

MVI69E-LDM
"C" Programmable

Linux® Application Development
Module

 August 3, 2020

DEVELOPER'S GUIDE

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,
compliments or complaints about our products, documentation, or support, please write or call us.

ProSoft Technology, Inc.

+1 (661) 716-5100
+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
support@prosoft-technology.com

© 2020 ProSoft Technology, Inc. All rights reserved.

MVI69E-LDM Developer's Guide

August 3, 2020

ProSoft Technology®, is a registered copyright of ProSoft Technology, Inc. All other brand or product names are or
may be trademarks of, and are used to identify products and services of, their respective owners.

In an effort to conserve paper, ProSoft Technology no longer includes printed manuals with our product shipments.
User Manuals, Datasheets, Sample Ladder Files, and Configuration Files are provided at:
www.prosoft-technology.com

For professional users in the European Union

If you wish to discard electrical and electronic equipment (EEE), please contact your dealer or supplier
for further information.

Prop 65 Warning – Cancer and Reproductive Harm – www.P65Warnings.ca.gov

MVI (Multi Vendor Interface) Modules

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

AVERTISSEMENT - RISQUE D'EXPLOSION - AVANT DE DÉCONNECTER L'ÉQUIPEMENT, COUPER LE
COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DÉSIGNÉ NON DANGEREUX.

http://www.prosoft-technology.com/

Important Installation Instructions

Power, Input, and Output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods, Article 501-4 (b)
of the National Electrical Code, NFPA 70 for installation in the U.S., or as specified in Section 18-1J2 of the Canadian
Electrical Code for installations in Canada, and in accordance with the authority having jurisdiction. The following
warnings must be heeded:

WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIV. 2;

WARNING - EXPLOSION HAZARD - WHEN IN HAZARDOUS LOCATIONS, TURN OFF POWER BEFORE REPLACING OR WIRING
MODULES

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA
IS KNOWN TO BE NON-HAZARDOUS.

Class 2 Power

Warnings, Specification, and Certifications

North America Warnings

A Warning - Explosion Hazard - Substitution of components may impair suitability for Class I, Division 2.
B Warning - Explosion Hazard - When in Hazardous Locations, turn off power before replacing or rewiring

modules.
C Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is

known to be non-hazardous.
D Suitable for use in Class I, Division 2 Groups A, B, C and D Hazardous Locations or Non-Hazardous Locations

only.
E The subject devices are powered by a Switch Model Power Supply (SMPS) that has a regulated output voltage

of 5 VDC.

ATEX Warnings and Conditions of Safe Usage:

Power, Input, and Output (I/O) wiring must be in accordance with the authority having jurisdiction

A Warning - Explosion Hazard - When in hazardous locations, turn off power before replacing or wiring modules.
B Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is

known to be non-hazardous.
C These products are intended to be mounted in an IP54 enclosure. The devices shall provide external means to

prevent the rated voltage being exceeded by transient disturbances of more than 40%. This device must be used
only with ATEX certified backplanes.

D DO NOT OPEN WHEN ENERGIZED.

Agency Approvals & Certifications

Please visit our website: www.prosoft-technology.com

https://www.prosoft-technology.com/

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 5 of 125

Contents

Your Feedback Please ... 2
MVI (Multi Vendor Interface) Modules ... 2
Warnings, Specification, and Certifications ... 3

1 Preparing the MVI69E-LDM Module 8

1.1 MVI69E-LDM Introduction .. 8
1.2 Specifications ... 9
1.3 System Requirements .. 10
1.4 Package Contents .. 10
1.5 Jumper Locations and Settings .. 11

1.5.1 Setup Jumper ... 12
1.5.2 Port 1 and Port 2 Jumpers ... 12

1.6 Installing and Connecting the Module .. 12
1.6.1 Installing the Module in the Chassis ... 13
1.6.2 Making Configuration Port Connections ... 16
1.6.3 Enabling and Disabling the Console Port... 19

1.7 Establishing Module Communications ... 23
1.8 Resetting the Module ... 26
1.9 Important Information Before Development ... 28

2 Development Environment 30

2.1 Setup .. 30
2.2 Changing Password ... 33
2.3 Starting Eclipse .. 35

2.3.1 Building a Project ... 35
2.3.2 Compiling and Linking .. 36
2.3.3 Downloading the Application with FTP ... 37
2.3.4 Creating an Application Image ... 37
2.3.5 Downloading the Image with Firmware Update ... 39

3 Understanding the MVI69E-LDM API 41

3.1 API Library .. 41
3.1.1 Header File ... 41
3.1.2 Sample Code .. 41
3.1.3 CompactLogix Tag Naming Conventions ... 42

3.2 MVI69E-LDM Development Tools .. 43
3.3 CIP API Architecture .. 43
3.4 Backplane Device Driver .. 44

4 Sample Code 45

4.1 Establishing a Console Connection ... 46
4.1.1 Physically Connect to the Module .. 46
4.1.2 Configuring Serial Communication ... 46
4.1.3 Setting Up ControlLogix 5000 .. 47

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 6 of 125 ProSoft Technology, Inc.

4.2 Sample Tutorials .. 48
4.2.1 Ethernet Sample .. 48
4.2.2 Serial Sample... 51
4.2.3 LED Sample ... 52
4.2.4 Backplane Sample ... 53

4.3 Application Tutorials .. 54
4.3.1 Ethernet Application ... 54
4.3.2 Serial Application ... 60

5 API Functions 69

5.1 CIP API Initialization Functions .. 69
MVI69_Open .. 69
MVI69_OpenNB ... 70
MVI69_Close .. 71
MVI69_GetIOConfig ... 72
MVI69_SetIOConfig ... 73

5.2 Direct I/O Access ... 74
MVI69_ReadOutputImage .. 74
MVI69_WriteInputImage ... 75

5.3 Messaging .. 76
MVI69_GetMsgRequestFromBp .. 76
MVI69_SendMsgResponseToBp ... 78

5.4 Synchronization ... 80
MVI69_WaitForInputScan .. 80
MVI69_WaitForOutputScan ... 81

5.5 Serial Ports .. 82
MVI69_GetSerialConfig .. 82
MVI69_SetSerialConfig .. 84

5.6 Miscellaneous Functions ... 85
MVI69_GetVersionInfo ... 85
MVI69_GetModuleInfo ... 86
MVI69_SetModuleInfo .. 87
MVI69_GetScanMode .. 88
MVI69_GetScanCounter .. 89
MVI69_SetLED ... 90
MVI69_GetSetupJumper .. 91

6 Cable Connections 92

6.1 RS-232 Configuration/Debug Port ... 92
6.2 RS-232 Application Port(s) .. 93

6.2.1 RS-232: Modem Connection (Hardware Handshaking Required) 93
6.2.2 RS-232: Null Modem Connection (Hardware Handshaking) 94
6.2.3 RS-232: Null Modem Connection (No Hardware Handshaking) 94

6.3 RS-422 ... 95
6.4 RS-485 Application Port(s) .. 95

6.4.1 RS-485 and RS-422 Tip .. 96
6.5 DB9 to RJ45 Adaptor (Cable 14) ... 96

7 Open Source Licensing 97

7.1 GNU Public License ... 98

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 7 of 125

7.2 Eclipse Public License .. 111
7.3 Python Public License .. 115
7.4 GCC Public License ... 120

8 Support, Service & Warranty 122

8.1 Contacting Technical Support .. 122
8.2 Warranty Information .. 122

9 Glossary of Terms 123

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 8 of 125 ProSoft Technology, Inc.

1 Preparing the MVI69E-LDM Module

1.1 MVI69E-LDM Introduction

The MVI69E-LDM module is a CompactLogix backplane-compatible module that allows
Rockwell Automation CompactLogix processors to interface with relatively any Ethernet or
Serial device. With the supplied development tools and example applications, you are the
developer that controls exactly what this module can and cannot do.

ProSoft Technology's Linux Development modules make it possible for you to easily develop
and deploy C/C++ applications that interface with Bar Code Scanners, Legacy ASCII
protocols, Terminal Port Emulation, Printer Drivers (Alarm/Status printer), or any other
device requiring custom or proprietary Ethernet and Serial communications.

This document provides the information you need to develop application programs for the
MVI69E-LDM module.

This document assumes you are familiar with software development in the Linux
environment using the C/C++ programming languages. This document also assumes that
you are familiar with Rockwell Automation programmable controllers and the CompactLogix
platform.

You should be familiar with the following terms:

Term Description

API Application Programming Interface

Backplane Refers to the electrical interface or bus to which modules connect when
inserted into the rack. The MVI69E-LDM communicates with the control
processor(s) through the CompactLogix backplane.

CIP Control and Information Protocol. This is the messaging protocol used for
communications over the CompactLogix backplane.

Connection A logical binding between two objects. A connection allows more efficient use
of bandwidth because the messaging path is not included after the connection
is established.

Consumer A destination for data.

Library Refers to the library file (DLL) that contains the API functions. The library must
be linked with the developer's application code to create the final executable
program.

Originator A client that establishes a connection path to a target.

Producer A source of data.

Target The end-node to which a connection is established by an originator.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 9 of 125

1.2 Specifications

CPU, Memory, and OS

 CPU: 400MHz ARM9 G20

 Operating System: Linux (kernel 2.6.22)

 Linux Distribution: BusyBox

 System Memory: 64MB SDRAM

 Flash Memory: 256MB NAND Flash

General

 Backplane Current Load: 500 mA @ 5 VDC; 3mA @ 24 VDC

 Operating Temperature: 0 to 60°C (32 to 140°F)

 Storage Temperature: -40 to 85°C (-40 to 185°F)

 Shock: 30g non-operational; 15g non-operational; Vibration: 5 g from 10 to 150 Hz

 Relative Humidity: 5% to 95% (without condensation)

 LED Indicators: ETH - Application driven, P1 Application Driven, P2 Application driven,
CFG - Application driven, BP - Application driven, OK - Application driven

Ethernet Ports

 1 Ethernet port

 10/100 Mbps

 RJ45 connector

 Link and Activity indicators

 Auto-sensing crossover cable detection

Serial Ports

 Full hardware handshaking control provides radio, modem, and multi-drop support.

 Serial Application ports: RJ45 (DB-9M with supplied adapter cable)

 Configurable RS-232 hardware handshaking

 500V Optical isolation from backplane

 RS-232, RS-422, RS-485 (software configurable by the end user)

 Rx (Receive) and Tx (Transmit) LEDs, each port

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 10 of 125 ProSoft Technology, Inc.

1.3 System Requirements

The MVI69E-LDM module requires the following hardware and software components:

 Rockwell Automation CompactLogix processor (firmware version 18 or greater
depending on processor type) with compatible power supply and one free slot in the rack
for the module. The module requires 5 VDC power

 Rockwell Automation RSLogix 5000 software

 Rockwell Automation RSLinx communication software version 2.51 or greater

 Pentium II 450 MHz minimum. Pentium III 733 MHz or greater recommended

 Supported operating systems:
o Microsoft Windows 10
o Microsoft Windows 7 Professional (32-or 64-bit)
o Microsoft Windows XP Professional with Service Pack 1 or 2
o Microsoft Windows Vista
o Microsoft Windows 2000 Professional with Service Pack 1, 2, or 3
o Microsoft Windows Server 2003

 128 MB RAM (minimum), 256 MB of RAM recommended

 100 MB of free hard disk space (or more based on application requirements)

 256-color VGA graphics adapter, 800 x 600 minimum resolution (True Color 1024 x 768
recommended)

Note: The Hardware and Operating System requirements in this list are the minimum recommended to install
and run software provided by ProSoft Technology. Other third party applications may have different
requirements. Refer to the documentation for any third party applications.

1.4 Package Contents

Your MVI69E-LDM package includes:

 RJ45 to DB-9M cables for each serial port

 (2) DB9 to screw terminal adapter

 Null Modem Cable

You can download all documentation, sample code, and sample ladder logic from our
website for free (www.prosoft-technology.com/ldmdevkit).

If any of these components are missing, please contact ProSoft Technology Support.

Not Shipped with Unit

 LDMdevKit - Linux Development Module Development Kit (Available for purchase from
ProSoft Technology and must be ordered separately.)

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 11 of 125

1.5 Jumper Locations and Settings

Each module has three jumpers:

 Setup

 Port 1

 Port 2

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 12 of 125 ProSoft Technology, Inc.

1.5.1 Setup Jumper

The Setup Jumper acts a write protection for the module's firmware. In "write-protected"
mode, the setup pins are not connected which prevents the module's firmware from being
overwritten.

The module is shipped with the Setup Jumper OFF. If you need to update the firmware or
run a module rescue (recovery), apply the setup shunt over both pins.

1.5.2 Port 1 and Port 2 Jumpers

These jumpers, located at the bottom of the module, aid in configuring the port settings to
RS-232, RS-422, or RS-485. The "RS-232", "RS-485", and "RS-422" labels are there for
convenience. The jumpers simply send a high/low signal when jumped or not jumped. The
jumper configuration is read by the API, and the application code must change the
appropriate port settings to the required mode (232, 485, 422).

1.6 Installing and Connecting the Module

If you have not already done so, please install and configure your CompactLogix processor
and power supply. Refer to the Rockwell Automation product documentation for installation
instructions.

Warning: You must follow all safety instructions when installing this or any other electronic devices. Failure to
follow safety procedures could result in damage to hardware or data, or even serious injury or death to
personnel. Refer to the documentation for each device you plan to connect to verify that suitable safety
procedures are in place before installing or servicing this device.

After verifying proper jumper placement, insert the module into the CompactLogix chassis.
Use the same technique recommended by Rockwell Automation to remove and install
CompactLogix modules.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 13 of 125

1.6.1 Installing the Module in the Chassis

You can install or remove CompactLogix system components while chassis power is applied
and the system is operating. However, please note the following warning.

Warning: When you insert or remove the module while backplane power is on, an electrical arc can cause
personal injury or property damage by sending an erroneous signal to your system's actuators. This can cause
unintended machine motion or loss of process control. Electrical arcs may also cause an explosion they occur in
a hazardous environment. Verify that power is removed, or that the area is non-hazardous before proceeding.
Repeated electrical arcing causes excessive wear to contacts on both the module and its mating connector.
Worn contacts may create electrical resistance that can affect module operation.

1 Align the module using the upper and lower tongue-and-groove slots with the adjacent
module and slide forward in the direction of the arrow.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 14 of 125 ProSoft Technology, Inc.

2 Move the module back along the tongue-and-groove slots until the bus connectors on
the MVI69E module and the adjacent module line up with each other. Push the module's
bus lever back slightly to clear the positioning tab and move it firmly to the left until it
clicks. Ensure that it is locked firmly into place.

3 Close all DIN-rail latches.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 15 of 125

4 Press the DIN-rail mounting area of the controller against the DIN-rail. The latches
momentarily open and lock into place.

Module inserted.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 16 of 125 ProSoft Technology, Inc.

1.6.2 Making Configuration Port Connections

You can communicate with the module via RS-232 through the Console or through the
Ethernet port using Telnet.

