, the status LED indicator is set to Red.

If the state is Flashing, the status LED indicator will alternate between Red and Green
approximately every 500ms. Note that flashing is not available if ocxcip opennm was used
to obtain handle.

Return Value

OCX SUCCESS The LED was set successfully
OCX_ERR NOACCESS apihandle does not have access
OCX_ERR BADPARAM status is invalid
Example

OCXHANDLE apiHandle;

/* Set the status LED indicator to Red */

OCXcip SetModuleStatus (apiHandle, OCX MODULE STATUS FAULTED) ;

ProSoft Technology, Inc. Page 142 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetLED3

Syntax

int OCXcip GetLED3 (OCXHANDLE apihandle, int * ledstate);

Parameters

apihandle handle returned by previous call to 0OCXcip Open
ledstate Pointer to a variable to receive err LED state
Description

ocxcip GetLED3 allows an application to read the current state of the err LED.
apihandle must be a valid handle returned from ocxcip open.

ledstate Must be a pointer to an integer variable. On successful return, the variable is
set to:

OCX_LED STATE RED,

OCX_LED STATE GREEN, Of
OCX_LED_STATE OFF

Return Value

OCX SUCCESS The LED was read successfully
OCX_ERR_NOACCESS apihandle does not have access
Example

OCXHANDLE apiHandle;

int ledstate;

/* Read err LED state */

OCXcip GetLED3 (apiHandle, &ledstate);

ProSoft Technology, Inc. Page 143 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_SetLED3

Syntax

int OCXcip SetLED3 (OCXHANDLE apihandle, int * ledstate);

Parameters

apihandle handle returned by previous call to 0OCXcip Open
ledstate Specifies the state for the LED

Description

ocxcip setLED3 allows an application to set the err LED indicator to Red, Green, or Off.
apihandle must be a valid handle returned from ocxcip open.

ledstate must be set to:

OCX LED STATE RED,

OCX_LED STATE GREEN, Of
OCX_LED_STATE OFF

to set the indicator Red, Green, or Off respectively.

Return Value

OCX_SUCCESS The LED was set successfully
OCX ERR NOACCESS apihandle does not have access
OCX ERR BADPARAM ledstate is invalid
Example

OCXHANDLE apiHandle;

/* Set err LED to Off */

OCXcip SetLED3 (apiHandle, OCX LED STATE OFF);

ProSoft Technology, Inc. Page 144 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_ErrorString

Syntax

int OCXcip ErrorString (int errorcode,

char * buf);
Parameters
errcode Error code returned from an API function
buf Pointer to user buffer to receive message
Description

oCxcip ErrorsString returns a text error message associated with the error code errcode.
The Null-terminated error message is copied into the buffer specified by buf. The buffer
should be a minimum of 80 characters in length.

Return Value

OCX SUCCESS Message returned in buff
OCX_ERR BADPARAM Unknown error code
Example

char Dbuf[80];

int rc;

//SOme OCX API is called
rc=0CXcip_ (oeenn) ;
if (rc !=OCX_SUCCESS)

{

// Print error message

OCXcip ErrorString (rc, buf };
printf ("Error: %s", buf);

ProSoft Technology, Inc. Page 145 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_SetDisplay

Syntax
int OCXcip_ SetDisplay (OCXHANDLE apihandle,
char * display string);
Parameters
apihandle handle returned by previous call to OCXcip Open
display string 4-character string to be displayed
Description

ocxcip setDisplay allows and application to load 4 ASCII characters to the alphanumeric
display.
apihandle must be a valid handle returned from ocxcip open.

display string must be a pointer to a NULL-terminating string whose length is exactly 4
(no including the NULL).

Return Value

OCX SUCCESS The display was set successfully
OCX_ ERR_NOACCESS apihandle does not have access
OCX ERR BADPARAM display_string length is not 4
Example

OCXHANDLE apiHandle;

char buf[5];

/* Display the time as HHMM */

OCXcip SetDisplay (apiHandle, buf);

ProSoft Technology, Inc. Page 146 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetDisplay

Syntax
int OCXcip GetDisplay (OCXHANDLE apihandle,

char * display string);
Parameters
apihandle handle returned by previous call to OCXcip Open
display string Pointer to buffer to receive displayed string
Description

ocxcip GetDisplay allows and application to load 4 ASCII characters to the alphanumeric
display.

apihandle must be a valid handle returned from ocxcip open.

display string must be a pointer to a buffer that is at least 5 bytes in length. On
successful return, this buffer will contain the 4-character display string and terminating
NULL character.

Return Value

OCX_SUCCESS The display was read successfully
OCX ERR NOACCESS apihandle does not have access
Example

OCXHANDLE apiHandle;

char buf[5];

/* Display the time as HHMM */

OCXcip SetDisplay (apiHandle, buf);

ProSoft Technology, Inc. Page 147 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetSwitchPosition

Syntax
int OCXcip_ GetSwitchPosition (OCXHANDLE apihandle,

int * SW_pos) ;
Parameters
apihandle handle returned by previous call to OCXcip Open
SW_pos Pointer to integer to receive switch state
Description

OCXcip GetSwitchPosition retrieves the state of the 3-position switch on the front panel of
the module. The information is returned in the integer pointed to by sw pos.

apihandle must be a valid handle returned from ocxcip open.

If ocx_success is returned, the integer pointed to by sw pos is set to indicate the state of
the jumper in bit 0. A 1 indicates that the jumper is not installed, and a 0 indicates that
the jumper is installed.

Return Value

OCX SUCCESS The jumper information was read successfully
OCX_ERR_NOACCESS apihandle does not have access
Example

OCXHANDLE apiHandle;

int SWpOS;

/* Check switch position */
OCXcip GetSwitchPosition (apiHandle, &swpos);

if (swpos & 0x01)

printf ("Setup Jumper is NOT installed\n"):;
else

printf ("Setup Jumper is installed\n");

ProSoft Technology, Inc. Page 148 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetSerialConfig

Syntax
int OCXcip GetSerialConfig (OCXHANDLE apihandle,
OCXSPCONFIG * pSPConfig);
Parameters
apihandle handle returned by previous call to OCXcip Open
pSPConfig Pointer to OCXSPCONFIG structure. The pSPConfig-
>port num member must be initialized to the desired port
number (1 for COM1/PRT1, 2 for COM2/PRT2, etc.)
Description

OCxXcip GetSerialConfig retrieves the state of the configuration jumper(s) for the selected
serial port. Each port has 3 jumper positions available. Therefore, there are potentially 8
combinations for each port. However, to maintain backwards compatibility (and to match
the jumper labeling), only 4 combinations are defined; none, RS-232, RS-422, and RS-
485. The application can choose to define other combinations as needed.

The mode is returned in the pspconfig->port cfg member. The defined modes are listed
(from ocxbpapi.h)l

#define SAM SERIAL CONFIG NONE 0 // No jumper installed

#define SAM SERIAL CONFIG RS232 1 // Port is configured for RS-232

#define SAM SERIAL CONFIG RS422 2 // Port is configured for RS-422

#define SAM SERIAL CONFIG RS485 4 // Port is configured for RS-485

The mode returned by this function does not necessarily mean that the port is actually
configured for that mode. The application can call ocxcip setserialconfig to override
the jumper settings and set the port to any valid mode.

Return Value

0OCX SUCCESS The jumper information was read successfully
OCX_ERR_NOACCESS apihandle does not have access
OCX_ERR_BADPARAM Invalid port number

ProSoft Technology, Inc. Page 149 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions

Linux Application Development Module Developer's Guide
Example
OCXHANDLE hApi;
OCXSPCONFIG spCfg;
int rc;

/* Read configuration for first port */
spCfg.port GetSerialConfig(hApi, &spCfq);

if (rc !=0CX SUCCESS)
printf ("OCXcip GetSerialConfig failed\n");
else

printf ("Port %d Mode: %d\n", spCfg.port num, spCfg.port cfg);

ProSoft Technology, Inc. Page 150 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions

Linux Application Development Module Developer's Guide
OCXcip_Sleep
Syntax
int OCXcip_ Sleep (OCXHANDLE apihandle,
WORD msdelay) ;
Parameters
apihandle handle returned by previous call to OCXcip Open
msdelay Time delay is milliseconds
Description

ocxcip sleep delays for msde1ay milliseconds.

Return Value

OCX SUCCESS The jumper information was read successfully
OCX ERR_NOACCESS apihandle does not have access
Example

OCXHANDLE apiHandle;

int timeout = 200;

/* Simple timeout loop */

while (timeout --)

{
//Poll for data and so on
//Break if condition is met (no timeout)
//Else sleep a bit and try again

OCXcip Sleep (apiHandle, 10);

ProSoft Technology, Inc. Page 151 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_CalculateCRC

Syntax

int OCXcip CalculateCRC (BYTE * dataBuf,
DWORD dataSize,
WORD * crc);

Parameters

dataBuf Pointer to buffer of data

dataSize Number of bytes of data

crc Pointer to 16-bit word to receive CRC value
Description

ocxcip CalculatecrRc computes a 16-bit CRC for a range of data. This can be useful for

validating a block of data. For example, data retrieved from the battery-backed Static
RAM.

Return Value

OCX SUCCESS Success
Example

WORD crc;

BYTE buffer[100];

//Compute a crc for data in buffer

OCXcip CalculateCRC (buffer, 100, &crc);

ProSoft Technology, Inc. Page 152 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_SetModuleStatusWord

Syntax
int OCXcip_ SetModuleStatusWord (OCXHANDLE apihandle,

WORD statusWord,

WORD statusWordMask) ;
Parameters
apihandle handle returned by previous call to 0OCXcip Open
statusWord Module status data
statusWordMask Bit mask specifying which bits in the status are to be modified
Description

0CXcip SetModuleStatusWord allows an application to set the 16-bit status attribute of the
module's Identity Object. apirandie must be a valid handle returned from ocxcip open.

statusWordMask IS a bit mask that specifies which bits in statuswora are written to the
module's status attribute. Standard status word bit fields are defined by definitions with
names beginning with ocx_1p status . See the APl header for more information

Return Value

OCX_SUCCESS Success
OCX_ ERR_NOACCESS apihandle does not have access
Example

OCXHANDLE apiHandle;

/* Set the status to indicate a minor recoverable fault */

OCXcip_ SetModuleStatusWord (apiHandle,
OCX_ID STATUS RCV_MINOR FAULT,
OCX_ID STATUS FAULT STATUS MASK) ;

ProSoft Technology, Inc. Page 153 of 189

ControlLogix® Platform & "C" Programmable CIP API Functions
Linux Application Development Module Developer's Guide

OCXcip_GetModuleStatusWord

Syntax

int OCXcip_ GetModuleStatusWord (OCXHANDLE apihandle,
WORD statusWord) ;

Parameters

apihandle handle returned by previous call to OCXcip Open

statusWord Pointer to word to receive module status data

Description

OCXcip GetModuleStatusWord allows an application to read the current value of the 16-bit
status attribute of the module's identity Object.

apiHandle must be a valid handle returned from OCXcip_Open.

Return Value

OCX_SUCCESS Success
OCX_ ERR_NOACCESS apihandle does not have access
Example

OCXHANDLE apiHandle;

WORD statusWord) ;

/* Read the current status word */

OCXcip GetModuleStatusWord (apiHandle, &statusWord):;

ProSoft Technology, Inc. Page 154 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Cable Connections
Developer's Guide

6 Cable Connections

The application ports on the MVIS6E-LDM module support RS-232, RS-422, and RS-485
interfaces. Please inspect the module to ensure that the jumpers are set correctly to
correspond with the type of interface you are using.

Note: When using RS-232 with radio modem applications, some radios or modems require hardware
handshaking (control and monitoring of modem signal lines). Enable this in the configuration of the module by
setting the UseCTS parameter to 1.