RS-232 Console

You access the Console through Serial Port 1. As a default, the RS-232 Console port is
enabled. You can disable or enable this port. Refer to Enabling and Disabling the Console
Port in the next section.

1 Connect the RJ45 end of an RJ45 - DB9m cable (Cable 14) to the Serial Port 1 of the
module.

2 Connect one end of the Null Modem Cable (Cable 15) to the DB9m end Cable 14.
3 Connect the other end of Cable 15 (null modem cable) to a serial port on your PC or

laptop.

Ethernet Port

1 The module contains a Telnet client which you can access through Ethernet Port 1 (Eth
1) as shown.

2 Connect an Ethernet RJ45 cable to the Eth 1 port of the module and the other end to the
Ethernet network switch.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 17 of 125

To enable or disable the Telnet port:

This example uses PuTTY, which you can download for free at from:
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

1 Start PuTTY.
2 Open a PuTTY session as shown below. The following screenshot shows the Telnet

Port enabled.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 18 of 125 ProSoft Technology, Inc.

To disable the Telnet port

1 Change to the s99-telnetd directory. Type:
cd\etc\init.d\S99-telnetd

2 List the files in the directory. Type:
ls

3 Comment out the telnetd file.

4 To enable the port, simply un-comment the same line.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 19 of 125

1.6.3 Enabling and Disabling the Console Port

Establish a connection to the module. This example uses PuTTY.

1 Open PuTTY.

2 Set SPEED to 115200.
3 Set the SERIAL LINE to the appropriate COM port.
4 Ensure that the CONNECTION TYPE is Serial.
5 Click OPEN. The PuTTY session opens.
6 Enter your login and password.

MVI69E login: root

Password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 20 of 125 ProSoft Technology, Inc.

The following text appears:

7 Change to the /etc directory. Type:
cd /etc

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 21 of 125

8 Type ls. The following appears:

To enable the console port:

The inittab.con file configures the console.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 22 of 125 ProSoft Technology, Inc.

1 Open the file in the vi editor. Type
vi inittab.con

2 Copy inittab.con file to the inittab file. Type
cp –f inittab.con inittab

3 Save the file and reboot the module.

To disable the console:

1 Copy inittab.nocon file to the inittab file.
2 Save the file and reboot the module.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 23 of 125

1.7 Establishing Module Communications

Ensure that the module is firmly seated in the rack and that the cables connected to the
module are secure. Ensure that power is applied.

Note: If you require information on cables and port pinouts, please refer to the section entitled Cable
Connections (page 92) at the end of the document.

RS-232 Console

If you are connected to Serial Port 1 (P1), establish communications with the module using
the following procedure.

Note: The following procedure uses PuTTY to establish communications. You can use a different
communication program.

1 Open PuTTY.

2 Set SPEED to 115200.
3 Set SERIAL LINE to the appropriate COM port.
4 Ensure that CONNECTION TYPE is set to Serial.
5 Click OPEN to open the PuTTY session.
6 Enter your login and password:

MVI69E login: root

Password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 24 of 125 ProSoft Technology, Inc.

Ethernet (Telnet)

You can communicate with the module through Ethernet Port 1 (Eth 1) using Telnet.

The Ethernet Port (Eth 1) on the module is programmed with eth0 set to IP 192.168.0.250
and a Subnet Mask of 255.255.255.0. In order for your PC or laptop to talk to the module,
your PC or Laptop must be on the same subnet as the module. This means that you must
temporarily change the IP address and subnet mask on your PC or laptop to match that of
the module. You can then change the module's IP address to match your needs. Follow
these steps or see http://windows.microsoft.com/en-us/windows/change-tcp-ip-
settings#1TC=windows-7 http://windows.microsoft.com/en-us/windows/change-tcp-ip-
settings#1TC=windows-7.

1 Change the IP address of your PC or Laptop so it matches the subnet of the module.
The following steps are for Windows 7.

a Change your IP address through the router. Consult your router documentation for
more information.

b Change your IP address through Windows Network Connections. Click START >
CONTROL PANEL > NETWORK AND SHARING CENTER.

c Click the CONNECTION link for the connection you want to change and choose
PROPERTIES.

d On the Local Area Connection Properties dialog, select the connection you want to
change (Internet Protocol Version 6 or Internet Protocol Version 4), and then click
PROPERTIES.

e In the Internet Protocol Version 4 or 6 Properties dialog, click USE THE FOLLOWING IP

ADDRESS.
f Type in the IP address settings for the IP ADDRESS, SUBNET MASK, and DEFAULT

GATEWAY.
g Click OK to accept the changes and then close each of the dialog boxes.

2 Ensure that an Ethernet cable is connected to Ethernet Port 1 (Eth 1) of the module, and
the other end to the same Ethernet switch as your PC.

http://windows.microsoft.com/en-us/windows/change-tcp-ip-settings#1TC=windows-7
http://windows.microsoft.com/en-us/windows/change-tcp-ip-settings#1TC=windows-7

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 25 of 125

3 Use a program such as PuTTY to Telnet into the module.

4 Select Telnet as the CONNECTION TYPE.
5 Enter the IP ADDRESS (192.168.0.250).
6 Port 23 should appear as the PORT number.
7 Click OPEN to establish a connection.
8 Log into the module.

There are two methods you can use to change the module's IP address. One is temporary
for use in cases where you want to change the address long enough to make a quick
change. The other is more permanent so that the module is already programmed and is
ready for full deployment.

Temporary IP Address Change

At the Linux prompt, type:
ifconfig eth0 x.x.x.x (This changes the IP address of the Ethernet Eth 1 port.)

Permanent IP Address Change

1 At the Linux prompt, change to the /etc/network directory. Type:
cd ../etc/network

2 Open the interfaces file int he vi editor. Type:
vi interfaces

This shows the contents of the file:
iface eth0 inet static
 address 192.168.0.250
 network 192.168.0.0
 netmask 255.255.255.0
 broadcast 192.168.0.255
gateway 192.168.0.1

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 26 of 125 ProSoft Technology, Inc.

3 Using the vi editor, edit the file to change the address.
4 Save the file.

For help on using the vi editor to write and save the file, refer to
http://www.lagmonster.org/docs/vi.html

5 Change the IP address of your PC back to the original IP address and subnet.
6 Telnet to the new IP Address of the module.

1.8 Resetting the Module

In the event that it becomes necessary to revert the MVI69E-LDM module back to its initial
out-of-the-box state, there are a number of methods you can use depending on the
condition of the module.

The Rescue process re-installs all of the Operation System commands and configurations to
their original defaults. The files deleted during the rescue process are the startup scripts in
the /etc/init.d path since extra scripts in this path are automatically executed by the
operating system on startup and may cause problems. All other files may be overwritten to
the initial state of the device. Extra files are not deleted.

If the web pages and services for the module have been altered, it may not be possible to
use the web-based rescue.

To connect to the module over Ethernet:

1 Place the onboard setup jumper to the installed state. See Setup Jumper - MVI69E.
2 If you know the the IP address, change the network mask and IP of the connected PC to

compatible values.

For example, if the MVI69E-LDM is configured with the default IP address
(192.168.0.250) and network mask (255.255.255.0), the the PC should have the same
IP4 network mask and an IP address in the 192.168.0.xxx subnet.
Note that IP addresses must be unique on the network. If in doubt, create a physical
network consisting of only the MVI69E-LDM and the PC.

If you do not know the IP address of the MVI69E-LDM module, you can establish
communication through the serial configuration port, Port 1 (upper port).

1 Use Telnet or a similar terminal program to communicate with the module. The default
settings are 115,200 baud, 8 data bits,1 stop bit, No Parity, xon/xoff flow control.

2 Use the following username and password:

Username: root

Password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference.

3 From the shell prompt, run ifconfig to find the Ethernet IP address and network mask of
device "eth0". Then follow the steps under To connect to the module over Ethernet
(above).

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 27 of 125

To use web-based rescue:

The web page for the MVI69E-LDM module contains a command on the left side of the page
to reset the module.

1 Open the web page for the module by entering the IP address of the module in the
address bar. If necessary, set your PC to an IP address and the same sub-network. See
To connect to the module over Ethernet (above).

2 On the left-side of the page, under FUNCTIONS, click RESCUE MODULE. Follow the
instructions to reset the module to its default state.

Note: Most loaded components are left intact by this operation so it may be necessary to make enough room on
the module for the rescue to work. In addition, the Setup Jumper must be in place for the rescue to function
properly.

To use manual rescue:

If the default web page is unavailable, a manual rescue may be required. Perform the
following steps to manually return the module to its default state:

1 Establish a terminal session to the module using either the Serial or Ethernet port.
2 Ensure that the /backup/systemrestore.tgz file exists.
3 Run the following command to remove any startup scripts that may be interfering with

the bootup process:
rm -f /etc/init.d/*

4 Restore the configuration and executables using the following command:
tar -xzf /backup/systemrestore.tgz -C /

5 If successful, reboot the module.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 28 of 125 ProSoft Technology, Inc.

1.9 Important Information Before Development

When the MVI69E-LDM is initially installed in the backplane, the module runs a number of
programs that are required in order not to fault the processor.

Line 357, /psft/sample/Backplane_Sample runs for the purpose of not faulting the
processor. The module also contains a number of sample applications that will not run if
backplane sample is also running. The samples affected are enet_application and
serial_application.

You can kill the Backplane_Sample script by typing:

kill 357

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 29 of 125

You can modify the Backplane_Sample script from this location:

The script that you want to modify is S45-prosoft.

You can see from this script that the Backplane_Sample is configured to run at startup.
Change this to suit your needs.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 30 of 125 ProSoft Technology, Inc.

2 Development Environment

The MVI69E-LDM development tools run under Linux. In order to run these tools on a
Windows-based machine, you must run a Virtual Machine that hosts the Linux Operating
System.

VMware provides a virtual machine player used to host the Linux Operating System. You
can find it at: https://my.vmware.com/web/vmware/downloads

2.1 Setup

The file Debian6VM.zip is part of the LDMdevKit package which you can download for free
from the ProSoft Technology website: www.prosoft-technology.com. You can also purchase
the DVD (part number LDMdevKit) from ProSoft Technology.

1 Copy the Debian6VM.zip file to your PC in the VM Player image ico directory

(VMware\VMware Player\ico).

2 Uncompress Debian6VM.zip into this directory.
3 Start the VM Player by double-clicking on its icon on the Windows desktop.
4 Click OPEN A VIRTUAL MACHINE.

5 Navigate to the ico directory containing the Debian6VM file and click DEBIAN6VM.VMX.
The image file icon appears in the left window.

http://www.prosoft-technology.com/

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 31 of 125

The following screen appears:

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 32 of 125 ProSoft Technology, Inc.

6 Click PLAY VIRTUAL MACHINE. A dialog appears asking if the virtual machine has been
moved or copied. Click I COPIED IT.

7 After the image loads, the VMware Player prompts you for a username and password.
Username: user

Password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference. Please see the next section Changing Password on page 33.

The home screen appears.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 33 of 125

2.2 Changing Password

After the initial login to the VM, you will be prompted to change the password. Be sure to
record the new password in a safe place for future reference.

1 Enter the current (default) password: password.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 34 of 125 ProSoft Technology, Inc.

2 Enter the new password.

3 Confirm the new password.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 35 of 125

2.3 Starting Eclipse

Eclipse is an Integrated Development Environment (IDE) used in the Linux environment
primarily to edit source code. Full documentation and downloads are available at:
www.eclipse.org

To start Eclipse:

1 Double-click the Eclipse icon on our Windows desktop.
2 When the Workspace Launcher appears, choose the default workspace

(/home/user/workspace).

3 Click OK.

The default workspace is pre-populated with sample programs, makefiles, and scripts.
Building one of the sample projects is the recommended way to become familiar with the
environment and the build process.

2.3.1 Building a Project

Building and using a sample application consists of the following steps:

1 Compiling and linking your application.
2 Downloading the application. There are two ways you can do this:

o Use FTP transfer to download the application.
o Create a downloadable image, and then download the image to the target device

(module).

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 36 of 125 ProSoft Technology, Inc.

2.3.2 Compiling and Linking

1 Start the Linux (Debian) virtual machine in the VM Player.
2 Open a Bash Shell window by clicking on the BASH SHELL icon on the main page.
3 Once in the shell, change the directory to one of the samples. In this case, change the

directory to get to the LED_sample program. Type:
cd /workspace/mvi69e-ldm/src/LDM/led_sample$

4 To recompile and link, simply type:
make

In this case, the executable is up to date and nothing needs to be done.

5 If the source is changed, the make utility detects the newer time on the source file and
rebuilds the application. The following example uses the Touch utility to cause the date
of a file (led_sample.c) to be updated as if the file had been changed, and make is re-
invoked. Make detects this change, recompiles and re-links the application.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 37 of 125

2.3.3 Downloading the Application with FTP

To transfer the application using FTP Transfer, use any FTP transfer program such as
FileZilla (https://filezilla-project.org/) from the Windows environment.

Use FileZilla to connect to the target by specifying the IP address of the MVI69E-LDM's IP.

Download the application image to the desired directory on the LDM using the FTP transfer
program.

Since Windows does not have the same detailed permissions as Linux, you must change
the file permissions on the application once in the module. Use the command chmod a+x

filename to add the execute attribute to the application.

You can also download the application by creating an image and using Firmware update.
See Creating an Application Image.

2.3.4 Creating an Application Image

An image contains all of the application-specific components required for your application.
This includes the executable(s), application-specific shared libraries, scripts, web pages,
and data files. It does not contain the operating system or common components that are
already on the target device.

The image is a compressed tar file of the application components. Once created, use the
device's web page to download the firmware upgrade. The tar file name is specified in
IMAGE CONTENTS. In the sample image, the firmware file is 'firmware/mvi69e-ldm.firmware

revision date'. This firmware file is downloaded to the directory /psfttmp on the target
device. Upon system restart, the system startup scripts unpack the tar file into the psfttmp

directory. The script /psfttmp/install is executed to move the component files into their
final destination.

A sample install file is included with the sample applications. The steps are:

1 Create all of the components that are part of the system. This mainly involves compiling
and linking executables and shared libraries.

2 Create the install script.
3 Modify any web pages and data files that will be needed.
4 Last, update the install script.

To create the Image Contents:

Each component file to be included in the image is listed in the file imagecontents in the
build directory structure for the specific application. This file contains header information
about the image and a list of entries describing the files to be added to the image. The
format of the entry is:
Add source destination file permissions

Where:

 The source file is the path to the file to be included.

 The destination file is the full path name of the file on the destination on the target
device.

 The permissions are the Linux style permissions of the file on the destination.

https://filezilla-project.org/

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 38 of 125 ProSoft Technology, Inc.

For example, a line to add the LED_Sample application looks like:

 Add ../../src/ldm/led_sample/Release/Led_Sample /psft/sample/Led_Sample rwxrwxr-x

Since builds occur in /home/usr/workspace/mvi69e-ldm/build/LDM, source paths are relative
to this directory to simplify moving to a new directory.

Follow the sample provided to create a complete image contents file.