6.1 RS-232 Configuration/Debug Port

This port is physically an RJ45 connection. An RJ45 to DB-9 adapter cable is included
with the module. This port permits a PC-based terminal emulation program to view
configuration and status data in the module and to control the module. The cable pinout
for communications on this port is shown in the following diagram.

DB9 Female to DB9 Female null modem cable

(ProSoft Cable 15 or other)

PIN 2

PIN3

RS-232 PC Serial Port

PIN 5

RxD

TxD

Comaman

PIN 2 X PIN 2
PIN 3 PIN3

PIN 5

I

6.2 RS-232 Application Port(s)

When the RS-232 interface is selected, the use of hardware handshaking (control and
monitoring of modem signal lines) is user definable. If no hardware handshaking will be
used, here are the cable pinouts to connect to the port.

PIN 5

DBS9 Male to RJ45 Plug

(ProSoft Cable 14)

Signal

TxD — RxD | PIN2

RxD — TxD | PIN3

Comon — commen | PINS

PIN 2

PIN3

PIN5 | «

RxD

PIN 2

PIN3

Configuration / Debug Port

PIN5

—

DB9 Female to DB9 Female null modem cable
(ProSoft Cable 15 or other)

RS-232 Device
=
=z
w

RxD

TxD

signal
Common

e

PIN 2

PIN 3

PIN 5

TxD — RxD

RxD — TxD

signal signal
Commeon ~ Common

DB9 Male to RJ45 Plug
(ProSoft Cable 14)
PIN 2 PIN2 | RxD | PIN2

——

Application Port

ProSoft Technology, Inc.

Page 155 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Cable Connections
Developer's Guide

6.2.1 RS-232: Modem Connection (Hardware Handshaking Required)

This type of connection is required between the module and a modem or other

communication device.

RS-232 Application Port Cable
(Modem Connection)

DB-9 Male

TxD

RxD

RTS

CTs

Signal
Common

DTR

RS-232 Device
TxD

RxD

RTS

CTs

Signal

Common

DTR

The "Use CTS Line" parameter for the port configuration should be set to "Y' for most

modem applications.

6.2.2 RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module requires
hardware handshaking (control and monitoring of modem signal lines).

RS-232 Application Port Cable

DB-9 Male

TxD

RxD

RTS

CTS

Signal
Common

DTR

3

(Hardware Handshaking)
RS-232 Device

RxD

2

TxD

CTs

RTS

Signal

Common

DSR

——DCD

ProSoft Technology, Inc.

Page 156 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Cable Connections
Developer's Guide

6.2.3 RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field device

communication port.

RS-232 Application Port Cable

DB-9 Male

RxD | 2

(No Handshaking)

RS-232 Device

TxD | 3

COM| 5

TxD

RxD

COM

Note: For most null modem connections where hardware handshaking is not required, the Use CTS Line
parameter should be set to N and no jumper will be required between Pins 7 (RTS) and 8 (CTS) on the

connector. If the port is configured with the Use CTS Line set to Y, then a jumper is required between the
RTS and the CTS lines on the port connection.

RS-232 Application Port Cable

DB-9 Male

(No Handshaking)

RS-232 Device

TxD

RxD

RTS

CTsS

manitoring enabled.

Signal
Common

DTR

RxD

TxD

RTS-CTS jumper must
be installed if CTS line

Signal
Common

ProSoft Technology, Inc.

Page 157 of 189

ControlLogix® Platform ¢ "C" Programmable Cable Connections
Linux Application Development Module Developer's Guide

6.3 RS-422

The RS-422 interface requires a single four or five wire cable. The Common connection is
optional, depending on the RS-422 network devices used. The cable required for this
interface is shown below:

RS-422 Application Port Cable

DB-9 Male RS-422 Device
TxD+ 1 RxD+
TxD- 8 RxD-
Signal 5 Signal
Common Common
RxD+ 2 TxD+
RxD- 6 TxD-

6.4 RS-485 Application Port(s)

The RS-485 interface requires a single two or three wire cable. The Common connection
is optional, depending on the RS-485 network devices used. The cable required for this
interface is shown below:

RS-485 Application Port Cable

DB-9 Male RS-485 Device
TxD+RxD+ | 1 TxD+/RxD+
TxD-IRxD- | 8 TxD-/RxD-
Signal 5 Signal
Common Common

Note: Terminating resistors are generally not required on the RS-485 network, unless you are experiencing
communication problems that can be attributed to signal echoes or reflections. In these cases, installing a
120-ohm terminating resistor between pins 1 and 8 on the module connector end of the RS-485 line may
improve communication quality.

6.4.1 RS-485 and RS-422 Tip

If communication in the RS-422 or RS-485 mode does not work at first, despite all
attempts, try switching termination polarities. Some manufacturers interpret + and -, or A
and B, polarities differently.

ProSoft Technology, Inc. Page 158 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Cable Connections
Developer's Guide

6.5 DB9 to RJ45 Adaptor (Cable 14)

‘ 180"

Cable Assembly

L=sire

J1 N v J2
©) Faa Dch TXTXD XD+ &
& RXD RXD+ e
=]] XD 2
& i GND GND GND S
(o DSR RXD- &
: i RTS

@ 7] @
o— ¢ CTS TXRXD- TXD- &
e o

Wiring Diagram

ProSoft Technology, Inc.

Page 159 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

7 Open Source Licensing

This module utilizes Open Source applications, available under the GNU Public License
and others. The following sections cover all Open Source licensing:

GNU Public License
Eclipse

Python

Debian

GCC

ProSoft Technology, Inc. Page 160 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

71 GNU Public License

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we

ProSoft Technology, Inc. Page 161 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

ProSoft Technology, Inc. Page 162 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with

ProSoft Technology, Inc. Page 163 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,

ProSoft Technology, Inc. Page 164 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain

ProSoft Technology, Inc. Page 165 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. 1In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM) .

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in

ProSoft Technology, Inc. Page 166 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions”" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

ProSoft Technology, Inc. Page 167 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible

for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an

ProSoft Technology, Inc. Page 168 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that

ProSoft Technology, Inc. Page 169 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to

ProSoft Technology, Inc. Page 170 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

ProSoft Technology, Inc. Page 171 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type “show w'.
This is free software, and you are welcome to redistribute it

under certain conditions; type “show c' for details.

The hypothetical commands “show w' and “show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

ProSoft Technology, Inc. Page 172 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

7.2 Eclipse Public License

Eclipse Public License, Version 1.0 (EPL-1.0)

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS
ECLIPSE PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR
DISTRIBUTION OF THE PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF
THIS AGREEMENT.

1. DEFINITIONS
"Contribution" means:

a) in the case of the initial Contributor, the initial code and documentation distributed
under this Agreement, and

b) in the case of each subsequent Contributor:

i) changes to the Program, and

ii) additions to the Program;

where such changes and/or additions to the Program originate from and are distributed
by that particular Contributor. A Contribution 'originates' from a Contributor if it was added
to the Program by such Contributor itself or anyone acting on such Contributor's behalf.
Contributions do not include additions to the Program which: (i) are separate modules of
software distributed in conjunction with the Program under their own license agreement,
and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily
infringed by the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all
Contributors.

ProSoft Technology, Inc. Page 173 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a
non-exclusive, worldwide, royalty-free copyright license to reproduce, prepare derivative
works of, publicly display, publicly perform, distribute and sublicense the Contribution of
such Contributor, if any, and such derivative works, in source code and object code form.
b) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a
non-exclusive, worldwide, royalty-free patent license under Licensed Patents to make,
use, sell, offer to sell, import and otherwise transfer the Contribution of such Contributor,
if any, in source code and object code form. This patent license shall apply to the
combination of the Contribution and the Program if, at the time the Contribution is added
by the Contributor, such addition of the Contribution causes such combination to be
covered by the Licensed Patents. The patent license shall not apply to any other
combinations which include the Contribution. No hardware per se is licensed hereunder.
c¢) Recipient understands that although each Contributor grants the licenses to its
Contributions set forth herein, no assurances are provided by any Contributor that the
Program does not infringe the patent or other intellectual property rights of any other
entity. Each Contributor disclaims any liability to Recipient for claims brought by any other
entity based on infringement of intellectual property rights or otherwise. As a condition to
exercising the rights and licenses granted hereunder, each Recipient hereby assumes
sole responsibility to secure any other intellectual property rights needed, if any. For
example, if a third party patent license is required to allow Recipient to distribute the
Program, it is Recipient's responsibility to acquire that license before distributing the
Program.

d) Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

ProSoft Technology, Inc. Page 174 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own
license agreement, provided that:

a) it complies with the terms and conditions of this Agreement; and

b) its license agreement:

i) effectively disclaims on behalf of all Contributors all warranties and conditions, express
and implied, including warranties or conditions of title and non-infringement, and implied
warranties or conditions of merchantability and fitness for a particular purpose;

ii) effectively excludes on behalf of all Contributors all liability for damages, including
direct, indirect, special, incidental and consequential damages, such as lost profits;

iii) states that any provisions which differ from this Agreement are offered by that
Contributor alone and not by any other party; and

iv) states that source code for the Program is available from such Contributor, and
informs licensees how to obtain it in a reasonable manner on or through a medium
customarily used for software exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and

b) a copy of this Agreement must be included with each copy of the Program.
Contributors may not remove or alter any copyright notices contained within the Program.
Each Contributor must identify itself as the originator of its Contribution, if any, in a

manner that reasonably allows subsequent Recipients to identify the originator of the
Contribution.

ProSoft Technology, Inc. Page 175 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to
end users, business partners and the like. While this license is intended to facilitate the
commercial use of the Program, the Contributor who includes the Program in a
commercial product offering should do so in a manner which does not create potential
liability for other Contributors. Therefore, if a Contributor includes the Program in a
commercial product offering, such Contributor ("Commercial Contributor") hereby agrees
to defend and indemnify every other Contributor ("Indemnified Contributor") against any
losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other
legal actions brought by a third party against the Indemnified Contributor to the extent
caused by the acts or omissions of such Commercial Contributor in connection with its
distribution of the Program in a commercial product offering. The obligations in this
section do not apply to any claims or Losses relating to any actual or alleged intellectual
property infringement. In order to qualify, an Indemnified Contributor must: a) promptly
notify the Commercial Contributor in writing of such claim, and b) allow the Commercial
Contributor to control, and cooperate with the Commercial Contributor in, the defense and
any related settlement negotiations. The Indemnified Contributor may participate in any
such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering,
Product X. That Contributor is then a Commercial Contributor. If that Commercial
Contributor then makes performance claims, or offers warranties related to Product X,
those performance claims and warranties are such Commercial Contributor's
responsibility alone. Under this section, the Commercial Contributor would have to defend
claims against the other Contributors related to those performance claims and warranties,
and if a court requires any other Contributor to pay any damages as a result, the
Commercial Contributor must pay those damages.

ProSoft Technology, Inc. Page 176 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS
PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
solely responsible for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights under this
Agreement , including but not limited to the risks and costs of program errors, compliance
with applicable laws, damage to or loss of data, programs or equipment, and
unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT
NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY
RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

ProSoft Technology, Inc. Page 177 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this Agreement,
and without further action by the parties hereto, such provision shall be reformed to the
minimum extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the
Program with other software or hardware) infringes such Recipient's patent(s), then such
Recipient's rights granted under Section 2(b) shall terminate as of the date such litigation
is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of
the material terms or conditions of this Agreement and does not cure such failure in a
reasonable period of time after becoming aware of such noncompliance. If all Recipient's
rights under this Agreement terminate, Recipient agrees to cease use and distribution of
the Program as soon as reasonably practicable. However, Recipient's obligations under
this Agreement and any licenses granted by Recipient relating to the Program shall
continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to
avoid inconsistency the Agreement is copyrighted and may only be modified in the
following manner. The Agreement Steward reserves the right to publish new versions
(including revisions) of this Agreement from time to time. No one other than the
Agreement Steward has the right to modify this Agreement. The Eclipse Foundation is
the initial Agreement Steward. The Eclipse Foundation may assign the responsibility to
serve as the Agreement Steward to a suitable separate entity. Each new version of the
Agreement will be given a distinguishing version number. The Program (including
Contributions) may always be distributed subject to the version of the Agreement under
which it was received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions) under the
new version. Except as expressly stated in Sections 2(a) and 2(b) above, Recipient
receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the
Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual
property laws of the United States of America. No party to this Agreement will bring a
legal action under this Agreement more than one year after the cause of action arose.
Each party waives its rights to a jury trial in any resulting litigation.