To create the Install Script:

Before creating the image, you must create and add an install script to the firmware

package. As noted above, the firmware package is downloaded into the /psfttmp directory

on the device. The install script copies the files in /psfttmp to their final destination on the
target device. You can use the install script to make backups of the current directory
contents before they are overwritten. The LDM sample install script in build/LDM/scripts
illustrates how to do this.

To create the Image:

1 In a Linux shell, change the directory to the ...build/LDM directory.
2 Run python with the following command:

python createimage.py

The python script createimage.py reads and acts on the imagecontents file and then creates

a new firmware image in the directory .../build/LDM/firmware.

Note: The script build.sh compiles and links all libs and executables and then invoke python to create the
firmware image.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 39 of 125

2.3.5 Downloading the Image with Firmware Update

1 Ensure that the Setup Jumper is on. See Setup Jumper in this document.
2 Navigate to the module homepage using a Web browser by entering the module's IP

address.

3 Click FIRMWARE UPGRADE. The Update page opens.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 40 of 125 ProSoft Technology, Inc.

4 Click CONTINUE WITH UPDATE, and select the firmware file to be downloaded.

5 Click UPDATE FIRMWARE and wait for the module to reboot. During rebooting, the module
expands the compressed file and runs the install script to move the component files to
their final destination.

Note: The IP address reverts to the default after rebooting. This is a very common problem, so remember to
reset the IP address to the correct value. See Establishing Module Communication.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 41 of 125

3 Understanding the MVI69E-LDM API

The MVI69E LDM CPI API Suite allows software developers to access the CompactLogix
backplane without requiring detailed knowledge of the module’s hardware design. The
MVI69E-LDM API Suite consists of three distinct components; the backplane device driver,
the backplane interface engine, and the API library.

You can develop applications for the MVI69E-LDM module using industry-standard Linux
programming tools and the CPI API library. This section provides general information
pertaining to application development for the MVI69E-LDM module.

3.1 API Library

The API provides a library of function calls. The library supports any programming language
that is compatible with the 'C' calling convention. The API library is a dynamic linked library
that must be linked with the application to create the executable program>

Note: The following compiler versions are tested and known to be compatible with the MVI69E module API:
CNU C/C++ V4.4.4 for ARM9

3.1.1 Header File

A header file is provided along with the API library. This header file contains API function
declarations, data structure definitions, and constant definitions. The header file is in

standard 'C' format. Header files for the CIP API are ocxbpapi.h and ocxtagdb.h.

3.1.2 Sample Code

The sample applications illustrate the usage of the API functions. Full source for the sample
application is included, along with make files to build the sample programs.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 42 of 125 ProSoft Technology, Inc.

3.1.3 CompactLogix Tag Naming Conventions

CompactLogix tags fall into two categories; controller tags and program tags.

Controller Tags have global scope. To access a controller scope tag, you only need to
specify the tag controller name. For example:

TagName Single tag

Array[11] Single dimensioned array element

Array[1,3] Two dimensional array element

Array[1, 2, 3] Three dimensional array element

Structure.Element Structure element

StructureArray[1].Element Single element of an array of structures

Program Tags are tags declared in a program and scoped only within the program in which
they are declared. To correctly address a Program Tag, you must specify the identifier
"PROGRAM:" followed by the program name. A dot (.) separates the program name and the
tag name.

PROGRAM:ProgramName.TagName

PROGRAM:MainProgram.TagName Tag "TagName in program called "MainProgram"

PROGRAM:MainProgram.Array[11] An array element in program "MainProgram"

PROGRAM:MainProgram.Structure.Element A Structure Element in program "MainProgram"

Rules

 A tag name can contain up to 40 characters.

 A tag name must start with a letter or underscore ("_"). All other characters can be
letters, numbers or underscores.

 Names cannot contain two contiguous underscore characters and cannot end in with an
underscore.

 Letter case is not significant.

 The naming conventions are based on the IEC-1131 Rules for Identifiers.

For additional information on CompactLogix CPU tag addressing, please refer to the
CompactLogix User Manual.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 43 of 125

3.2 MVI69E-LDM Development Tools

An application that is developed for the MVI69E-LDM module must be executed from the
module’s Flash ROM disk. Tools are provided with the API to build the disk image and
download it to the module’s Config/Debug port. See Building a Project (page 35).

3.3 CIP API Architecture

The CIP API communicates with the CompactLogix modules through the backplane device
driver. The following illustration shows the relationship between the module application, CIP
API, and the backplane driver:

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 44 of 125 ProSoft Technology, Inc.

3.4 Backplane Device Driver

The backplane device driver performs CIP messaging over the CompactLogix backplane
using the Midrange ASIC. The user application interfaces with the backplane device driver
through the CIP API library. The backplane device driver for the MVI69E-LDM module is
libocxbpeng.so. The driver implements the following components and objects:

All data exchange between the application and the backplane occurs through the Assembly
Object, using functions provided by the CIP API. The API includes functions to register or
unregister the object, accept or deny Class 1 schedule connections requests, access
scheduled connection data, and service unscheduled messages.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 45 of 125

4 Sample Code

To help understand the use of the MVI69E-LDM, several example programs are provided
with the module. These programs exist as source code in the development environment as
well as executable programs in the MVI69E-LDM in the /psft/sample directory.

You can build and download the sample programs to the MVI69E-LDM module. The sample
programs are designed to show one or more sets of functionality.

LED Sample

 Opens the backplane

 Read and print module information

 Read and print version information

 Read and print module configuration jumpers

 Continuously change the state of the front panel LEDs

Backplane Sample

 Opens the backplane

 Set up communications with the PLC

 Read and display module information

 Read and write connected data with the CompactLogix processor

Server Ethernet Sample

 Opens the backplane

 Listens for a request on a well known port

 Responds with the date/time of the module

Client Ethernet Sample

 Opens the backplane

 Sends a request to another module; to the server Ethernet Sample

 Prints the response to the terminal

Serial Sample

 Opens the backplane

 Reads and modifies the serial configuration

 Transmits though the serial port

Install LDM

 Sets the module identity to ProSoft LDM

 Opens the backplane

 Read and print module information

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 46 of 125 ProSoft Technology, Inc.

4.1 Establishing a Console Connection

In order to run the Ethernet and Serial samples and tutorials, you must set up a connection
in order to communicate with the MVI69E-LDM.

4.1.1 Physically Connect to the Module

In order to establish a console session between a PC and the MVI69E-LDM, you must
physically connect your PC to the console serial port on the module.

1 Plug in an RJ45 to DB9 cable on the module's Port 1.
2 Connect the null modem cable to the DB9 end of the RJ45 to DB9 cable.
3 Connect the other end of the null modem cable to the appropriate serial port (USB to

Serial Converter) on the computer.

4.1.2 Configuring Serial Communication

1 Establish a connection to the module. The following example uses PUTTY. You can
download PUTTY for free from:
http://www.chiark.greenend.org.uk/~sgtatham/PuTTY/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

2 MVI69E login: root

Password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference.

Keep PUTTY open while you set up CompactLogix as described in the next section.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 47 of 125

4.1.3 Setting Up ControlLogix 5000

1 Open the MVI69E-LDM.ACD program and then click CHANGE CONTROLLER to change
the appropriate chassis type to match your hardware and firmware.

2 Select the TYPE and REVISION of your Controller and click OK .

3 Download MVI69_LDM.ACD file in the CompactLogix processor by choosing
COMMUNICATIONS > WHO ACTIVE > DOWNLOAD.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 48 of 125 ProSoft Technology, Inc.

4.2 Sample Tutorials

The following sections describe how to run and understand the sample tutorials provided
with the module. These samples handle the data exchange between the MVI69E-LDM and
end device(s).

4.2.1 Ethernet Sample

The Ethernet sample comes as two programs; a client, and a server.

 The server waits for a client to request a connection, replies with the local time, and
closes the connection.

 The client runs with the IP4 address of the server.

 The client opens a connection to the server, receives the response message, and prints
the message (the time on the server) to the console.

It is recommended that you run the server on one MVI69E-LDM module and the client on
another. Alternately, either of the programs could be ported to another Linux environment.
Attempting to run both programs on the same MVI69E-LDM is not advised due to the
complexity of IP routing.

Server ENet Sample

To run the Server ENet sample:

1 Establish a command window using Telnet or similar terminal software on the PC
through the Serial P1 port.

2 Login as user: root, using password: password.

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference.

3 The Ethernet Port E1 is used to communicate with the client device. The server and
client devices must both be connected on the same IPv4 subnet.

4 Set the IPv4 address and mask of the Ethernet port using the ifconfig command.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 49 of 125

To execute the sample:

1 Navigate to the default home directory /psft/sample.

2 Type the command ./Server_Sample& to run the program as a background task. The
server will wait forever processing requests from clients.

While reviewing the source code, you'll see that the program:

 registers sigquit_handler for four signals using the signal function.

 checks command line and prints usage message if needed.

 opens the backplane using open_backplane(). See the description in Backplane_Sample.

 initializes the LEDs on the front panel.

 Calls the function socket() to create an UN-named socket inside the kernel. socket()
returns an integer known as a socket descriptor:

o The function takes domain/family as its first argument. For Internet family of IPV4
addresses, use AF_INET.

o The second argument SOCK_STREAM specifies that type of connection to use. In this
case, a sequential, reliable, two way connection is desired.

o The third argument select the protocol. Generally, this is zero as the system normally
only has one protocol for each type of connection, although it is possible to have
multiple protocols for a connection type. Zero tells the system to use the default
protocol for the specified type of connection. In this case, the default is TCP.

 zeros out the send buff and serv addr variables.

 In preparation for the call to bind(), the serv_addr is then set to the well known port

address SERVER_PORT_NUMBER, and any IP address. This allows a connection to be
accepted from any IP address as long as the well known port address is specified.

 calls function bind() to assign the address specified in the structure serv_addr to the

socket created by the call to socket ().

 calls function listen() with second argument as '10' to specify the maximum number of
client connections that the server will queue for this listening socket.

 The call to listen() makes the socket a functional listening socket.

 Code enters an infinite while loop in which:

o the call to accept() puts the server to sleep, waiting for an incoming client request.

When a request is received and the three way TCP handshake is complete, accept()
wakes up and returns the socket descriptor representing the client socket.

o time() is called to read the current system time.

o snprintf() is used to put the time into the send buffer in a human readable format.

o write() is then called to send formatted time to the client.

o close() is then used to close the connection to the client.

o sleep() is invoked to yield the processor for one second.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 50 of 125 ProSoft Technology, Inc.

Client ENet Sample

To run the Client ENet Sample:

1 Establish a command window using Telnet or similar terminal software on the PC
through the Serial P1 port.

2 Login as user: root, using password: password.

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference.

3 The Ethernet Port E1 will be used to communicate with the server. The server and client
devices must both be connected on the same IPv4 subnet.

4 Set the IPv4 address and mask of the first Ethernet port using ifconfig command.

To execute the sample:

1 Go to the default home directory /psft/sample.

2 Type the command ./Client_Sample ip.address.of.server to run the program. The IP
address of the server node must be provided in order for the server to know which node
is executing the server program.

3 The client will send a connection request to the server, print the response from the
server to the console, and then exit.

Reviewing the source code for Client_Sample, you will see that the main program:

 registers sigquit_handler for four signals.

 checks command line and print usage message if required.

 opens the backplane using open_backplane(). See the detailed description in

backplane_sample.

 creates a socket with a call to socket().

 initializes the server address (serv_addr) structure:

o indicates that an IP4 address is going to be used with AF_INET.

o sets the destination port is the well known port SERVER_PORT_NUMBER.

o converts the string version of the server IP address to binary with inet_pton().

 connect() is called to create the TCP connection to the server.

 When the sockets are connected, the server sends the date and time from the server as
a message back to the clients. The client then uses the read() function to receive the
buffer of data and prints the contents to the console.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 51 of 125

4.2.2 Serial Sample

To run the Serial sample:

1 Establish a command window using Telnet or similar terminal software on the PC
through the Ethernet E1 port or Serial P1 port.

2 Login:

user: root

password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference.

To execute the sample:

1 Navigate to the default home directory /psft/sample.

2 Type the command ./Serial_Sample ttyS1 test string in order to run the program with
ttyS1 as the output, and "test string" sent to that port.

While reviewing the source code for Serial_Sample, you'll see that the main program:

 registers sigquit_handler for four signals.

 checks command line and print usage message if required.

 opens the backplane using open_backplane(). See the detailed description in

backplane_sample.

 reads the serial configuration jumpers and ensures that both serial ports are configured
as RS-232.

 opens the serial port using function open_serial_port(). Examine this function:

o opens the serial device by calling open().

o reads current serial port attributes using tcgetaddr().

o configures serial port attributes. The routine uses cfsetispeed() to set the baud rate.

It then uses tcsetattr() to set the remaining attributes.

 initializes the LEDs on the front panel.

 enters a for loop which transmits a test string one character at a time by calling write()

and sleeping for 500 msec using usleep().

 closes the serial drive connection using close().

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 52 of 125 ProSoft Technology, Inc.

4.2.3 LED Sample

This program shows how to interact with the MVI69E-LDM hardware at the most basic level.

To run the LED sample:

1 Establish a command window using Telnet or similar terminal software program on the
PC, through either the Ethernet or Serial P1 port.

2 Login as user: root, using password: password.

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference.

To execute the sample:

1 Navigate to the default home directory /psft/sample and type the command

./Led_Sample&. This will run the Led_Sample program in the background.
2 Looking at the sample source, you'll see that the program:

o registers Linux event handlers using the signal function.

o opens a connection to the hardware via the MVI69 library API MVI69_Open. Although

the MVI69_OpenNB routine could be used (since this sample does not communicate
across the backplane).

o reads the module information using MVI69_GetModuleInfo an displays this information
to the terminal.

o reads the version information of the MVI69 driver using MVI69_GetVersionInfo and
displays this information to the terminal.

o reads the state of the serial configuration jumpers using ShowSerialJumpers and
prints this information to the terminal.

o reads the state of the Setup Jumper using the function MVI69_GetSetupJumper and
prints this information to the console.

o initializes all LEDs to OFF.

3 The program then uses two nested loops to cycle through the LEDs and changes the

state of the LED to every possible display state. This uses the MVI69_SetLED function.
4 Exit the program by killing it (CTRL-C or kill -9).

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 53 of 125

4.2.4 Backplane Sample

The Backplane Sample program shows block transfer communication with the
CompactLogix controller in slot 0 of the CompactLogix rack. The CompactLogix controller
must be loaded with the sample ladder logic and be configured to communicate with the
MVI69E-LDM module. The ladder is MVI69_LDMACD.

To run the Backplane sample:

1 Establish a command window using Telnet or similar terminal software on the PC
through either the Ethernet or Serial P1 port.

2 Login
user: root

password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference.