ProSoft Technology, Inc. Page 178 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Open Source Licensing
Developer's Guide

7.3

Python Public License

Python 2.5 license
This is the official license for the Python 2.5 release:
A. HISTORY OF THE SOFTWARE

Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands
as a successor of a language called ABC. Guido remains Python's
principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for
National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)
in Reston, Virginia where he released several versions of the
software.

In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonlLabs team. In October of the same
year, the PythonLabs team moved to Digital Creations (now Zope
Corporation, see http://www.zope.com). In 2001, the Python Software
Foundation (PSF, see http://www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related
Intellectual Property. Zope Corporation is a sponsoring member of

the PSF.

All Python releases are Open Source (see http://www.opensource.org for
the Open Source Definition). Historically, most, but not all, Python
releases have also been GPL-compatible; the table below summarizes

the various releases.

Release Derived Year Owner GPL-
from compatible? (1)

0.9.0 thru 1.2 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI yes (2)
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2002-2003 PSF yes
2.3.3 2.3.2 2002-2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes

ProSoft Technology, Inc.

Page 179 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing

Linux Application Development Module Developer's Guide
2.4.3 2.4.2 2006 PST yes
2.5 2.4 2006 PST yes
Footnotes:

(1) GPL-compatible doesn't mean that we're distributing Python under
the GPL. All Python licenses, unlike the GPL, let you distribute
a modified version without making your changes open source. The
GPL-compatible licenses make it possible to combine Python with
other software that is released under the GPL; the others don't.

(2) According to Richard Stallman, 1.6.1 is not GPL-compatible,
because its license has a choice of law clause. According to
CNRI, however, Stallman's lawyer has told CNRI's lawyer that 1.6.1
is "not incompatible"™ with the GPL.

Thanks to the many outside volunteers who have worked under Guido's
direction to make these releases possible.

B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON

PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

1. This LICENSE AGREEMENT is between the Python Software Foundation
("PSF"), and the Individual or Organization ("Licensee") accessing and
otherwise using this software ("Python") in source or binary form and
its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF
hereby grants Licensee a nonexclusive, royalty-free, world-wide

license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use Python

alone or in any derivative version, provided, however, that PSF's

License Agreement and PSF's notice of copyright, i.e., "Copyright (c)
2001, 2002, 2003, 2004, 2005, 2006 Python Software Foundation; All Rights
Reserved" are retained in Python alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on
or incorporates Python or any part thereof, and wants to make

the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to Python.

4. PSF is making Python available to Licensee on an "AS IS"

basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT

INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON,

ProSoft Technology, Inc. Page 180 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python, Licensee
agrees to be bound by the terms and conditions of this License
Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an
office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the
Individual or Organization ("Licensee") accessing and otherwise using
this software in source or binary form and its associated
documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License
Agreement, BeOpen hereby grants Licensee a non-exclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform
and/or display publicly, prepare derivative works, distribute, and
otherwise use the Software alone or in any derivative version,
provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS"
basis. BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE
SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all
respects by the law of the State of California, excluding conflict of
law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture
between BeOpen and Licensee. This License Agreement does not grant
permission to use BeOpen trademarks or trade names in a trademark
sense to endorse or promote products or services of Licensee, or any

ProSoft Technology, Inc. Page 181 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the
permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee
agrees to be bound by the terms and conditions of this License
Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National
Research Initiatives, having an office at 1895 Preston White Drive,
Reston, VA 20191 ("CNRI"), and the Individual or Organization
("Licensee") accessing and otherwise using Python 1.6.1 software in
source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI
hereby grants Licensee a nonexclusive, royalty-free, world-wide
license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use Python 1.6.1
alone or in any derivative version, provided, however, that CNRI's
License Agreement and CNRI's notice of copyright, i.e., "Copyright (c)
1995-2001 Corporation for National Research Initiatives; All Rights
Reserved" are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI's License
Agreement, Licensee may substitute the following text (omitting the
quotes): "Python 1.6.1 is made available subject to the terms and
conditions in CNRI's License Agreement. This Agreement together with
Python 1.6.1 may be located on the Internet using the following
unique, persistent identifier (known as a handle): 1895.22/1013. This
Agreement may also be obtained from a proxy server on the Internet
using the following URL: http://hdl.handle.net/1895.22/1013".

3. In the event Licensee prepares a derivative work that is based on
or incorporates Python 1.6.1 or any part thereof, and wants to make
the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS"
basis. CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

7. This License Agreement shall be governed by the federal

ProSoft Technology, Inc. Page 182 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

intellectual property law of the United States, including without
limitation the federal copyright law, and, to the extent such

U.S. federal law does not apply, by the law of the Commonwealth of
Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based
on Python 1.6.1 that incorporate non-separable material that was
previously distributed under the GNU General Public License (GPL), the
law of the Commonwealth of Virginia shall govern this License
Agreement only as to issues arising under or with respect to
Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this
License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between CNRI and Licensee. This
License Agreement does not grant permission to use CNRI trademarks or
trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the "ACCEPT" button where indicated, or by copying,
installing or otherwise using Python 1.6.1, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam,
The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

ProSoft Technology, Inc. Page 183 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

7.4

GCC Public License

The Code: GPL

The source code is distributed under the GNU General Public License version 3, with the
addition under section 7 of an exception described in the "GCC Runtime Library
Exception, version 3.1" as follows (or see the file COPYING.RUNTIME):

GCC RUNTIME LIBRARY EXCEPTION
Version 3.1, 31 March 2009
Copyright (C) 2009 Free Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This GCC Runtime Library Exception ("Exception") is an additional
permission under section 7 of the GNU General Public License, version
3 ("GPLv3"). It applies to a given file (the "Runtime Library") that

bears a notice placed by the copyright holder of the file stating that

the file is governed by GPLv3 along with this Exception.

When you use GCC to compile a program, GCC may combine portions of
certain GCC header files and runtime libraries with the compiled

program. The purpose of this Exception is to allow compilation of
non-GPL (including proprietary) programs to use, in this way, the

header files and runtime libraries covered by this Exception.

0. Definitions.

A file is an "Independent Module" if it either requires the Runtime
Library for execution after a Compilation Process, or makes use of an
interface provided by the Runtime Library, but is not otherwise based
on the Runtime Library.

"GCC" means a version of the GNU Compiler Collection, with or without
modifications, governed by version 3 (or a specified later version) of
the GNU General Public License (GPL) with the option of using any
subsequent versions published by the FSF.

"GPL-compatible Software" is software whose conditions of propagation,
modification and use would permit combination with GCC in accord with
the license of GCC.

ProSoft Technology, Inc. Page 184 of 189

ControlLogix® Platform ¢ "C" Programmable Open Source Licensing
Linux Application Development Module Developer's Guide

"Target Code" refers to output from any compiler for a real or virtual
target processor architecture, in executable form or suitable for

input to an assembler, loader, linker and/or execution

phase. Notwithstanding that, Target Code does not include data in any
format that is used as a compiler intermediate representation, or used
for producing a compiler intermediate representation.

The "Compilation Process" transforms code entirely represented in
non-intermediate languages designed for human-written code, and/or in
Java Virtual Machine byte code, into Target Code. Thus, for example,

use of source code generators and preprocessors need not be considered
part of the Compilation Process, since the Compilation Process can be
understood as starting with the output of the generators or

preprocessors.

A Compilation Process is "Eligible" if it is done using GCC, alone or

with other GPL-compatible software, or if it is done without using any

work based on GCC. For example, using non-GPL-compatible Software to
optimize any GCC intermediate representations would not qualify as an
Eligible Compilation Process.

1. Grant of Additional Permission.

You have permission to propagate a work of Target Code formed by
combining the Runtime Library with Independent Modules, even if such
propagation would otherwise violate the terms of GPLv3, provided that
all Target Code was generated by Eligible Compilation Processes. You
may then convey such a combination under terms of your choice,
consistent with the licensing of the Independent Modules.

2. No Weakening of GCC Copyleft.

The availability of this Exception does not imply any general
presumption that third-party software is unaffected by the copyleft
requirements of the license of GCC.

Hopefully that text is self-explanatory. If it isn't, you need to speak to your lawyer, or the
Free Software Foundation.

The Documentation: GPL, FDL

The documentation shipped with the library and made available over the web, excluding
the pages generated from source comments, are copyrighted by the Free Software
Foundation, and placed under the GNU Free Documentation License version 1.3. There
are no Front-Cover Texts, no Back-Cover Texts, and no Invariant Sections.

For documentation generated by doxygen or other automated tools via processing source
code comments and markup, the original source code license applies to the generated
files. Thus, the doxygen documents are licensed GPL.

ProSoft Technology, Inc. Page 185 of 189

ControlLogix® Platform & "C" Programmable Glossary of Terms
Linux Application Development Module Developer's Guide

8 Glossary of Terms

API
Application Program Interface

BIOS
Basic Input Output System. The BIOS firmware initializes the module at power up,
performs self-diagnostics, provides a DOS-compatible interface to the console, and
flashes the ROM disk.
Byte
8-bit value

C

cip

Control and Information Protocol. This is the messaging protocol used for
communications over the ControlLogix backplane. Refer to the ControlNet Specification
for information.

Connection

A logical binding between two objects. A connection allows more efficient use of
bandwidth, because the message path is not included after the connection is established.

Consumer
A destination for data.

Controller

The PLC or other controlling processor that communicates with the module directly over
the backplane or via a network or remote 1/O adapter.

D

DLL
Dynamic Linked Library

Embedded I/0

Refers to any 1/0 which may reside on a CAM board.

ExplicitMsg

An asynchronous message sent for information purposes to a node from the scanner.
H

HSC
High Speed Counter

ProSoft Technology, Inc. Page 186 of 189

ControlLogix® Platform & "C" Programmable Glossary of Terms
Linux Application Development Module Developer's Guide

Input Image

Refers to a contiguous block of data that is written by the module application and read by
the controller. The input image is read by the controller once each scan. Also referred to
as the input file.

Library

Refers to the library file containing the API functions. The library must be linked with the
developer’s application code to create the final executable program.

Linked Library

Dynamically Linked Library. See Library.

Local I/O

Refers to any 1/0 contained on the CPC base unit or mezzanine board.

Long

32-bit value.
M

Module

Refers to a module attached to the backplane.

Mutex

A system object which is used to provide mutually-exclusive access to a resource.
0]

Originator

A client that establishes a connection path to a target.

Output Image
Table of output data sent to nodes on the network.
P

Producer
A source of data.

PTO
Pulse Train Output

PTQ Suite
The PTQ suite consists of line products for Schneider Electronics platforms:
Quantum (ProTalk)

ProSoft Technology, Inc. Page 187 of 189

ControlLogix® Platform ¢ "C" Programmable Glossary of Terms
Linux Application Development Module Developer's Guide

Scanner
A DeviceNet node that scans nodes on the network to update outputs and inputs.

T

Target

The end-node to which a connection is established by an originator.