To execute the sample:

1 Navigate to the default home directory /psft/sample and type the command

./Backplane_Sample& to run this program as a background task.
2 Reviewing the source code for the Backplane Sample, the program:

 registers Linux event handlers using the signal function.

 opens a connection to the hardware via the backplane library API using the

open_backplane routine. The open_backplane will:

o change the module information with the MVI69_SetModuleInfo routine.

o call MVI69_Open to get access to the LDM hardware and backplane. (This call will wait
in a loop until backplane access is obtained)

o read the size of the configured IO using MVI69_GetIOConfig.

o read and display the module identity using MVI69_GetModuleInfo.

 sets each of the front panel LEDs to a default using the MVI69_SetLED function.

 enters a main (infinite loop) within this loop. The program will:

o first read the current run/program mode of the processor using MVI69_GetScanMode,
and prints the state if it has changed since the last time it was read.

o wait for an Input Scan from the CompactLogix processor using the

MVI69_WaitForInputScan function.

Note: MVI69_WaitForOutputScan could also be used.

o MVI69_GetScanCounter function is used to read the number of the scan. The scan
count modulo 5000 is used in data write (i.e., controller input data) a few lines below.

o read output data (read data for the module) from the controller using the function

MVI69_ReadOutputImage.
o If the second element has changed since the last read, the new data is copied from

the read (controller output) data to the write (controller input) data. If the data has not
changed, the data in the writer buffer is decremented. The scan count (read above)
is written to the 0th element.

o write the data back for the controller to read using the MVI69_WriteInputImage
function.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 54 of 125 ProSoft Technology, Inc.

4.3 Application Tutorials

The following sections describe how to run and understand the sample applications
provided with the module. These applications handle the data exchange between the
backplane, MVI69E-LDM, and end device(s).

4.3.1 Ethernet Application

You cannot run this sample if Backplane_Sample is running. Backplane_Sample runs by
default during startup. To run the enet_application sample, you must kill the
Backplane_Sample script. See the section entitled "Important Module Startup Information -
Please Read" for information on how to kill or change the Backplane_Sample script.

The Ethernet Communications program illustrates how to interact with the MVI69E-LDM
using its Ethernet port as both a server and a client communicating through the backplane to
send and receive data. The sample also uses multi-threading in order to run as both a
server and client asynchronously.

To test the MVI69E-LDM as a client:

1 Set up TCP Stress Tester as a server with the following parameters:

o PORT: 5000
o CONNECTION: TCP
o SEND SPEED: Single
o TYPE: Server

2 Subnet Example: 10.1.3.x (or default 192.168.0.250)
3 Click OPEN and allow the TCP Stress Tester to listen once the sample program launches

(steps to launch the sample program below)..

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 55 of 125

To test the MVI69E-LDM as a server:

1 Set up TCP Stress Tester as a client:

o PORT: 6000
o CONNECTION: TCP
o SEND SPEED: Single
o TYPE: Client

Subnet Example: 10.1.2.x (or default 192.168.1.250).

2 Ensure that you use the IP address of one of the two Ethernet ports available on the
MVI69E-LDM as the HOST address (information to access / set IP addresses in the
module is discussed later).

3 Launch the sample ladder for the MVI69E-LDM in RSLogix 5000. Please observe that
the module is not proceeding with I/O communications. This is normal. The sample
program initiates backplane communication.

4 To communicate on the MVI69E-LDM, use Telnet or other terminal connection program
to open a serial connection (baud 115200) to the COM port of choice on either of the two
computers.

To change Ethernet port IP addresses to use the subnets chosen temporarily:

1 Type in the terminal console:

ifconfig eth0 x.x.x.x where 'x' is your IP address of choice for Ethernet Port 0.
2 Navigate to the sample directory

cd /psft/sample.

3 Type command ./enet_application without the destination IP address when testing the

MVI69E-LDM as a server. Type command ./enet_application x.x.x.x where 'x' is the
destination IP address of the server running TCP Stress Tester when testing the
MVI69E-LDM as a client.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 56 of 125 ProSoft Technology, Inc.

To initiate external client communication:

Click OPEN once the Ethernet Communications sample is running in RSLogix 5000 (you
may have to click twice depending on your computer).

Once the program is running and a TCP Tester server and client information is established,
data is received through the backplane and to/from the TCP Stress Testing applications and
RSLogix 5000. The program modifies the tags within RSLogix 5000 using the sample ladder
provided with any string input:

 Input Tags: 0-9 can be modified by the MVI69E-LDM client for the MVI69E-LDM.

 Output Tags: 0-9 can be modified by the TCP Tester server for the MVI69E-LDM.

 Input Tags: 11-20 can be modified by the MVI69E-LDM server of the MVI69E-LDM.

 Output Tags: 10-19 can be modified by the TCP Tester client of the MVI69E-LDM

Please note that it is recommended to set the 'Style' in RSLogix 5000 to 'ASCII' instead of
INT or Hex due to the way that RSLogix 5000 interprets bytes and byte order.

RSLogix 5000 creates a high byte and low byte for each tag in its database. For example, if
the word 'Hello!' was typed from the TCP Stress Tester, RSlogix5000 separates the values
to:

 'eH'

 'll'

 '!o'

Since the values are read in byte order (from right most to left most), there is a high byte and
low byte used and RSLogix 5000 combines those byte values in you choose to view it as in
INT or Hex value.

For example, the letters 'te' in a single tag are separated and combined as follows:

Binary Value: 01110100 0110010

ASCII: t e

Combined Binary Value: 0111010001100101 = 29797 int

ASCII (INT Value): 101 116

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 57 of 125

The sample application can have its sample ladder input tags modified via TCP Stress
Tester either through the external server or the client by creating any string value up to 10
tag entries long (20 characters total, including spaces):

Click START to transmit the data from the computer into the module and backplane. It is then
updated in RSLogix 5000 with the appropriate number associations.

As mentioned earlier, all character data is sent to RSLogix 5000 in sets of two per tag since
each tag is 16 bits in length and each ASCII character resides in 8 bits (one byte). All ASCII
information for each tag reads from right to left (low byte to high byte) as shown in the
following example:

MVI69E-LDM Running as a Server

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 58 of 125 ProSoft Technology, Inc.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 59 of 125

MVI69E-LDM Running as a Client

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 60 of 125 ProSoft Technology, Inc.

The following diagram shows the multi-threading hierarchy. All threads (excluding the main
thread) can be removed/disabled and the sample will continue to function as directed,
excluding the functionality of the removed thread and any child threads associated with it.

4.3.2 Serial Application

You cannot run this sample if Backplane_Sample is running. Backplane_Sample runs by
default during startup. To run the serial_application sample, you must kill the
Backplane_Sample script. See the section entitled "Important Module Startup Information -
Please Read" for information on how to kill or change the Backplane_Sample script.

The Serial_Application shows an example of how you can use the LDM module to
communicate to an end device to transmit/receive ASCII strings from the CompactLogix
processor through the backplane to the LDM module on the bottom serial port (default
application port). This same sample program:

 Streams ASCII data into the module from the end device on the same serial port.

 Sends the data to the backplane to the controller tags of the CompactLogix.

 Sends out the number of bytes entered in Write_Byte_Cnt Controller tag continuously
after the Serial_App_Sample_WriteTrigger tag has been triggered from the default
application port.

 Streams in ASCII data from the end device into the Controller tag Local:1:I.Data.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 61 of 125

To run the Serial Application sample:

Use HyperTerminal or a similar program to perform the following steps.

1 Open HyperTerminal.
2 Enter a name and choose an icon for the connection.

3 Choose the appropriate COM port.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 62 of 125 ProSoft Technology, Inc.

4 Use the following settings for the Serial_Application program.

o BITS PER SECOND: 115200
o DATA BITS: 8
o PARITY: None
o STOP BITS: 1
o FLOW CONTROL: None

5 Under the ASCII SETUP, select ECHO TYPED CHARACTER LOCALLY. This allows you to see
the stream data being sent to the LDM module on the HyperTerminal screen.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 63 of 125

6 Click OK, but keep HyperTerminal open since you will use it again after you complete
the following sections.

7 Use PuTTY or Telnet to log into the module.
MVI69E login: root

Password: password

Note: After the first successful login, you will be prompted to change the password. Be sure to record the new
password in a safe place for future reference.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 64 of 125 ProSoft Technology, Inc.

8 Change to the Sample directory:
cd /psft/sample

9 Type ./ and the name of the sample program that you want to run. In this example, type:
./Serial_Application&

10 Keep PuTTY or Telnet open and set up the CompactLogix 5000 program as described in
Setting Up the ControlLogix 5000.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 65 of 125

11 Open the MVI69E-LDM.ACD program and change the appropriate chassis type to match
your hardware and firmware.

12 Download the MVI69E-LDM.ACD file in the CompactLogix processor by choosing
COMMUNICATIONS > WHO ACTIVE > DOWNLOAD.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 66 of 125 ProSoft Technology, Inc.

13 Trigger 'Serial_ENET_App_Sample_On_Trigger' by right-clicking the Controller tag and
choosing TOGGLE BIT.

This causes the MVI69E-LDM module to send out the text world! to the console.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 67 of 125

14 You can view how the stream of data is accepted by the LDM module by untoggling the
Serial_App_Sample_WriteTrigger and typing a string of characters on the console.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 68 of 125 ProSoft Technology, Inc.

15 You can see the letter 'h' in the location 'Local:1:I.Data'. Make sure that the STYLE
column in the CompactLogix is set to ASCII.

16 You can also observe this on the console port as well.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 69 of 125

5 API Functions

5.1 CIP API Initialization Functions

MVI69_Open

Syntax

 int MVI69_Open(MVI69HANDLE *handle);

Parameters

handle Pointer to variable of type MVI69HANDLE

Description

MVI69_Open acquires access to the API and sets handle to a unique ID that the application
uses in subsequent functions. This function must be called before any of the other API
functions can be used (with the exception of MVI69_SetModuleInfo).

The function provides full access to the backplane and all of the API functions. Only one
program is allowed to call this function.

IMPORTANT: Once the API is opened, MVI69_Close should always be called before exiting the application.

Return Value

MVI69_SUCCESS API was opened successfully

MVI69_ERR_REOPEN API is already open

MVI69_ERR_NODEVICE Backplane driver could not be accessed

Note: MVI69_ERR_NODEVICE will be returned if the backplane device driver is not loaded.

Example

 MVI69HANDLE Handle;

 if (MVI69_Open(&Handle)!= MVI69_SUCCESS)

 {

 printf ("Open failed!\n");

 }

 else

 {

 printf ("Open succeeded\n");

 }

See Also

MVI69_Close

MVI69_OpenNB

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 70 of 125 ProSoft Technology, Inc.

MVI69_OpenNB

Syntax

 int MVI69_OpenNB(MVI69HANDLE *handle);

Parameters

Handle pointer to variable of type MVI69HANDLE

Description

MVI69_OpenNB acquires access to the API and sets Handle to a unique ID that the application
uses in subsequent functions. This function must be called before any of the other API
functions can be used.

The purpose of this function is to provide access to certain API functions even if the API is
already in use by another program. This function does not provide access to the backplane;
however, it does provide access to the following functions.

MVI69_GetModuleInfo

MVI69_GetSerialConfig

MVI69_SetSerialConfig

MVI69_GetSetupJumper

MVI69_SetLED

MVI69_GetVersionInfo

IMPORTANT: Once the API has been opened, MVI69_Close should always be called before exiting the
application.

Return Value

MVI69_SUCCESS API was opened successfully

MVI69_ERR_REOPEN API is already open

MVI69_ERR_NODEVICE Backplane driver could not be accessed.

Note: MVI69_ERR_NODEVICE is returned if the backplane device driver is not loaded.

Example:

MVI69Handle Handle;

if (MVI69_OpenNB(&handle)!=MVI69_SUCCESS) {

 printf ("Open failed!\n");

} else {

 printf ("Open succeeded\n");

}

See Also

MVI69_Open

MVI69_Close

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 71 of 125

MVI69_Close

Syntax

 int MVI69_Close(MVI69HANDLE handle);

Parameters

handle handle returned by previous call to MVI69_Open or
MVI69_OpenNB

Description

This function is used by an application to release control of the API.

handle must be a valid handle returned from MVI69_Open or MVI69_OpenNB.

IMPORTANT: Once the API has been opened, this function should always be called before exiting the
application.

Return Value

MVI69_SUCCESS API was closed successfully

MVI69_ERR_NOACCESS handle does not have access

Example

 MVI69HANDLE handle;

 MVI69_Close (handle);

See Also

MVI69_OpenNB

MVI69_Open

After the CIP API has been opened, this function should always be called before exiting the
application.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 72 of 125 ProSoft Technology, Inc.

MVI69_GetIOConfig

Syntax

 int MVI69_GetIOConfig(MVI69HANDLE apihandle,

 MVI69_IOCONFIG *ioconfig);

Parameters

handle handle returned by previous call to MVI69_Open

ioconfig Pointer to MVI69IOCONFIG structure to receive configuration
information.

Description

This function is used to obtain the IO configuration of the MVI69E module. handle must be a
valid handle returned from MVI69_Open.

The MVI69IOCONFIG structure is defined as shown:

typedef struct tagMVI69IOCONFIG

{

WORD MappedInputWords;//Input words available for direct access

WORD MappedOutputWords;//Output words available for direct access.

WORD MsgRcvBufSize;//Max size in words for received messages.

WORD MsgSndBufSize;//Max size in words for sent messages.

} MVI69IOCONFIG;

The maximum sizes in words of the module's input images are returned in the
MVI69IOCONFIG structure pointed to by ioconfig. The MappedInputWords and
MappedOutputWords members are set equal to the number of words of the respective
image that is available for direct access via the MVI69_WriteInputImage or
MVIbpReadOutputImage functions. The MsgRcvBufSize and MSgSndBufSize members
indicate the maximum size in words for received or sent messages respectively..

Return Value

MVI69_SUCCESS no errors were encountered

MVI69_ERR_NOACCESS handle does not have access

Example

MVI69HANDLE handle;

MVI69IOCONFIG ioconfig;

MVI69_GetIOConfig (handle, &ioconfig);

printf ("%d words of input image available\n", ioconfig.DirectInputSize);

printf ("%d words of output image available\n", ioconfig.DirectOutputSize);

See Also

MVI69_SetIOConfig

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 73 of 125

MVI69_SetIOConfig

Syntax

 int MVI69_SetIOConfig(MVI69HANDLE apihandle,

 MVI69_IOCONFIG *ioconfig);

Parameters

handle handle returned by previous call to MVI69_Open

ioconfig Pointer to MVI69IOCONFIG structure to receive configuration
information.

Description

This function may be used to set the size of the module's IO images available for direct IO
access. handle must be a valid handle returned from MVI69_Open.

The actual number of input and output words that are transferred between the controller and
the MVI69E module is determined by the configuration of the generic profile. The only
purpose of this routine is to set maximum sizes allowed by the MVI69_ReadOutputImage
and MVI69_WriteInputImage functions.

The message buffer sizes are fixed. Therefore, the MsgRcvBufSize and MsgSndBufSize
members are ignored by this function.

Return Value

MVI69_SUCCESS no errors were encountered

MVI69_ERR_NOACCESS handle does not have access

MVI69_ERR_BADCONFIG Configuration is not valid

Example

MVI69HANDLE handle;

MVI69IOCONFIG ioconfig;

ioconfig.DirectInputSize = 20; //20words used for input

ioconfig.DirectOutputSize = 10; //10 words used for output

if (MVI69_SUCCESS !=MVI69_SetIOConfig (handle, &ioconfig))

 printf ("Error: IO COnfiguration failed\n");

See Also

MVI69_GetIOConfig

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 74 of 125 ProSoft Technology, Inc.

5.2 Direct I/O Access

MVI69_ReadOutputImage

Syntax

int MVI69_ReadOutputImage (MVI69HANDLE handle,

 WORD offset,

 WORD length,

 WORD *buffer);

Parameters

handle handle returned by previous call toMVI69_Open

offset word offset into output image at which to begin reading

length number of words to read

buffer pointer to buffer to receive data from output image

Description

MVI69_ReadOutputImage reads from the module's output image.

handle must be a valid handle returned from MVI69_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the output image to begin reading, and length specifies the
number of words to read. The error MVI69_ERR_BADPARAM will be returned if an attempts
is made to access the output image beyond the range configured for direct IO. See the
MVI69_GetIOConfig and MVI69_SetIOConfig functions for more information.

The output image is written by the control processor and read by the module.

Return Value

MVI69_SUCCESS data was read from the output image successfully

MVI69_ERR_NOACCESS handle does not have access

MVI69_ERR_BADPARAM Parameter contains invalid value

Example

MVI69HANDLE handle;

WORD buffer[8];

int rc;

/* Read 8 words of data from the output image, starting with word 2*/

rc = MVI69_ReadOutputImage (Handle, 2, 8, buffer);

if (rc != MVI69_SUCCESS)

 printf("ERROR: MVI69_ReadOutputImage failed");

See Also

MVI69_GetIOConfig

MVI69_SetIOConfig

MVI69_WriteInputImage

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 75 of 125

MVI69_WriteInputImage

Syntax

int MVI69_WriteInputImage (MVI69HANDLE handle,

 WORD offset,

 WORD length,

 WORD *buffer);

Parameters

handle handle returned by previous call to MVI69_Open

offset word offset into output image at which to begin writing

length number of words to write

buffer pointer to buffer of data to be written to input image

Description

MVI69_WriteInputImage writes to the module's input image.

handle must be a valid handle returned from MVI69_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the output image to begin reading, and length specifies the
number of words to write. The error MVI69_ERR_BADPARAM will be returned if an attempt
is made to access the input image beyond the range configured for direct IO. If this error is
returned, no data will be written to the input image. See the MVI69_GetIOConfig and

MVI69_SetIOConfig functions for more information.

The input image is written by the module and read by the control processor.

Return Value

MVI69_SUCCESS data was written to the input image successfully

MVI69_ERR_NOACCESS handle does not have access

MVI69_ERR_BADPARAM Parameter contains invalid value

Example

MVI69HANDLE handle;

WORD buffer[2];

int rc;

/* Write 2 words of data to the input image, starting with word 0*/

rc = MVI69_WriteInputImage (Handle, buffer, 0, 2);

if (rc != MVI69_SUCCESS)

 printf("ERROR: MVI69_WriteInputImage failed");

See Also

MVI69_GetIOConfig

MVI69_SetIOConfig

MVI69_ReadOutputImage

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 76 of 125 ProSoft Technology, Inc.

5.3 Messaging

MVI69_GetMsgRequestFromBp

Syntax

int MVI69_GetMsgRequestFromBp(MVI69HANDLE handle,

 WORD *buffer,

 WORD *length,

 WORD reserved,

 WORD timeout);

Parameters

handle handle returned by previous call to MVI69_Open

buffer pointer to buffer to receive message data from processor

length pointer to variable containing the maximum message length in words.
When this function is called, this should be set to the size of the indicated
buffer. Upon successful return, this variable will contain the actual
received message length.

timeout maximum number of milliseconds to wait for message

Description

This function retrieves a message sent from the control processor.

handle must be a valid handle returned from MVI69_Open.

Upon calling this function, length should contain the maximum message size in words to be
received. buffer must point to a buffer of at least length words in size. Upon successful
return, length will contain the actual length of the message received.

If length exceeds the maximum message size specified by the value MsgRcvBufSize (see
the MVI69_GetIOConfig function), MVI69_ERR_BADPARAM will be returned.

timeout specifies the number of milliseconds that the function will wait for a message. To poll
for a message without waiting, set timeout to zero. If no message has been received,
MVI69_ERR_TIMEOUT will be returned.

If the message received from the control processor is larger than length, the message will
be truncated to length words and MVI69_ERR_MSGTOOBIG will be returned.

If the call returns MVI69_SUCCESS, buffer will contain the message in the following format:

Name Data Type Description

MessageId WORD Message ID. Used to match responses to requests.

SizeofMessage WORD Size of the Message data in bytes.

Message[...] BYTEs CIP Message packet, starting with Service Code.
Total number of bytes is provided in the
SizeofMessage field.

The API does not act upon any data of the Message, nor does it monitor response timeouts.
The user application is responsible for parsing the message and generating a response.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 77 of 125

The API can queue up to 8 requests and they remain queued after the message is given to
the user application. The user application must generate a response in order to free the
message from the queue.

Return Value

MVI69_SUCCESS a message has been received.

MVI69_ERR_NOACCESS handle does not have access

MVI69_ERR_TIMEOUT the timeout occurred before a message was received

MVI69_ERR_BADPARAM a parameter is invalid

MVI69_ERR_BADCONFIG receive messaging is not enabled

Example

MVI69HANDLE handle;

int rc;

WORD buffer[250]

WORD length;

length = 250; //maximum message size that can be received

//wait up to 5 seconds for a message

rc = MVI69_GetMsgRequestFromBp (Handle, buffer, &length, 5000);

if (rc == MVI69_SUCCESS)

 printf ("Message received. Length is %d words\n", length);

See Also

MVI69_GetIOConfig

MVI69_SendMsgResponseToBp

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 78 of 125 ProSoft Technology, Inc.

MVI69_SendMsgResponseToBp

Syntax

int MVI69_SendMsgResponseToBp(MVI69HANDLE handle,

 WORD *buffer,

 WORD *length,

 WORD reserved,

 WORD timeout);

Parameters

handle handle returned by previous call to MVI69_Open

buffer pointer to buffer to send to processor

length the length in words of the message to send

timeout maximum number of milliseconds to wait to send message

Description

This function sends a response to the control processor.

handle must be a valid handle returned from MVI69_Open.

Upon calling this function, length should contain the response size in words. buffer must
point to a buffer of at least length words in size.

If length exceeds the maximum response size specified by the value MsgSndBufSize (see
the MVI69_GetIOConfig function), MVI69_ERR_BADPARAM will be returned.

When this function is called, the buffers data must contain the message in the following
format:

Name Data Type Description

MessageId WORD Must echo MessageID of request

SizeofMessage WORD Size of the Message data in bytes.

Message[...] BYTE’s CIP Response packet, starting with Service
Response. Total number of bytes is provided in
the SizeofMessage field.

The API uses the MessageId field to match responses to requests from the backplane.
Once the API matches a response to its request, the response will be forwarded to the
backplane and the original request can be released.

The API does not act upon any data of the Message.

Since the API maintains an internal queue of 8 messages, the user application must
generate responses to allow reception of more than 8 messages. If 8 requests are queued
and the API receives another request, it will be dropped.

If the SizeofMessage field is set to 0, the original request is released and no response is
sent to the backplane. This allows the user application to flush messages.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 79 of 125

Return Value

MVI69_SUCCESS a message has been received.

MVI69_ERR_NOACCESS handle does not have access

MVI69_ERR_BADPARAM a parameter is invalid

MVI69_ERR_BADCONFIG send messaging is not enabled

Example

MVI69HANDLE handle;

int rc;

WORD buffer[250];

//wait 5 seconds for the message to be sent

rc = MVI69_SendMsgResponseToBp (Handle, buffer, 250);

if (rc == MVI69_SUCCESS)

 printf ("Message sent\n");

See Also

MVI69_GetIOConfig

MVI69_GetMsgRequestFromBp

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 80 of 125 ProSoft Technology, Inc.

5.4 Synchronization

MVI69_WaitForInputScan

Syntax

int MVI69_WaitForInputScan (MVI69HANDLE handle,

 WORD timeout);

Parameters

handle handle returned by previous call to MVI69_Open

timeout maximum number of milliseconds to wait for scan

Description

MVI69_WaitForInputScan allows an application to synchronize with the scan of the module's
input image. This function will return immediately after the input image has been read. This
function may also be used by a module application to determine if the backplane is active.

handle must be a valid handle returned from MVI69_Open. timeout specifies the number of
milliseconds that the function will wait for the input scan to occur.

Note: There is no distinction in teh MVI69E module between input and output scans. Therefore, the
MVI69_WaitForInputScan and MVI69_WaitForOutputScan functions will perform exactly the same function and
are interchangeable.

Return Value

MVI69_SUCCESS the input scan has occurred.

MVI69_ERR_NOACCESS handle does not have access

MVI69_ERR_TIMEOUT the timeout expired before an input scan occurred

Example

MVI69HANDLE handle;

/*wait here until input scan, 50ms timeout */

rc = MVI69_WaitForInputScan (Handle, 50);

if (rc == MVI69_ERR_TIMEOUT)

 printf ("Message scan did not occur within 50 milliseconds\n");

else

 printf ("Input scan has occurred\n");

See Also

MVI69_WaitForOutputScan

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 81 of 125

MVI69_WaitForOutputScan

Syntax

int MVI69_WaitForOutputScan (MVI69HANDLE handle,

 WORD timeout);

Parameters

handle handle returned by previous call to MVI69_Open

timeout maximum number of milliseconds to wait for scan

Description

MVI69_WaitForOutputScan allows an application to synchronize with the scan of the
module's output image. This function will return immediately after the modules output image
has been written.

handle must be a valid handle returned from MVI69_Open. timeout specifies the number of
milliseconds that the function will wait for the output scan to occur.

Note: There is no distinction in the MVI69E module between input and output scans. Therefore, the
MVI69_WaitForInputScan and MVI69_WaitForOutputScan functions will perform exactly the same function and
are interchangeable.

Return Value

MVI69_SUCCESS the output scan has occurred.

MVI69_ERR_NOACCESS handle does not have access

MVI69_ERR_TIMEOUT the timeout expired before an output scan occurred

Example

MVI69HANDLE handle;

int rc;

/*wait here until output scan, 50ms timeout */

rc = MVI69_WaitForOutputScan (Handle, 50);

if (rc == MVI69_ERR_TIMEOUT)

 printf ("Output scan did not occur within 50 milliseconds\n");

else

 printf ("Output scan has occurred\n");

See Also

MVI69_WaitForInputScan

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 82 of 125 ProSoft Technology, Inc.

5.5 Serial Ports

The API functions in this section can be used to access tag data withing CompactLogix
controllers. The prototypes for most of these functions and their associated data structure
definitions can be found in the header file OCXTagDb.h.

The tag access functions that include "Db" in the name are for use with a valid tag database
(see OCXcip_BuildTagDb).

MVI69_GetSerialConfig

Syntax

int MVI69_GetSerialConfig (MVI69HANDLE handle,

 MVI69SPCONFIG *spconfig);

Parameters

handle handle returned by previous call to MVI69_Open

spconfig pointer to structure of type MVI69SPCONFIG

Description

MVI69_GetSerialConfig retrieves the state of the serial port configuration jumper for the port
specified. The information is returned in the structure spconfig.

handle must be a valid handle returned from MVI69_Open.

The MVI69SPCONFIG structure is defined as follows:

typedef struct tagMVI69SPCONFIG

{

 int port_num; /* Port number (1 or 2) */

 int port_cfg; /* Jumper position */

} MVI69SPCONFIG;

port_num must be set to the desired port before calling this function. Upon return, port_cfg
will be set to one of the following values:

MVI69_SERIAL_CONFIG_NONE (No jumper installed)

MVI69_SERIAL_CONFIG_RS-232

MVI69_SERIAL_CONFIG_RS-422

MVI69_SERIAL_CONFIG_RS-485

Return Value

MVI69_SUCCESS the configuration information was read successfully

MVI69_ERR_NOACCESS handle does not have access

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 83 of 125

Example

MVI69HANDLE handle;

MVI69SPCONFIG spconfig;

/*Get jumper setting for Port 2 and verify that it is RS-232*/

spconfig.port_num = 2

MVI69_GetSerialConfig (Handle, &spconfig);

if (spconfig.port_cfg != MVI69_SERIAL_CONFIG_RS232)

 printf ("Port 2 is not configured for RS-232");

See Also

MVI69_SetSerialConfig

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 84 of 125 ProSoft Technology, Inc.

MVI69_SetSerialConfig

Syntax

int MVI69_SetSerialConfig (MVI69HANDLE handle,

 MVI69SPCONFIG *spconfig);

Parameters

handle handle returned by previous call to MVI69_Open

spconfig pointer to structure of type MVI69SPCONFIG

Description

MVI69_SetSerialConfig sets the serial port configuration. This function overrides the serial
port configuration jumper setting. The port number and configuration are specified in the
structure spconfig.

handle must be a valid handle returned from MVI69_Open.

The MVI69SPCONFIG structure is defined as follows:

typedef struct tagMVI69SPCONFIG

{

 int port_num; /* Port number (1 or 2) */

 int port_cfg; /* Jumper position */

} MVI69SPCONFIG;

Return Value

MVI69_SUCCESS the configuration information was read successfully

MVI69_ERR_NOACCESS handle does not have access

Example

MVI69HANDLE handle;

MVI69SPCONFIG spconfig;

/* Set up port 2 for RS-232*/

spconfig.port_num = 2;

spconfig.port_cfg = MVI69_SERIAL_CONFIG_RS232;

MVI69_SetSerialConfig (Handle, &spconfig);

See Also

MVI69_GetSerialConfig

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 85 of 125

5.6 Miscellaneous Functions

MVI69_GetVersionInfo

Syntax

int MVI69_GetVersionInfo (MVI69HANDLE handle,

 MVI69VERSIONINFO *verinfo);

Parameters

handle handle returned by previous call to MVI69_Open

verinfo pointer to structure of type MVI69VERSIONINFO

Description

MVI69_GetVersionInfo retrieves the current version of the API library and the backplane
device driver. This information is returned in the structure verinfo.

handle must be a valid handle returned from MVI69_Open.

The MVI69VERSIONINFO structure is defined as follows:

typedef struct tagMVI69VERSIONINFO

{

 WORD APISeries; /* API series */

 WORD APIRevision; /* API revision */

 WORD DDSeries; /* Device driver series */

 WORD DDRevision; /* Device driver revision */

} MVI69VERSIONINFO

Return Value

MVI69_SUCCESS the version information was read successfully

MVI69_ERR_NOACCESS handle does not have access

Example

MVI69HANDLE handle;

MVIBPVERSIONINFO verinfo;

/* print version of API library and driver */

MVI69_GetVersionInfo (handle, &verinfo);

printf("Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);

printf("Driver Series &d, Rev %d\n, verinfo.DDSeries, verinfo.DDRevision);

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 86 of 125 ProSoft Technology, Inc.