Thread

Code that is executed within a process. A process may contain multiple threads.
w

Word

16-bit value

ProSoft Technology, Inc. Page 188 of 189

ControlLogix® Platform & "C" Programmable
Linux Application Development Module

Support, Service & Warranty

Developer's Guide

9 Support, Service & Warranty

9.1 Contacting Technical Support

ProSoft Technology, Inc. is committed to providing the most efficient and effective

support possible. Before calling, please gather the following information to assist in

expediting this process:
1 Product Version Number
2 System architecture
3 Network details

If the issue is hardware related, we will also need information regarding:
1 Module configuration and associated ladder files, if any

LED patterns

a b ODN

Module operation and any unusual behavior
Configuration/Debug status information

Details about the interfaced serial, Ethernet or Fieldbus devices

North America (Corporate Location)

Europe / Middle East / Africa Regional Office

Phone: +1 661-716-5100
ps.prosofttechnology@belden.com
Languages spoken: English, Spanish

REGIONAL TECH SUPPORT
ps.support@belden.com

Phone: +33.(0)5.34.36.87.20
ps.europe@belden.com
Languages spoken: English, French, Hindi, Italian

REGIONAL TECH SUPPORT
ps.support.emea@belden.com

Latin America Regional Office

Asia Pacific Regional Office

Phone: +52.222.264.1814
ps.latihnam@belden.com

Languages spoken: English, Spanish,
Portuguese

REGIONAL TECH SUPPORT
ps.support.la@belden.com

Phone: +60.3.2247.1898
ps.asiapc@belden.com

Languages spoken: Bahasa, Chinese, English,
Hindi, Japanese, Korean, Malay

REGIONAL TECH SUPPORT
ps.support.ap@belden.com

For additional ProSoft Technology contacts in your area, please see:
www.prosoft-technology.com/About-Us/Contact-Us

9.2 Warranty Information

For details regarding ProSoft Technology’s legal terms and conditions, please see:

www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions

For Return Material Authorization information, please see:
www.prosoft-technology.com/Services-Support/Return-Material-Instructions

ProSoft Technology, Inc.

Page 189 of 189

mailto:ps.prosofttechnology@belden.com
mailto:ps.support@belden.com
mailto:ps.europe@belden.com
mailto:ps.support.emea@belden.com
mailto:ps.latinam@belden.com
mailto:ps.support.la@belden.com
mailto:ps.asiapc@belden.com
mailto:ps.support.ap@belden.com
https://www.prosoft-technology.com/About-Us/Contact-Us
http://www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions
https://www.prosoft-technology.com/Services-Support/Return-Material-Instructions

	Your Feedback Please
	1 LDM Introduction
	2 Preparing the MVI56E-LDM Module
	2.1 System Requirements
	2.2 Package Contents - LDM
	2.3 Recommended Compact Flash (CF) Cards
	What Compact Flash card does ProSoft recommend using?

	2.4 Jumper Locations and Settings
	2.4.1 Setup Jumper
	2.4.2 Port 1 and Port 2 Jumpers

	2.5 Setting Up a Connection with the Module
	2.5.1 Installing the Module in the Rack
	2.5.2 Making Configuration Port Connections
	RS-232 Console
	Ethernet Port

	2.6 Enabling and Disabling the Console Port
	2.7 Establishing Module Communication
	2.7.1 RS-232 Console
	2.7.2 Ethernet (Telnet)
	2.7.3 Temporary IP Address Change
	2.7.4 Permanent IP Address Change

	2.8 Module Rescue
	Prep and Establish Communications
	Web-based Rescue
	Manual Rescue

	3 Development Environment
	3.1 Setup
	3.2 Changing Password
	3.3 Using Eclipse
	3.3.1 Building a Project
	Compiling and Linking
	Downloading the Application
	FTP Transfer
	Creating a Download Image
	Image Contents
	Install Script
	Downloading the Image via Web Page

	4 Understanding the MVI56-LDM API
	4.1 API Library
	4.1.1 Header File
	4.1.2 Sample Code
	4.1.3 Specifying the Communications Path
	Examples

	4.1.4 ControlLogix Tag Naming Conventions
	Rules

	4.2 MVI56E-LDM Development Tools
	4.3 CIP API Functions
	4.4 Backplane Device Driver
	4.5 Sample Code
	4.6 Establishing a Console Connection
	4.7 Physically Connect to the Module
	4.8 Configuring Serial Communication
	4.9 Setting Up the ControlLogix 5000
	4.10 Ethernet Sample
	4.10.1 Server Enet Sample
	4.10.2 Client ENet Sample

	4.11 Serial Sample
	4.12 Led_Sample
	4.13 Backplane_Sample
	4.14 Tag_Sample
	4.15 Ethernet Communications Sample
	First Computer
	Second Computer
	4.15.1 Initiating External Client Communication

	4.16 Serial Application Sample

	5 CIP API Functions
	5.1 CIP API Initialization Functions
	OCXcip_Open
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_OpenNB
	Syntax
	Parameters
	Description
	Return Value
	See Also

	OCXcip_Close
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	5.2 Object Registration
	OCXcip_RegisterAssemblyObj
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_UnregisterAssemblyObj
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	5.3 Special Callback Registration
	OCXcip_RegisterFatalFaultRtn
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_RegisterResetReqRtn
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	5.4 CIP Callback Functions
	connect_proc
	Syntax
	Parameters
	Description
	Return Value
	Extended Error Codes
	Example
	See Also

	service_proc
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	fatalfault_proc
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	5.5 Connected Data Transfer
	OCXcip_WriteConnected
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_ReadConnected
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_ImmediateOutput
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_WaitForRxData
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_WriteConnectedComplete
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	5.6 Tag Access Functions
	OCXcip_AccessTagData
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_AccessTagDataAbortable
	Syntax
	Parameters
	Description
	See Also

	OCXcip_CreateTagDbHandle
	Syntax
	Description
	Return Value
	Example
	See Also

	OCXcip_DeleteTagDbHandle
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_SetTagDbOptions
	Syntax
	Description
	Example
	See Also

	OCXcip_BuildTagDb
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_TestTagDbVer
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_GetSymbolInfo
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_GetStructInfo
	Syntax
	Parameters
	Description
	Return Value
	See Also