MVI69_GetModuleInfo

Syntax

int MVI69_GetModuleInfo (MVI69HANDLE handle,

 MVI69MODULEINFO *modinfo);

Parameters

handle handle returned by previous call to MVI69_Open

modinfo pointer to structure of type MVI69MODULEINFO

Description

MVI69_GetModuleInfo retrieves identity information for the module This information is
returned in the structure modinfo.

handle must be a valid handle returned from MVI69_Open.

The MVI69MODULEINFO structure is defined as follows:

typedef struct tagMVIBPMODULEINFO

{

 WORD VendorID; /* Reserved */

 WORD DeviceType; /* Reserved */

 WORD ProductCode; /* Device model code */

 BYTE MajorRevision; /* Device major revision */

 BYTE MinorRevision; /* Device minor revision */

 DWORD SerialNo; /* Serial number */

 BYTE Name[32]; /* Device name (string) */

} MVI69MODULEINFO

Return Value

MVI69_SUCCESS the module information was read successfully

MVI69_ERR_NOACCESS handle does not have access

Example

MVI69HANDLE handle;

MVIBPMODULEINFO modinfo;

/* print module name */

MVI69_GetModuleInfo (handle, &modinfo);

printf("Name is %s\n", modinfo.Name);

See Also

MVI69_SetModuleInfo

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 87 of 125

MVI69_SetModuleInfo

Syntax

int MVI69_SetModuleInfo (MVI69HANDLE handle,

 MVI69MODULEINFO *modinfo);

Parameters

handle not used - set to 0

modinfo pointer to structure of type MVI69MODULEINFO

Description

MVI69_SetModuleInfo sets the identity information for the module. This function must be called
before MVI69_Open. The module indentity is provided in the structure modinfo. handle must be
a valid handle returned from MVI69_Open. The MVI69MODULEINFO structure is defined as:

typedef struct tagMVIBPMODULEINFO

{

 WORD VendorID; /* Reserved */

 WORD DeviceType; /* Reserved */

 WORD ProductCode; /* Device model code */

 BYTE MajorRevision; /* Device major revision */

 BYTE MinorRevision; /* Device minor revision */

 DWORD SerialNo; /* Serial number */

 BYTE Name[32]; /* Device name (string) */

} MVI69MODULEINFO

The module serial number is set during manufacturing and cannot be edited.

Return Value

MVI69_SUCCESS the module information was read successfully

MVI69_ERR_NOACCESS handle does not have access

Example

MVI69HANDLE handle;

MVIBPMODULEINFO modinfo;

/* Setup a customized module identity */

char new_name[] = "Widget 6900";

strcpy (modinfo.Name, new_name);

modinfo.VendorID = 774;

modinfo.DeviceType = 30;

modinfo.ProductCode = 42;

modinfo.MajorRevision = 2;

modinfo.MinorRevision = 1;

MVI69_SetModuleInfo (0, &modinfo);

/* Now open the API (and initialize backplane comms with new ID) */

MVI69_Open (&Handle);

See Also

MVI69_GetModuleInfo

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 88 of 125 ProSoft Technology, Inc.

MVI69_GetScanMode

Syntax

int MVI69_GetScanMode (MVI69HANDLE handle,int *mode);

Parameters

handle handle returned by previous call to MVI69_Open

mode pointer to a variable that will be updated with the current processor mode

Description

This function is used to query the state of the processor.

handle must be a valid handle returned from MVI69_Open.

mode is a pointer to an integer. When this function returns, this will be set to indicate the
current processor status and shown in the following table:

Name Description

MVI69_RUN_MODE Set if processor is in Run mode.

MVI69_PROGRAM_MODE Set if processor is in Program Mode.

Return Value

MVI69_SUCCESS no errors were encountered

MVI69_ERR_NOACCESS handle does not have access

Example

MVI69HANDLE handle;

int status;

MVI69_GetProcessorStatus (handle, &status);

if (status == MVI69_RUN_MODE)

 //Processor is in Run Mode

else

 //Processor is not in Run Mode

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 89 of 125

MVI69_GetScanCounter

Syntax

int MVI69_GetScanCounter (MVI69HANDLE handle,DWORD *count);

Parameters

handle handle returned by previous call to MVI69_Open

count pointer to a variable that will be updated with the current scan count

Description

This function returns the current scan counter. The scan counter is a 32-bit counter that is
incremented with each backplane scan.

handle must be a valid handle returned from MVI69_Open.

Return Value

MVI69_SUCCESS no errors were encountered

MVI69_ERR_NOACCESS handle does not have access

Example

MVI69HANDLE handle;

DWORD scancount;

MVI69_GetScanCounter (handle, &scancount);

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 90 of 125 ProSoft Technology, Inc.

MVI69_SetLED

Syntax

int MVI69_SetLED (MVI69HANDLE handle,int lednum, int ledstate);

Parameters

handle handle returned by previous call to MVI69_Open

lednum Specifies which of the user LED indicators is being addressed.

ledstate Specifies the state to set

Description

MVI69_SetLED allows an application to set the state of the LED indicators.

handle must be a valid handle returned from MVI69_Open.

lednum must be set to MVI69_LEDID_OK, MVI69_LEDID_CFG, MVI69_LEDID_P1,
MVI69_LEDID_P2, MVI69_LEDID_BP, or MVI69_LEDID_NET.

ledstate must be set to MVI69_LED_STATE_RED, MVI69_LED_STATE_GREEN,
MVI69_LED_STATE_YELLOW, or MVI69_LED_STATE_OFF.

Return Value

MVI69_SUCCESS the LED state has been set

MVI69_ERR_NOACCESS handle does not have access

MVI69_ERR_BADPARAM lednum or ledstate is invalid

Example

MVI69HANDLE handle;

/* OK LED green and NET LED yellow */

MVI69_SetLED(Handle, MVI69_LEDID_OK, MVI69_LED_STATE_GREEN);

MVI69_SetLED(Handle, MVI69_LEDID_NET, MVI69_LED_STATE_YELLOW);

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 91 of 125

MVI69_GetSetupJumper

Syntax

int MVI69_GetSetupJumper (MVI69HANDLE handle,int *mode);

Parameters

handle handle returned by previous call to MVI69_Open

mode Pointer to an integer that is set to 1 if the Setup Jumper is installed, or 0 if
the Setup Jumper is not installed.

Description

This function is used to query the state of the Setup Jumper.

handle must be a valid handle returned from MVI69_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1 if the
module is in setup mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup Mode. If may be
useful for an application to detect Setup Mode and perform special configuration or
diagnostic functions.

Return Value

MVI69_SUCCESS no errors were encountered

MVI69_ERR_NOACCESS handle does not have access

Example

MVI69HANDLE handle;

int mode;

MVI69_GetSetupMode (handle, &mode);

if (mode)

 // Setup jumper is installed - perform configuration/diagnostic

else

 // Not in Setup Mode - normal operation

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 92 of 125 ProSoft Technology, Inc.

6 Cable Connections

The application ports on the MVI69E-LDM module support RS-232, RS-422, and RS-485
interfaces. Please inspect the module to ensure that the jumpers are set correctly to
correspond with the type of interface you are using.

Note: When using RS-232 with radio modem applications, some radios or modems require hardware
handshaking (control and monitoring of modem signal lines). Enable this in the configuration of the module by
setting the UseCTS parameter to 1.

6.1 RS-232 Configuration/Debug Port

This port is physically an RJ45 connection. An RJ45 to DB-9 adapter cable is included with
the module. This port permits a PC-based terminal emulation program to view configuration
and status data in the module and to control the module. The cable pinout for
communications on this port is shown in the following diagram.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 93 of 125

6.2 RS-232 Application Port(s)

When the RS-232 interface is selected, the use of hardware handshaking (control and
monitoring of modem signal lines) is user definable. If no hardware handshaking will be
used, here are the cable pinouts to connect to the port.

6.2.1 RS-232: Modem Connection (Hardware Handshaking Required)

This type of connection is required between the module and a modem or other
communication device.

The Use CTS Line parameter for the port configuration should be set to Y for most modem
applications.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 94 of 125 ProSoft Technology, Inc.

6.2.2 RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module requires hardware
handshaking (control and monitoring of modem signal lines).

6.2.3 RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field device
communication port.

Note: For most null modem connections where hardware handshaking is not required, the Use CTS Line
parameter should be set to N and no jumper will be required between Pins 7 (RTS) and 8 (CTS) on the
connector. If the port is configured with the Use CTS Line set to Y, then a jumper is required between the RTS
and the CTS lines on the port connection.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 95 of 125

6.3 RS-422

The RS-422 interface requires a single four or five wire cable. The Common connection is
optional, depending on the RS-422 network devices used. The cable required for this
interface is shown below:

6.4 RS-485 Application Port(s)

The RS-485 interface requires a single two or three wire cable. The Common connection is
optional, depending on the RS-485 network devices used. The cable required for this
interface is shown below:

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 96 of 125 ProSoft Technology, Inc.

Note: Terminating resistors are generally not required on the RS-485 network, unless you are experiencing
communication problems that can be attributed to signal echoes or reflections. In these cases, installing a 120-
ohm terminating resistor between pins 1 and 8 on the module connector end of the RS-485 line may improve
communication quality.

6.4.1 RS-485 and RS-422 Tip

If communication in the RS-422 or RS-485 mode does not work at first, despite all attempts,
try switching termination polarities. Some manufacturers interpret + and -, or A and B,
polarities differently.

6.5 DB9 to RJ45 Adaptor (Cable 14)

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 97 of 125

7 Open Source Licensing

This module utilizes Open Source applications, available under the GNU Public License and
others. The following sections cover all Open Source licensing:

 GNU Public License

 Eclipse

 Python

 Debian

 GCC

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 98 of 125 ProSoft Technology, Inc.

7.1 GNU Public License

GNU GENERAL PUBLIC LICENSE

 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

 Everyone is permitted to copy and distribute verbatim copies

 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for

software and other kinds of works.

 The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,

the GNU General Public License is intended to guarantee your freedom to

share and change all versions of a program--to make sure it remains free

software for all its users. We, the Free Software Foundation, use the

GNU General Public License for most of our software; it applies also to

any other work released this way by its authors. You can apply it to

your programs, too.

 When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

them if you wish), that you receive source code or can get it if you

want it, that you can change the software or use pieces of it in new

free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have

certain responsibilities if you distribute copies of the software, or if

you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same

freedoms that you received. You must make sure that they, too, receive

or can get the source code. And you must show them these terms so they

know their rights.

 Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License

giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains

that there is no warranty for this free software. For both users' and

authors' sake, the GPL requires that modified versions be marked as

changed, so that their problems will not be attributed erroneously to

authors of previous versions.

 Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer

can do so. This is fundamentally incompatible with the aim of

protecting users' freedom to change the software. The systematic

pattern of such abuse occurs in the area of products for individuals to

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 99 of 125

use, which is precisely where it is most unacceptable. Therefore, we

have designed this version of the GPL to prohibit the practice for those

products. If such problems arise substantially in other domains, we

stand ready to extend this provision to those domains in future versions

of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of

software on general-purpose computers, but in those that do, we wish to

avoid the special danger that patents applied to a free program could

make it effectively proprietary. To prevent this, the GPL assures that

patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and

modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this

License. Each licensee is addressed as "you". "Licensees" and

"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an

exact copy. The resulting work is called a "modified version" of the

earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based

on the Program.

 To "propagate" a work means to do anything with it that, without

permission, would make you directly or secondarily liable for

infringement under applicable copyright law, except executing it on a

computer or modifying a private copy. Propagation includes copying,

distribution (with or without modification), making available to the

public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through

a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"

to the extent that it includes a convenient and prominently visible

feature that (1) displays an appropriate copyright notice, and (2)

tells the user that there is no warranty for the work (except to the

extent that warranties are provided), that licensees may convey the

work under this License, and how to view a copy of this License. If

the interface presents a list of user commands or options, such as a

menu, a prominent item in the list meets this criterion.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 100 of 125 ProSoft Technology, Inc.

 1. Source Code.

 The "source code" for a work means the preferred form of the work

for making modifications to it. "Object code" means any non-source

form of a work.

 A "Standard Interface" means an interface that either is an official

standard defined by a recognized standards body, or, in the case of

interfaces specified for a particular programming language, one that

is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of

packaging a Major Component, but which is not part of that Major

Component, and (b) serves only to enable use of the work with that

Major Component, or to implement a Standard Interface for which an

implementation is available to the public in source code form. A

"Major Component", in this context, means a major essential component

(kernel, window system, and so on) of the specific operating system

(if any) on which the executable work runs, or a compiler used to

produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all

the source code needed to generate, install, and (for an executable

work) run the object code and to modify the work, including scripts to

control those activities. However, it does not include the work's

System Libraries, or general-purpose tools or generally available free

programs which are used unmodified in performing those activities but

which are not part of the work. For example, Corresponding Source

includes interface definition files associated with source files for

the work, and the source code for shared libraries and dynamically

linked subprograms that the work is specifically designed to require,

such as by intimate data communication or control flow between those

subprograms and other parts of the work.

 The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding

Source.

 The Corresponding Source for a work in source code form is that

same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated

conditions are met. This License explicitly affirms your unlimited

permission to run the unmodified Program. The output from running a

covered work is covered by this License only if the output, given its

content, constitutes a covered work. This License acknowledges your

rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains

in force. You may convey covered works to others for the sole purpose

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 101 of 125

of having them make modifications exclusively for you, or provide you

with facilities for running those works, provided that you comply with

the terms of this License in conveying all material for which you do

not control copyright. Those thus making or running the covered works

for you must do so exclusively on your behalf, under your direction

and control, on terms that prohibit them from making any copies of

your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10

makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article

11 of the WIPO copyright treaty adopted on 20 December 1996, or

similar laws prohibiting or restricting circumvention of such

measures.

 When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention

is effected by exercising rights under this License with respect to

the covered work, and you disclaim any intention to limit operation or

modification of the work as a means of enforcing, against the work's

users, your or third parties' legal rights to forbid circumvention of

technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you

receive it, in any medium, provided that you conspicuously and

appropriately publish on each copy an appropriate copyright notice;

keep intact all notices stating that this License and any

non-permissive terms added in accord with section 7 apply to the code;

keep intact all notices of the absence of any warranty; and give all

recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the

terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified

 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is

 released under this License and any conditions added under section

 7. This requirement modifies the requirement in section 4 to

 "keep intact all notices".

 c) You must license the entire work, as a whole, under this

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 102 of 125 ProSoft Technology, Inc.

 License to anyone who comes into possession of a copy. This

 License will therefore apply, along with any applicable section 7

 additional terms, to the whole of the work, and all its parts,

 regardless of how they are packaged. This License gives no

 permission to license the work in any other way, but it does not

 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display

 Appropriate Legal Notices; however, if the Program has interactive

 interfaces that do not display Appropriate Legal Notices, your

 work need not make them do so.

 A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,

and which are not combined with it such as to form a larger program,

in or on a volume of a storage or distribution medium, is called an

"aggregate" if the compilation and its resulting copyright are not

used to limit the access or legal rights of the compilation's users

beyond what the individual works permit. Inclusion of a covered work

in an aggregate does not cause this License to apply to the other

parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the

machine-readable Corresponding Source under the terms of this License,

in one of these ways:

 a) Convey the object code in, or embodied in, a physical product

 (including a physical distribution medium), accompanied by the

 Corresponding Source fixed on a durable physical medium

 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product

 (including a physical distribution medium), accompanied by a

 written offer, valid for at least three years and valid for as

 long as you offer spare parts or customer support for that product

 model, to give anyone who possesses the object code either (1) a

 copy of the Corresponding Source for all the software in the

 product that is covered by this License, on a durable physical

 medium customarily used for software interchange, for a price no

 more than your reasonable cost of physically performing this

 conveying of source, or (2) access to copy the

 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the

 written offer to provide the Corresponding Source. This

 alternative is allowed only occasionally and noncommercially, and

 only if you received the object code with such an offer, in accord

 with subsection 6b.

 d) Convey the object code by offering access from a designated

 place (gratis or for a charge), and offer equivalent access to the

 Corresponding Source in the same way through the same place at no

 further charge. You need not require recipients to copy the

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 103 of 125

 Corresponding Source along with the object code. If the place to

 copy the object code is a network server, the Corresponding Source

 may be on a different server (operated by you or a third party)

 that supports equivalent copying facilities, provided you maintain

 clear directions next to the object code saying where to find the

 Corresponding Source. Regardless of what server hosts the

 Corresponding Source, you remain obligated to ensure that it is

 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided

 you inform other peers where the object code and Corresponding

 Source of the work are being offered to the general public at no

 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be

included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any

tangible personal property which is normally used for personal, family,

or household purposes, or (2) anything designed or sold for incorporation

into a dwelling. In determining whether a product is a consumer product,

doubtful cases shall be resolved in favor of coverage. For a particular

product received by a particular user, "normally used" refers to a

typical or common use of that class of product, regardless of the status

of the particular user or of the way in which the particular user

actually uses, or expects or is expected to use, the product. A product

is a consumer product regardless of whether the product has substantial

commercial, industrial or non-consumer uses, unless such uses represent

the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,

procedures, authorization keys, or other information required to install

and execute modified versions of a covered work in that User Product from

a modified version of its Corresponding Source. The information must

suffice to ensure that the continued functioning of the modified object

code is in no case prevented or interfered with solely because

modification has been made.

 If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as

part of a transaction in which the right of possession and use of the

User Product is transferred to the recipient in perpetuity or for a

fixed term (regardless of how the transaction is characterized), the

Corresponding Source conveyed under this section must be accompanied

by the Installation Information. But this requirement does not apply

if neither you nor any third party retains the ability to install

modified object code on the User Product (for example, the work has

been installed in ROM).

 The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates

for a work that has been modified or installed by the recipient, or for

the User Product in which it has been modified or installed. Access to a

network may be denied when the modification itself materially and

adversely affects the operation of the network or violates the rules and

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 104 of 125 ProSoft Technology, Inc.

protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly

documented (and with an implementation available to the public in

source code form), and must require no special password or key for

unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.

Additional permissions that are applicable to the entire Program shall

be treated as though they were included in this License, to the extent

that they are valid under applicable law. If additional permissions

apply only to part of the Program, that part may be used separately

under those permissions, but the entire Program remains governed by

this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of

it. (Additional permissions may be written to require their own

removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work,

for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of

that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the

 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or

 author attributions in that material or in the Appropriate Legal

 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or

 requiring that modified versions of such material be marked in

 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or

 authors of the material; or

 e) Declining to grant rights under trademark law for use of some

 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that

 material by anyone who conveys the material (or modified versions of

 it) with contractual assumptions of liability to the recipient, for

 any liability that these contractual assumptions directly impose on

 those licensors and authors.

 All other non-permissive additional terms are considered "further

restrictions" within the meaning of section 10. If the Program as you

received it, or any part of it, contains a notice stating that it is

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 105 of 125

governed by this License along with a term that is a further

restriction, you may remove that term. If a license document contains

a further restriction but permits relicensing or conveying under this

License, you may add to a covered work material governed by the terms

of that license document, provided that the further restriction does

not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the

additional terms that apply to those files, or a notice indicating

where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;

the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or

modify it is void, and will automatically terminate your rights under

this License (including any patent licenses granted under the third

paragraph of section 11).

 However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)

provisionally, unless and until the copyright holder explicitly and

finally terminates your license, and (b) permanently, if the copyright

holder fails to notify you of the violation by some reasonable means

prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the

violation by some reasonable means, this is the first time you have

received notice of violation of this License (for any work) from that

copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

 Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

this License. If your rights have been terminated and not permanently

reinstated, you do not qualify to receive new licenses for the same

material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work

occurring solely as a consequence of using peer-to-peer transmission

to receive a copy likewise does not require acceptance. However,

nothing other than this License grants you permission to propagate or

modify any covered work. These actions infringe copyright if you do

not accept this License. Therefore, by modifying or propagating a

covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 106 of 125 ProSoft Technology, Inc.

 Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and

propagate that work, subject to this License. You are not responsible

for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an

organization, or merging organizations. If propagation of a covered

work results from an entity transaction, each party to that

transaction who receives a copy of the work also receives whatever

licenses to the work the party's predecessor in interest had or could

give under the previous paragraph, plus a right to possession of the

Corresponding Source of the work from the predecessor in interest, if

the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may

not impose a license fee, royalty, or other charge for exercise of

rights granted under this License, and you may not initiate litigation

(including a cross-claim or counterclaim in a lawsuit) alleging that

any patent claim is infringed by making, using, selling, offering for

sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The

work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims

owned or controlled by the contributor, whether already acquired or

hereafter acquired, that would be infringed by some manner, permitted

by this License, of making, using, or selling its contributor version,

but do not include claims that would be infringed only as a

consequence of further modification of the contributor version. For

purposes of this definition, "control" includes the right to grant

patent sublicenses in a manner consistent with the requirements of

this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor's essential patent claims, to

make, use, sell, offer for sale, import and otherwise run, modify and

propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express

agreement or commitment, however denominated, not to enforce a patent

(such as an express permission to practice a patent or covenant not to

sue for patent infringement). To "grant" such a patent license to a

party means to make such an agreement or commitment not to enforce a

patent against the party.

 If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone

to copy, free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means,

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 107 of 125

then you must either (1) cause the Corresponding Source to be so

available, or (2) arrange to deprive yourself of the benefit of the

patent license for this particular work, or (3) arrange, in a manner

consistent with the requirements of this License, to extend the patent

license to downstream recipients. "Knowingly relying" means you have

actual knowledge that, but for the patent license, your conveying the

covered work in a country, or your recipient's use of the covered work

in a country, would infringe one or more identifiable patents in that

country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a

covered work, and grant a patent license to some of the parties

receiving the covered work authorizing them to use, propagate, modify

or convey a specific copy of the covered work, then the patent license

you grant is automatically extended to all recipients of the covered

work and works based on it.

 A patent license is "discriminatory" if it does not include within

the scope of its coverage, prohibits the exercise of, or is

conditioned on the non-exercise of one or more of the rights that are

specifically granted under this License. You may not convey a covered

work if you are a party to an arrangement with a third party that is

in the business of distributing software, under which you make payment

to the third party based on the extent of your activity of conveying

the work, and under which the third party grants, to any of the

parties who would receive the covered work from you, a discriminatory

patent license (a) in connection with copies of the covered work

conveyed by you (or copies made from those copies), or (b) primarily

for and in connection with specific products or compilations that

contain the covered work, unless you entered into that arrangement,

or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may

otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot convey a

covered work so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may

not convey it at all. For example, if you agree to terms that obligate you

to collect a royalty for further conveying from those to whom you convey

the Program, the only way you could satisfy both those terms and this

License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed

under version 3 of the GNU Affero General Public License into a single

combined work, and to convey the resulting work. The terms of this

License will continue to apply to the part which is the covered work,

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 108 of 125 ProSoft Technology, Inc.

but the special requirements of the GNU Affero General Public License,

section 13, concerning interaction through a network will apply to the

combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

 Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General

Public License "or any later version" applies to it, you have the

option of following the terms and conditions either of that numbered

version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of the

GNU General Public License, you may choose any version ever published

by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy's

public statement of acceptance of a version permanently authorizes you

to choose that version for the Program.

 Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any

author or copyright holder as a result of your choosing to follow a

later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE

USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 109 of 125

above cannot be given local legal effect according to their terms,

reviewing courts shall apply local law that most closely approximates

an absolute waiver of all civil liability in connection with the

Program, unless a warranty or assumption of liability accompanies a

copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

state the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short

notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>

 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

 This is free software, and you are welcome to redistribute it

 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate

parts of the General Public License. Of course, your program's commands

might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,

if any, to sign a "copyright disclaimer" for the program, if necessary.

For more information on this, and how to apply and follow the GNU GPL, see

<http://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 110 of 125 ProSoft Technology, Inc.

may consider it more useful to permit linking proprietary applications with

the library. If this is what you want to do, use the GNU Lesser General

Public License instead of this License. But first, please read

<http://www.gnu.org/philosophy/why-not-lgpl.html>.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 111 of 125

7.2 Eclipse Public License

Eclipse Public License, Version 1.0 (EPL-1.0)

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS
ECLIPSE PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR
DISTRIBUTION OF THE PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF
THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:

a) in the case of the initial Contributor, the initial code and documentation distributed under
this Agreement, and
b) in the case of each subsequent Contributor:
i) changes to the Program, and
ii) additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by
that particular Contributor. A Contribution 'originates' from a Contributor if it was added to
the Program by such Contributor itself or anyone acting on such Contributor's behalf.
Contributions do not include additions to the Program which: (i) are separate modules of
software distributed in conjunction with the Program under their own license agreement, and
(ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily
infringed by the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all
Contributors.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 112 of 125 ProSoft Technology, Inc.

2. GRANT OF RIGHTS
a) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-
exclusive, worldwide, royalty-free copyright license to reproduce, prepare derivative works
of, publicly display, publicly perform, distribute and sublicense the Contribution of such
Contributor, if any, and such derivative works, in source code and object code form.
b) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-
exclusive, worldwide, royalty-free patent license under Licensed Patents to make, use, sell,
offer to sell, import and otherwise transfer the Contribution of such Contributor, if any, in
source code and object code form. This patent license shall apply to the combination of the
Contribution and the Program if, at the time the Contribution is added by the Contributor,
such addition of the Contribution causes such combination to be covered by the Licensed
Patents. The patent license shall not apply to any other combinations which include the
Contribution. No hardware per se is licensed hereunder.
c) Recipient understands that although each Contributor grants the licenses to its
Contributions set forth herein, no assurances are provided by any Contributor that the
Program does not infringe the patent or other intellectual property rights of any other entity.
Each Contributor disclaims any liability to Recipient for claims brought by any other entity
based on infringement of intellectual property rights or otherwise. As a condition to
exercising the rights and licenses granted hereunder, each Recipient hereby assumes sole
responsibility to secure any other intellectual property rights needed, if any. For example, if a
third party patent license is required to allow Recipient to distribute the Program, it is
Recipient's responsibility to acquire that license before distributing the Program.
d) Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own
license agreement, provided that:

a) it complies with the terms and conditions of this Agreement; and
b) its license agreement:
i) effectively disclaims on behalf of all Contributors all warranties and conditions, express
and implied, including warranties or conditions of title and non-infringement, and implied
warranties or conditions of merchantability and fitness for a particular purpose;
ii) effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;
iii) states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and
iv) states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used
for software exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and
b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner
that reasonably allows subsequent Recipients to identify the originator of the Contribution.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 113 of 125

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to end
users, business partners and the like. While this license is intended to facilitate the
commercial use of the Program, the Contributor who includes the Program in a commercial
product offering should do so in a manner which does not create potential liability for other
Contributors. Therefore, if a Contributor includes the Program in a commercial product
offering, such Contributor ("Commercial Contributor") hereby agrees to defend and
indemnify every other Contributor ("Indemnified Contributor") against any losses, damages
and costs (collectively "Losses") arising from claims, lawsuits and other legal actions
brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the
Program in a commercial product offering. The obligations in this section do not apply to any
claims or Losses relating to any actual or alleged intellectual property infringement. In order
to qualify, an Indemnified Contributor must: a) promptly notify the Commercial Contributor in
writing of such claim, and b) allow the Commercial Contributor to control, and cooperate with
the Commercial Contributor in, the defense and any related settlement negotiations. The
Indemnified Contributor may participate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering,
Product X. That Contributor is then a Commercial Contributor. If that Commercial
Contributor then makes performance claims, or offers warranties related to Product X, those
performance claims and warranties are such Commercial Contributor's responsibility alone.
Under this section, the Commercial Contributor would have to defend claims against the
other Contributors related to those performance claims and warranties, and if a court
requires any other Contributor to pay any damages as a result, the Commercial Contributor
must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS
PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for
determining the appropriateness of using and distributing the Program and assumes all risks
associated with its exercise of rights under this Agreement , including but not limited to the
risks and costs of program errors, compliance with applicable laws, damage to or loss of
data, programs or equipment, and unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT
NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING
WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR
DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 114 of 125 ProSoft Technology, Inc.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this Agreement, and
without further action by the parties hereto, such provision shall be reformed to the minimum
extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the
Program with other software or hardware) infringes such Recipient's patent(s), then such
Recipient's rights granted under Section 2(b) shall terminate as of the date such litigation is
filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the
material terms or conditions of this Agreement and does not cure such failure in a
reasonable period of time after becoming aware of such noncompliance. If all Recipient's
rights under this Agreement terminate, Recipient agrees to cease use and distribution of the
Program as soon as reasonably practicable. However, Recipient's obligations under this
Agreement and any licenses granted by Recipient relating to the Program shall continue and
survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following
manner. The Agreement Steward reserves the right to publish new versions (including
revisions) of this Agreement from time to time. No one other than the Agreement Steward
has the right to modify this Agreement. The Eclipse Foundation is the initial Agreement
Steward. The Eclipse Foundation may assign the responsibility to serve as the Agreement
Steward to a suitable separate entity. Each new version of the Agreement will be given a
distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition,
after a new version of the Agreement is published, Contributor may elect to distribute the
Program (including its Contributions) under the new version. Except as expressly stated in
Sections 2(a) and 2(b) above, Recipient receives no rights or licenses to the intellectual
property of any Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted under this Agreement
are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual
property laws of the United States of America. No party to this Agreement will bring a legal
action under this Agreement more than one year after the cause of action arose. Each party
waives its rights to a jury trial in any resulting litigation.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 115 of 125

7.3 Python Public License

Python 2.5 license

This is the official license for the Python 2.5 release:

A. HISTORY OF THE SOFTWARE

==========================

Python was created in the early 1990s by Guido van Rossum at Stichting

Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands

as a successor of a language called ABC. Guido remains Python's

principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for

National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)

in Reston, Virginia where he released several versions of the

software.