	OCXcip_GetStructMbrInfo
	Syntax
	Parameters
	Description
	Return Value
	See Also

	OCXcip_GetTagDbTagInfo
	Syntax
	Parameters
	Description
	Return Value
	See Also

	OCXcip_AccessTagDataDb
	Syntax
	Description
	Return Value
	See Also

	5.7 Messaging OCXcip_GetDeviceIdObject
	Syntax
	Parameters
	Description
	Return Value
	Example
	OCXcip_GetDeviceICPObject
	Syntax
	Parameters
	Description
	Return Value
	Example

	OCXcip_GetDeviceIdStatus
	Syntax
	Parameters
	Description
	Return Value
	Example

	OCXcip_GetExDeviceObject
	Syntax
	Parameters
	Description
	Return Value
	Example

	OCXcip_GetWCTime
	Syntax
	Parameters
	Description
	Return Value
	Example

	OCXcip_SetWCTime
	Syntax
	Parameters
	Description
	Return Value

	OCXcip_GetWCTimeUTC
	Syntax
	Parameters
	Compatibility
	Description
	Return Value
	Example

	OCXcip_SetWCTimeUTC
	Syntax
	Parameters
	Compatibility
	Description
	Return Value

	5.8 Miscellaneous Functions OCXcip_GetIdObject
	Syntax
	Parameters
	Description
	Return Value
	Example
	OCXcip_SetIdObject
	Syntax
	int OCXcip_SetIdObject (OCXHANDLE apihandle, OCXCIPIDOBJ *idoObject);
	Parameters
	Description
	Return Value
	Example

	OCXcip_GetActiveNodeTable
	Syntax
	Parameters
	Description
	Return Value
	Example

	OCXcip_MsgResponse
	Syntax
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_GetVersionInfo
	Syntax
	int OCXcip_GetVersionInfo (OCXHANDLE apihandle, OCXCIPVERSIONINFO *verinfo);
	Parameters
	Description
	Return Value
	Example

	OCXcip_GetUserLED
	Syntax
	int OCXcip_GetUserLED (OCXHANDLE apihandle, int * ledstate);
	Parameters
	Description
	Return Value
	Example

	OCXcip_SetUserLED
	Syntax
	int OCXcip_SetUserLED (OCXHANDLE apihandle, int * ledstate);
	Parameters
	Description
	Return Value
	Example
	See Also

	OCXcip_GetModuleStatus
	Syntax
	int OCXcip_GetModuleStatus (OCXHANDLE apihandle, int * status);
	Parameters
	Description
	Return Value
	Example

	OCXcip_SetModuleStatus
	Syntax
	int OCXcip_SetModuleStatus (OCXHANDLE apihandle, int * status);
	Parameters
	Description
	Return Value
	Example

	OCXcip_GetLED3
	Syntax
	int OCXcip_GetLED3 (OCXHANDLE apihandle, int * ledstate);
	Parameters
	Description
	Return Value
	Example

	OCXcip_SetLED3
	Syntax
	int OCXcip_SetLED3 (OCXHANDLE apihandle, int * ledstate);
	Parameters
	Description
	Return Value
	Example

	OCXcip_ErrorString
	Syntax
	int OCXcip_ErrorString (int errorcode,
	char * buf);
	Parameters
	Description
	Return Value
	Example

	OCXcip_SetDisplay
	Syntax
	int OCXcip_SetDisplay (OCXHANDLE apihandle, char * display_string);
	Parameters
	Description
	Return Value
	Example

	OCXcip_GetDisplay
	Syntax
	int OCXcip_GetDisplay (OCXHANDLE apihandle, char * display_string);
	Parameters
	Description
	Return Value
	Example

	OCXcip_GetSwitchPosition
	Syntax
	int OCXcip_GetSwitchPosition (OCXHANDLE apihandle, int * sw_pos);
	Parameters
	Description
	Return Value
	Example

	OCXcip_GetSerialConfig
	Syntax
	int OCXcip_GetSerialConfig (OCXHANDLE apihandle, OCXSPCONFIG * pSPConfig);
	Parameters
	Description
	Return Value
	Example

	OCXcip_Sleep
	Syntax
	int OCXcip_Sleep (OCXHANDLE apihandle, WORD msdelay);
	Parameters
	Description
	Return Value
	Example

	OCXcip_CalculateCRC
	Syntax
	int OCXcip_CalculateCRC (BYTE * dataBuf, DWORD dataSize, WORD * crc);
	Parameters
	Description
	Return Value
	Example

	OCXcip_SetModuleStatusWord
	Syntax
	int OCXcip_SetModuleStatusWord (OCXHANDLE apihandle, WORD statusWord, WORD statusWordMask);
	Parameters
	Description
	Return Value
	Example

	OCXcip_GetModuleStatusWord
	Syntax
	int OCXcip_GetModuleStatusWord (OCXHANDLE apihandle, WORD statusWord);
	Parameters
	Description
	Return Value
	Example

	6 Cable Connections
	6.1 RS-232 Configuration/Debug Port
	6.2 RS-232 Application Port(s)
	6.2.1 RS-232: Modem Connection (Hardware Handshaking Required)
	6.2.2 RS-232: Null Modem Connection (Hardware Handshaking)
	6.2.3 RS-232: Null Modem Connection (No Hardware Handshaking)

	6.3 RS-422
	6.4 RS-485 Application Port(s)
	6.4.1 RS-485 and RS-422 Tip

	6.5 DB9 to RJ45 Adaptor (Cable 14)

	7 Open Source Licensing
	7.1 GNU Public License
	7.2 Eclipse Public License
	7.3 Python Public License
	7.4 GCC Public License

	8 Glossary of Terms
	API
	BIOS
	Byte
	CIP
	Connection
	Consumer
	Controller
	DLL
	Embedded I/O
	ExplicitMsg
	HSC
	Input Image
	Library
	Linked Library
	Local I/O
	Long
	Module
	Mutex
	Originator
	Output Image
	Producer
	PTO
	PTQ Suite
	Scanner
	Target
	Thread
	Word

	9 Support, Service & Warranty
	9.1 Contacting Technical Support
	9.2 Warranty Information