In May 2000, Guido and the Python core development team moved to

BeOpen.com to form the BeOpen PythonLabs team. In October of the same

year, the PythonLabs team moved to Digital Creations (now Zope

Corporation, see http://www.zope.com). In 2001, the Python Software

Foundation (PSF, see http://www.python.org/psf/) was formed, a

non-profit organization created specifically to own Python-related

Intellectual Property. Zope Corporation is a sponsoring member of

the PSF.

All Python releases are Open Source (see http://www.opensource.org for

the Open Source Definition). Historically, most, but not all, Python

releases have also been GPL-compatible; the table below summarizes

the various releases.

 Release Derived Year Owner GPL-

 from compatible? (1)

 0.9.0 thru 1.2 1991-1995 CWI yes

 1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

 1.6 1.5.2 2000 CNRI no

 2.0 1.6 2000 BeOpen.com no

 1.6.1 1.6 2001 CNRI yes (2)

 2.1 2.0+1.6.1 2001 PSF no

 2.0.1 2.0+1.6.1 2001 PSF yes

 2.1.1 2.1+2.0.1 2001 PSF yes

 2.2 2.1.1 2001 PSF yes

 2.1.2 2.1.1 2002 PSF yes

 2.1.3 2.1.2 2002 PSF yes

 2.2.1 2.2 2002 PSF yes

 2.2.2 2.2.1 2002 PSF yes

 2.2.3 2.2.2 2003 PSF yes

 2.3 2.2.2 2002-2003 PSF yes

 2.3.1 2.3 2002-2003 PSF yes

 2.3.2 2.3.1 2002-2003 PSF yes

 2.3.3 2.3.2 2002-2003 PSF yes

 2.3.4 2.3.3 2004 PSF yes

 2.3.5 2.3.4 2005 PSF yes

 2.4 2.3 2004 PSF yes

 2.4.1 2.4 2005 PSF yes

 2.4.2 2.4.1 2005 PSF yes

 2.4.3 2.4.2 2006 PSF yes

 2.5 2.4 2006 PSF yes

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 116 of 125 ProSoft Technology, Inc.

Footnotes:

(1) GPL-compatible doesn't mean that we're distributing Python under

 the GPL. All Python licenses, unlike the GPL, let you distribute

 a modified version without making your changes open source. The

 GPL-compatible licenses make it possible to combine Python with

 other software that is released under the GPL; the others don't.

(2) According to Richard Stallman, 1.6.1 is not GPL-compatible,

 because its license has a choice of law clause. According to

 CNRI, however, Stallman's lawyer has told CNRI's lawyer that 1.6.1

 is "not incompatible" with the GPL.

Thanks to the many outside volunteers who have worked under Guido's

direction to make these releases possible.

B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON

===

PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

--

1. This LICENSE AGREEMENT is between the Python Software Foundation

("PSF"), and the Individual or Organization ("Licensee") accessing and

otherwise using this software ("Python") in source or binary form and

its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF

hereby grants Licensee a nonexclusive, royalty-free, world-wide

license to reproduce, analyze, test, perform and/or display publicly,

prepare derivative works, distribute, and otherwise use Python

alone or in any derivative version, provided, however, that PSF's

License Agreement and PSF's notice of copyright, i.e., "Copyright (c)

2001, 2002, 2003, 2004, 2005, 2006 Python Software Foundation; All Rights

Reserved" are retained in Python alone or in any derivative version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on

or incorporates Python or any part thereof, and wants to make

the derivative work available to others as provided herein, then

Licensee hereby agrees to include in any such work a brief summary of

the changes made to Python.

4. PSF is making Python available to Licensee on an "AS IS"

basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT

INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS

A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON,

OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 117 of 125

6. This License Agreement will automatically terminate upon a material

breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any

relationship of agency, partnership, or joint venture between PSF and

Licensee. This License Agreement does not grant permission to use PSF

trademarks or trade name in a trademark sense to endorse or promote

products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python, Licensee

agrees to be bound by the terms and conditions of this License

Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an

office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the

Individual or Organization ("Licensee") accessing and otherwise using

this software in source or binary form and its associated

documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License

Agreement, BeOpen hereby grants Licensee a non-exclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform

and/or display publicly, prepare derivative works, distribute, and

otherwise use the Software alone or in any derivative version,

provided, however, that the BeOpen Python License is retained in the

Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS"

basis. BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT

INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE

SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS

AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY

DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material

breach of its terms and conditions.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 118 of 125 ProSoft Technology, Inc.

6. This License Agreement shall be governed by and interpreted in all

respects by the law of the State of California, excluding conflict of

law provisions. Nothing in this License Agreement shall be deemed to

create any relationship of agency, partnership, or joint venture

between BeOpen and Licensee. This License Agreement does not grant

permission to use BeOpen trademarks or trade names in a trademark

sense to endorse or promote products or services of Licensee, or any

third party. As an exception, the "BeOpen Python" logos available at

http://www.pythonlabs.com/logos.html may be used according to the

permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee

agrees to be bound by the terms and conditions of this License

Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National

Research Initiatives, having an office at 1895 Preston White Drive,

Reston, VA 20191 ("CNRI"), and the Individual or Organization

("Licensee") accessing and otherwise using Python 1.6.1 software in

source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI

hereby grants Licensee a nonexclusive, royalty-free, world-wide

license to reproduce, analyze, test, perform and/or display publicly,

prepare derivative works, distribute, and otherwise use Python 1.6.1

alone or in any derivative version, provided, however, that CNRI's

License Agreement and CNRI's notice of copyright, i.e., "Copyright (c)

1995-2001 Corporation for National Research Initiatives; All Rights

Reserved" are retained in Python 1.6.1 alone or in any derivative

version prepared by Licensee. Alternately, in lieu of CNRI's License

Agreement, Licensee may substitute the following text (omitting the

quotes): "Python 1.6.1 is made available subject to the terms and

conditions in CNRI's License Agreement. This Agreement together with

Python 1.6.1 may be located on the Internet using the following

unique, persistent identifier (known as a handle): 1895.22/1013. This

Agreement may also be obtained from a proxy server on the Internet

using the following URL: http://hdl.handle.net/1895.22/1013".

3. In the event Licensee prepares a derivative work that is based on

or incorporates Python 1.6.1 or any part thereof, and wants to make

the derivative work available to others as provided herein, then

Licensee hereby agrees to include in any such work a brief summary of

the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS"

basis. CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT

INFRINGE ANY THIRD PARTY RIGHTS.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 119 of 125

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON

1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS

A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1,

OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material

breach of its terms and conditions.

7. This License Agreement shall be governed by the federal

intellectual property law of the United States, including without

limitation the federal copyright law, and, to the extent such

U.S. federal law does not apply, by the law of the Commonwealth of

Virginia, excluding Virginia's conflict of law provisions.

Notwithstanding the foregoing, with regard to derivative works based

on Python 1.6.1 that incorporate non-separable material that was

previously distributed under the GNU General Public License (GPL), the

law of the Commonwealth of Virginia shall govern this License

Agreement only as to issues arising under or with respect to

Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this

License Agreement shall be deemed to create any relationship of

agency, partnership, or joint venture between CNRI and Licensee. This

License Agreement does not grant permission to use CNRI trademarks or

trade name in a trademark sense to endorse or promote products or

services of Licensee, or any third party.

8. By clicking on the "ACCEPT" button where indicated, or by copying,

installing or otherwise using Python 1.6.1, Licensee agrees to be

bound by the terms and conditions of this License Agreement.

 ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

--

Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam,

The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that

both that copyright notice and this permission notice appear in

supporting documentation, and that the name of Stichting Mathematisch

Centrum or CWI not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior

permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT

OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 120 of 125 ProSoft Technology, Inc.

7.4 GCC Public License

The Code: GPL

The source code is distributed under the GNU General Public License version 3, with the
addition under section 7 of an exception described in the GCC Runtime Library Exception,
version 3.1 as follows (or see the file COPYING.RUNTIME):

GCC RUNTIME LIBRARY EXCEPTION

Version 3.1, 31 March 2009

Copyright (C) 2009 Free Software Foundation, Inc.

This GCC Runtime Library Exception ("Exception") is an additional permission under section
7 of the GNU General Public License, version 3 ("GPLv3"). It applies to a given file (the
"Runtime Library") that bears a notice placed by the copyright holder of the file stating that

the file is governed by GPLv3 along with this Exception.

When you use GCC to compile a program, GCC may combine portions of certain GCC
header files and runtime libraries with the compiled program. The purpose of this Exception
is to allow compilation of non-GPL (including proprietary) programs to use, in this way, the

header files and runtime libraries covered by this Exception.

0. Definitions.

A file is an "Independent Module" if it either requires the Runtime Library for execution after
a Compilation Process, or makes use of an interface provided by the Runtime Library, but is
not otherwise based on the Runtime Library.

"GCC" means a version of the GNU Compiler Collection, with or without modifications,
governed by version 3 (or a specified later version) of the GNU General Public License
(GPL) with the option of using any subsequent versions published by the FSF.

"GPL-compatible Software" is software whose conditions of propagation, modification and
use would permit combination with GCC in accord with the license of GCC.

"Target Code" refers to output from any compiler for a real or virtual target processor
architecture, in executable form or suitable for input to an assembler, loader, linker and/or
execution phase. Notwithstanding that, Target Code does not include data in any format that
is used as a compiler intermediate representation, or used for producing a compiler
intermediate representation.

The "Compilation Process" transforms code entirely represented in non-intermediate
languages designed for human-written code, and/or in Java Virtual Machine byte code, into
Target Code. Thus, for example, use of source code generators and preprocessors need
not be considered part of the Compilation Process, since the Compilation Process can be

understood as starting with the output of the generators or preprocessors.

MVI69E-LDM ♦ "C" Programmable Contents
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 121 of 125

A Compilation Process is "Eligible" if it is done using GCC, alone or with other GPL-
compatible software, or if it is done without using any work based on GCC. For example,
using non-GPL-compatible Software to optimize any GCC intermediate representations
would not qualify as an Eligible Compilation Process.

1. Grant of Additional Permission.

You have permission to propagate a work of Target Code formed by combining the Runtime
Library with Independent Modules, even if such propagation would otherwise violate the
terms of GPLv3, provided that all Target Code was generated by Eligible Compilation
Processes. You may then convey such a combination under terms of your choice,

consistent with the licensing of the Independent Modules.

2. No Weakening of GCC Copyleft. The availability of this Exception does not imply any
general presumption that third-party software is unaffected by the copyleft requirements of
the license of GCC.

The Documentation: GPL, FDL

The documentation shipped with the library and made available over the web, excluding the
pages generated from source comments, are copyrighted by the Free Software Foundation,
and placed under the GNU Free Documentation License version 1.3. There are no Front-
Cover Texts, no Back-Cover Texts, and no Invariant Sections.

For documentation generated by doxygen or other automated tools via processing source
code comments and markup, the original source code license applies to the generated files.
Thus, the doxygen documents are licensed GPL.

Contents MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 122 of 125 ProSoft Technology, Inc.

8 Support, Service & Warranty

8.1 Contacting Technical Support

ProSoft Technology, Inc. is committed to providing the most efficient and effective support possible.
Before calling, please gather the following information to assist in expediting this process:

1 Product Version Number
2 System architecture
3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any
2 Module operation and any unusual behavior
3 Configuration/Debug status information
4 LED patterns
5 Details about the interfaced serial, Ethernet or Fieldbus devices

Note: For technical support calls within the United States, ProSoft’s 24/7 after-hours phone support is available for urgent
plant-down issues.

North America (Corporate Location) Europe / Middle East / Africa Regional Office

Phone: +1.661.716.5100
info@prosoft-technology.com
Languages spoken: English, Spanish
REGIONAL TECH SUPPORT
support@prosoft-technology.com

Phone: +33.(0)5.34.36.87.20
france@prosoft-technology.com
Languages spoken: French, English
REGIONAL TECH SUPPORT
support.emea@prosoft-technology.com

Latin America Regional Office Asia Pacific Regional Office

Phone: +52.222.264.1814
latinam@prosoft-technology.com
Languages spoken: Spanish, English
REGIONAL TECH SUPPORT
support.la@prosoft-technology.com

Phone: +60.3.2247.1898
asiapc@prosoft-technology.com
Languages spoken: Bahasa, Chinese, English,
Japanese, Korean
REGIONAL TECH SUPPORT
support.ap@prosoft-technology.com

For additional ProSoft Technology contacts in your area, please visit:
https://www.prosoft-technology.com/About-Us/Contact-Us.

8.2 Warranty Information

For complete details regarding ProSoft Technology’s TERMS & CONDITIONS OF SALE,
WARRANTY, SUPPORT, SERVICE AND RETURN MATERIAL AUTHORIZATION INSTRUCTIONS,
please see the documents at:
www.prosoft-technology/legal

https://www.prosoft-technology.com/About-Us/Contact-Us
https://www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions

MVI69E-LDM ♦ "C" Programmable Glossary of Terms
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 123 of 125

9 Glossary of Terms

A

API

Application Program Interface

B

BIOS

Basic Input Output System. The BIOS firmware initializes the module at power
up, performs self-diagnostics, provides a DOS-compatible interface to the
console, and flashes the ROM disk.

Byte

8-bit value

C

CIP

Control and Information Protocol. This is the messaging protocol used for
communications over the CompactLogix backplane. Refer to the ControlNet
Specification for information.

Connection

A logical binding between two objects. A connection allows more efficient use of
bandwidth, because the message path is not included after the connection is
established.

Consumer

A destination for data.

Controller

The PLC or other controlling processor that communicates with the module
directly over the backplane or via a network or remote I/O adapter.

D

DLL

Dynamic Linked Library

E

Embedded I/O

Refers to any I/O which may reside on a CAM board.

Glossary of Terms MVI69E-LDM ♦ "C" Programmable
Developer's Guide Linux® Application Development Module

Page 124 of 125 ProSoft Technology, Inc.

ExplicitMsg

An asynchronous message sent for information purposes to a node from the
scanner.

H

HSC

High Speed Counter

I

Input Image

Refers to a contiguous block of data that is written by the module application and
read by the controller. The input image is read by the controller once each scan.
Also referred to as the input file.

L

Library

Refers to the library file containing the API functions. The library must be linked
with the developer’s application code to create the final executable program.

Linked Library

Dynamically Linked Library. See Library.

Local I/O

Refers to any I/O contained on the CPC base unit or mezzanine board.

Long

32-bit value.

M

Module

Refers to a module attached to the backplane.

Mutex

A system object which is used to provide mutually-exclusive access to a
resource.

O

Originator

A client that establishes a connection path to a target.

Output Image

Table of output data sent to nodes on the network.

P

Producer

A source of data.

MVI69E-LDM ♦ "C" Programmable Glossary of Terms
Linux® Application Development Module Developer's Guide

ProSoft Technology, Inc. Page 125 of 125

PTO

Pulse Train Output

PTQ Suite

The PTQ suite consists of line products for Schneider Electronics platforms:

Quantum (ProTalk)

S

Scanner

A DeviceNet node that scans nodes on the network to update outputs and inputs.

T

Target

The end-node to which a connection is established by an originator.

Thread

Code that is executed within a process. A process may contain multiple threads.

W

Word

16-bit value

